Assessing the Capability of Large Language Models in Answering Pediatric Critical Care Board-Style Questions

Daniela Chanci, Ronald Moore, Henry P. Foote, Matthew A. Goldstein, Karan R. Kumar, Alexandre T. Rotta, Christoph P. Hornik, Marybeth Burriss-West, Makenzie Hamilton, and Rishikesan Kamaleswaran

Online Supplemental Information

Supplemental Methods

Large Language Models Implementation
The Hugging Face transformers library in Python 3.11 was used for model inference and evaluation [1]. A standardized pipeline was implemented to ensure consistency across the evaluated models. Specific configuration parameters included a temperature of 0.1, and a maximum of 800 new tokens. All other generation settings used default Hugging Face values.
Prompt Structure
Each prompt typically consisted of two components: the system and the user roles. The system content included initial context, task instructions, and the specific JSON format to generate the answer. The user content included the MCQ with the corresponding answer options. Depending on the prompting paradigm, the prompt could contain additional elements, namely, the few-shot examples and the retrieved context. However, for models without native support for the system role (e.g., Gemma-2), the system content was prepended to the user content to maintain semantic structure.
Few-Shot Examples Generation
Each example includes a question, answer options, the correct answer, and a brief explanation or step-by-step reasoning generated by GPT-4. In this regard, GPT-4 was specifically prompted to generate explanations to support clinical training given a question, choices, and correct answer. All completions were reviewed by the team of pediatric specialists to ensure correctness and clinical accuracy
Retrieval Augmented Generation Pipeline
First, each article of data is broken down into chunks to ensure that only the relevant information is fed to the final RAG system as opposed to the entire article. Next, the chunks are transformed into multi-dimensional vectors using a pretrained word embedding model. These resulting vector embeddings are stored in a vector database, which can be thought of as a lookup table for future input queries. When a user provides a prompt query to the LLM, the query is converted into a vector using the same pretrained embedding model. This vector is compared to the vectors within the vector database using a similarity metric (cosine distance, dot product, Euclidean distance, etc.). The vectors with the highest similarity to the query vector are retrieved and added to the original prompt. Doing this provides more useful contextual information to the LLM and has shown to improve its reasoning process [2, 3].
For our RAG system development, we chunked each textbook chapter separately using the recursive chunking method available in the Langchain Python library package [4]. We tested different lengths for the chunk sizes, specifically 100, 200, and 500, and 1000 characters. To convert the chapter chunks into vectors, we utilized the gte-base-en-v1.5 multi-lingual embedding model [5]. Each chunk was transformed into vectors with 768 dimensions. For the similarity metric, we used the cosine distance to retrieve the most relevant vectors to the query. We switched between retrieving 1, 3, and 5 vectors for each RAG query. In the experiments, we display the results of the RAG configuration of using chunk sizes of 200 characters and retrieving the 3 most relevant vectors, as this configuration led to the best performance across all models.

Supplemental Tables

Supplemental Table 1. Board-style PICU multiple-choice question dataset categories statistics.
	Category
	Total (100)
	Test Set (92)
	Shots (8)

	Management
	32
	30
	2

	Physiology
	31
	29
	2

	Diagnosis
	18
	17
	1

	Pharmacology
	11
	9
	2

	Calculation
	5
	4
	1

	Ethics
	3
	3
	0

Supplemental References

1. Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, et al. HuggingFace’s Transformers: State-of-the-art Natural Language Processing. 2020. https://doi.org/10.48550/arXiv.1910.03771.
2. Lewis P, Perez E, Piktus A, Petroni F, Karpukhin V, Goyal N, et al. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. In: Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin H, editors. Advances in Neural Information Processing Systems. Curran Associates, Inc.; 2020. p. 9459–74.
3. Zakka C, Shad R, Chaurasia A, Dalal AR, Kim JL, Moor M, et al. Almanac — Retrieval-Augmented Language Models for Clinical Medicine. NEJM AI. 2024;1. https://doi.org/10.1056/aioa2300068.
4. Chase H. LangChain [Computer Software]. 2023.
5. Zhang X, Zhang Y, Long D, Xie W, Dai Z, Tang J, et al. mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval. 2024. https://doi.org/10.48550/arXiv.2407.19669.

4

2

