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Figure S1. Schematic of co-sputtering set-up for CuNi sample preparation. 










Figure S2. SEM image of pristine polished Cu. Scale bar on SEM images is 250 nm. 

Table S1. Composition of the as-prepared sputtered catalysts.
	
	Sample
	Cu at%
	Ni  at%

	1.
	Cu
	100
	0

	2.
	Cu98_3Ni1_7
	26.675
	0.4725

	3.
	Cu88Ni12
	15.58
	2.133333

	4.
	Cu64Ni36
	6.86
	3.8633

	5.
	Ni
	0
	100
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Figure S3. X-ray photoelectron spectroscopy (XPS) survey scan spectrum of Cu. 
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Figure S4. XPS survey scan spectrum of Cu98.3Ni1.7. 
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Figure S5. XPS survey scan spectrum of Cu88Ni12. 

[image: ]
Figure S6. XPS survey scan spectrum of Cu64Ni36. 
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Figure S7. XPS survey scan spectrum of Ni. 
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Figure S8. Two compartment electrochemical cell: (A) Schematic and (B) experimental cell. 
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 Figure S9. Ni catalyst: Chronoamperometry experiments and corresponding NMR analysis. 
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Figure S10. Cu64Ni36 catalyst: Chronoamperometry experiments and corresponding NMR analysis. 
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Figure S11. Cu88Ni12 catalyst: Chronoamperometry experiments and corresponding NMR analysis. 
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Figure S12. Cu98.3Ni1.7 catalyst: Chronoamperometry experiments and corresponding NMR analysis. 
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Figure S13. Cu catalyst: Chronoamperometry experiments and corresponding NMR analysis. 
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Figure S14. Ratio of NMR peaks; A2 (associated to BHMF) to A (associated to HMF) NMR peaks for (A) (A) Ni, (B) Cu64Ni36, (C) Cu88Ni12, (D) Cu98.3Ni1.7 thin films, and (E) Cu foil and (F) comparison of peaks recorded at 0.9V vs RHE for all catalysts.
[image: ]

Figure S15. Representative NMR data of the products collected at 0.9 V vs RHE for different catalysts.


Hydroegn Faradaic Efficiency Calculation 
Calculation of Faradaic Efficiency (%) of H2:
eOutput  = No. of moles of electrons required for reducing CO2 to H2 
= 2* H2 moles produced

eInput  = I (A) * t /(6.022*1023*1.602*10-19)
I (A) = recorded current in amp
t (s) = the time required to fill the sampling loop= V/r/60 
V= volume of sampling loop (cm3)
r = recorded flow rate (sccm) = r/60 (cm3/s)

Faradaic efficiency = Output/input *100%
Similary the BHMF FEs were calculated using NMR calibration curve. 
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 Figure S16. The provided figure represents a hydrogen calibration graph obtained via plotting the hydrogen concentration (or amount) and the corresponding detector response (peak area) in gas chromatography. 
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Figure S17. Tafel slop for Ni Catalyst in electrolyte without HMF.. 
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Figure S18. Tafel slop for Cu64Ni36 catalyst in electrolyte without HMF.
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Figure S19. Tafel slop for Cu88Ni12 catalyst in electrolyte without HMF.
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Figure S20. Tafel slop for Cu98.3Ni1.7 catalyst in electrolyte without HMF.
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Figure S21. Tafel slop for Cu catalyst in electrolyte without HMF.


Table S2. Tafel slop analysis of the catalysts in electrolyte without HMF.
	​
	Tafel slope mV/dec)​

	​
	Lower potential​
	Higher potential​

	Cu​
	2885.14​
	390.16​

	Cu98.3Ni1.7​
	2384.9​
	670.66​

	Cu88Ni12​
	1329.74​
	522.22​

	Cu64Ni36​
	332.14​
	628.85​

	Ni​
	639.19​
	938.24​
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