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1 Land carbon changes following reforestation
potentials
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Fig. S1 Time series of global-mean changes in (a) land carbon Cpqnq4, (b) vegetation carbon
C’Vegemtion, (c) coarse woody debris carbon C’Woodypebm-s, (d) soil organic matter carbon Cg;; and
(e) litter carbon Cp;tter pools from 2015 to 2100 for the Bastin, Moustakis and Hurtt reforestation
potentials compared to the baseline. A 15-year centered rolling mean was applied. Envelopes indicate
one standard deviation across the five ensemble members. Note the different y-axes of the (d) and (e).



2 Drivers of temperature responses
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Fig. S2 Global maps of annual mean changes in (a-c) surface latent heat flux, (d-f) surface sensible
heat flux, (g-i) surface net shortwave (SW) radiation, (j-1) surface shortwave cloud forcing, (m-o)
surface net longwave (LW) radiation, (p-r) surface longwave cloud forcing and (s-u) relative humidity
at the lowest model level from 2071 to 2100 for the ensemble mean of the Bastin, Moustakis and
Hurtt potentials relative to the baseline. Stippling indicates regions where the response is statistically
significant at the 90% level.



3 Seasonal temperature responses
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Fig. S3 Global maps of the BGP near-surface temperature changes in (a-c) December to February
(DJF), (d-f) March to May (MAM), (g-i) June to August (JJA) and (j-1) September to November
(SON) from 2071 to 2100 for the ensemble mean of the Bastin, Moustakis and Hurtt potentials
relative to the baseline. Stippling indicates regions where the response is statistically significant at
the 90% level.



4 Forest sensitivity
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Fig. S4 Global maps of forest sensitivity (defined as ensemble mean local temperature response
divided by forest cover area per gridcell) from 2071 to 2100 for the (a) Bastin, (b) Moustakis and
(c) Hurtt reforestation potential relative to the baseline. Only regions where the local temperature
changes by at least 0.025°C are shown.



5 global-mean net temperature changes depending
on different TCREs
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Fig. S5 Time series of global-mean near-surface temperature changes from 2015 to 2100 due to
simulated biogeophysical (BGP) effects and calculated biogeochemical (BGC) effect for the (a) Bastin,
(b) Moustakis and (c) Hurtt reforestation potential compared to the baseline. The BGC effect was
calculated using the TCRE value from CESM2 (orange line; TCRE = 2.13 EgC™! ), from the best
estimate based on observations as reported in the IPCC [1] (blue line; TCRE = 1.65 EgC-!) and the
mean value across CMIP6 models as reported in Arora et al. [2] (green line; TCRE = 1.77°C EgC1).
An 11-year centered rolling mean was applied. Envelopes indicate one standard deviation across the
BGC temperature response for the calculation using the CESM2 TCRE, and the spread in the BGC
temperature response based on the given spread in the observed TCRE values from IPCC (TCRE
between 1-2.3°C EgC-! with a best estimate of 1.65°C EgC1) and across CMIP6 models (TCRE
between 1.32-2.3°C EgC1). The spread based on the BGP temperature is not shown since it is the
same for all three lines graphs. A 15-year centered rolling mean was applied to (a-c).



6 Global land cover transitions
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Fig. S6 Time series of global area covered by (a) forest, (b) shrub, (d) grass and (d) crop land for
the baseline and the Bastin, Moustakis and Hurtt reforestation potential. In 2015, our simulations
branch off from the historical simulations (dashed line).



7 Comparison of implemented reforestation potentials
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