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Abstract

A grand challenge in artificial intelligence and neuroscience is to formally integrate emotion and

selfhood into a unified, predictive model of the mind. Without such a framework, creating truly

adaptive agents or understanding the computational basis of psychiatric disorders remains elusive.

This paper introduces Predictive Emotional Selfhood in Artificial Minds (PESAM), a variational

framework demonstrating that an emotional self emerges from the synergistic interaction of three core

mechanisms: (1) Affective Precision Control (APC), the emotional modulation of sensory gain; (2)

Self-as-Hyperprior (SaH), a deep, stabilizing self-model; and (3) Affective Homeostatic Objectives

(AHO), intrinsic drives for internal stability. We argue that a true test of a unified framework lies in

its ability to solve complex problems that are intractable for any single mechanism alone. To this end,

we introduce a novel Social Threat & Body-Boundary Task. Results from this unified task show

that the complete PESAM agent achieves significantly higher performance than both lesioned variants

and strong alternative models (e.g., reinforcement learning), providing quantitative evidence for a

genuinely synergistic—rather than merely additive—account of emotional selfhood and a principled

foundation for adaptive AI and computational psychiatry.

Keywords: Active inference; Predictive processing; Emotion; Self-model; Interoception; Synergistic

model; Computational psychiatry; Social cognition

1 Introduction

The active inference framework, an ambitious corollary of the free energy principle, has emerged as a

leading candidate for a unified theory of brain function (Friston, 2010; Clark, 2013). It elegantly casts

perception, action, and learning as manifestations of a single imperative: the minimization of variational
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free energy, a proxy for prediction error or surprise. This powerful lens has brought a new level of

coherence to our understanding of sensory processing, motor control, and decision-making (Hohwy,

2013; Buckley et al., 2017; Craig, 2002). However, despite its broad scope, the framework has yet to fully

integrate two of the most profound aspects of sentient existence: emotion and selfhood.

Emotions are not mere cognitive afterthoughts; they are deeply embodied phenomena, inextricably

linked to interoception—the brain’s continuous, predictive modeling of the body’s internal physiological

state (Critchley and Garfinkel, 2017; Critchley and Harrison, 2013). Contemporary theories, such as the

theory of constructed emotion, posit that affective experiences are the brain’s attempt to make sense of

interoceptive changes, predicting their causes and prescribing actions to maintain physiological viability

(Barrett, 2017; Barrett and Satpute, 2019). This places interoception at the very heart of self-preservation.

Consequently, the self is no longer seen as a static, homuncular entity but as a dynamic, inferential process,

perpetually constructed from the experience of being a homeostatic, embodied agent (Kleckner et al.,

2017; Apps and Tsakiris, 2014; Seth, 2013; Fotopoulou and Tsakiris, 2017; Allen and Tsakiris, 2018;

Seth and Tsakiris, 2018).

While computational neuroscience has made inroads, progress has been largely piecemeal. We

have sophisticated models of interoceptive inference (Hesp et al., 2021), Bayesian accounts of body

ownership illusions (Samad et al., 2015; Tsakiris, 2017), and formalisms of goal-directed control (Pezzulo

et al., 2018). Yet, these models often exist in isolation. A critical question remains unanswered: how

do these distinct processes—interoceptive regulation, multisensory self-representation, and motivated

action—interact to give rise to a unified, emotional self? A truly integrated framework must demonstrate

that the whole is greater than the sum of its parts, providing explanatory power that isolated models

cannot.

This paper introduces Predictive Emotional Selfhood in Artificial Minds (PESAM), a variational

framework built on the central hypothesis that emotional selfhood is a synergistic phenomenon. We

propose that it emerges from the dynamic interplay of three core, computationally specified mechanisms:

1. Affective Precision Control (APC): The modulation of interoceptive precision by affective states,

providing a formal account of emotional attention and salience.

2. Self-as-Hyperprior (SaH): The instantiation of a self-model as a deep, temporally persistent prior

that enforces coherence on multisensory experience, providing a stable anchor for perception.

3. Affective Homeostatic Objectives (AHO): The encoding of intrinsic preferences for physiological

stability, furnishing the agent with the fundamental drive for allostatic self-regulation. (Stephan
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et al., 2016).

The central thesis of this paper is that the scientific value of PESAM lies not in its individual components,

but in their unified and synergistic operation. To substantiate this claim, we move beyond simple

proof-of-concept tasks. We first validate each mechanism by replicating classic phenomena (the Somatic

Marker Task, the Rubber Hand Illusion, and a Stress Regulation scenario). We then introduce a novel,

complex Social Threat & Body-Boundary Task. This task is specifically designed to be computationally

intractable for any single mechanism alone, requiring an agent to simultaneously manage internal threat

(AHO), regulate anxiety-driven attention (APC), and maintain self-other boundaries (SaH). Through a

series of computational lesion studies on this task, we provide strong evidence that only the complete,

integrated PESAM agent can achieve adaptive behavior. This demonstrates that emotional selfhood, at

least in a computational sense, is fundamentally synergistic, and offers a new path toward building more

robust AI and developing a computationally grounded psychiatry (Montague et al., 2012; Huys et al.,

2016).

Overview of the paper. We first formalize PESAM under expected free energy and specify how APC,

SaH, and AHO interact within a hierarchical generative model. We then validate the mechanisms on

canonical tasks before testing synergy on a novel unified task. Finally, we compare against strong baselines,

analyze behavioral profiles, and discuss implications for scalable, reproducible computational modeling.

2 The PESAM Framework: A Formal Account

2.1 Core Principles: Decomposing Expected Free Energy

PESAM is formally grounded in active inference. While perception is cast as the minimization of

variational free energy 𝐹 over beliefs, action selection (i.e., choosing a policy 𝜋) is driven by the

minimization of expected free energy G(𝜋). To clarify how PESAM’s mechanisms operate, we explicitly

decompose G(𝜋) into its constituent parts, following standard formulations (Buckley et al., 2017; Parr

and Friston, 2019; Friston et al., 2017)

G(𝜋) = E𝑄 (o | 𝜋 )
[

− ln 𝑝(o)
]

︸                   ︷︷                   ︸

Extrinsic (risk)

+E𝑄 (o | 𝜋 )
[

𝐷KL

(

𝑄(x | o, 𝜋) ∥𝑄(x | 𝜋)
) ]

︸                                            ︷︷                                            ︸

Epistemic (information gain)

. (1)

Here, Extrinsic Value (or negative Risk) quantifies how likely future outcomes are to conform to the

agent’s prior preferences 𝑝(o|𝜋). Epistemic Value (or Information Gain) quantifies the expected reduction
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in uncertainty about the causes of outcomes.

• AHO directly shapes the Extrinsic Value term. It defines the prior preferences 𝑝(o|𝜋) to assign

high utility (low surprise) to outcomes where internal physiological states are near their homeostatic

setpoints. This endows the agent with an intrinsic drive for well-being.

• APC influences both terms by dynamically modulating the precision of the likelihood mapping

𝑝(o|x), particularly for the interoceptive modality. High precision on interoceptive signals increases

their influence on state estimation, which in turn affects the evaluation of both risk and epistemic

value. This is the formal mechanism for emotional salience. (Paulus and Stein, 2010b; Barrett and

Simmons, 2015)

• SaH constrains the agent’s beliefs about its latent states 𝑝(x) with a high-precision, temporally deep

prior. This stabilizes the inference process, preventing volatile fluctuations in self-representation

and ensuring that policy evaluations are anchored to a coherent model of the self. (Tsakiris, 2017;

Allen and Tsakiris, 2018)

2.2 Model Specification and Identifiability

PESAM is instantiated as a hierarchical POMDP with factorized latent states for (i) interoceptive arousal,

(ii) exteroceptive context, and (iii) self–other mapping. Likelihoods 𝐴 comprise distinct sensory channels

with precision parameters gated by APC. Transition matrices 𝐵 are action-contingent for the agent and

intent-contingent for the Other. Prior preferences 𝐶 encode AHO as log-probabilities peaking near

physiological setpoints; initial beliefs 𝐷 embed SaH as a temporally deep, high-precision self prior.

To promote identifiability, we avoid parameter co-linearity by (a) bounding interoceptive precision via

a sigmoid APC gate with fixed slope 𝑘 and (b) regularizing SaH precision 𝛼self to a narrow range

(Appendix A). This prevents degenerate fits where SaH rigidity mimics APC hyper-precision (Parr and

Friston, 2019).

2.3 Unified Task: Formal Specification

At time 𝑡, the Other’s latent intent 𝑧𝑡 ∈ {Safe,Threat} evolves as a first-order Markov process with

transition 𝐵 (𝑧) . The agent’s relative position state 𝑠𝑡 (discretized distance bins) and stress state 𝑢𝑡 (3–5

bins) couple via 𝐴 to outcomes 𝑜𝑡 = (𝑜exo
𝑡 , 𝑜endo

𝑡 ). Actions 𝑎𝑡 ∈ {Hold,Avoid} alter 𝐵 (𝑠) and indirectly

𝑢𝑡 through biophysically inspired decay/accumulation dynamics. Preferences 𝐶 (𝑢) penalize elevated

𝑢𝑡 (AHO). APC scales the interoceptive likelihood column in 𝐴 as 𝜎(𝑘 · Δ𝑢𝑡 ) so that volatility in 𝑢𝑡
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amplifies perceived salience (Barrett and Simmons, 2015). SaH is implemented as a hyperprior over

self-consistent multisensory mappings, biasing the posterior toward stable self–other segregation (Allen

and Tsakiris, 2018).

2.4 Simulation Protocol and Ablations

We run 𝑁=30 episodes per condition for horizon 𝑇 with fixed random seeds (deposit on Zenodo). Lesion

variants remove one mechanism at a time: No_AHO (𝐶=0 on interoceptive stability), No_APC (fixed

likelihood precision), No_SaH (low 𝛼self). External baselines include: (i) Risk-penalized RL with scalar

penalty on 𝑢𝑡 , (ii) fixed-precision Bayesian inference without APC, and (iii) thresholded APC-like RL

(hand-tuned exploration). All models share the same observation alphabet and action set to ensure a fair

comparison (Pezzulo et al., 2018; Friston et al., 2017).

The generative model architecture is shown in Figure 1. For full implementation details, including the

specific matrix forms of the generative model, see Appendix A

Self (SaH)

External hidden states Internal hidden states

Exteroceptive outcomes Interoceptive outcomes

APC

(precision)

AHO

Figure 1: The PESAM generative model architecture. Solid arrows denote the top-down generative model

mapping latent states to outcomes. Dashed arrows denote the bottom-up recognition process of inverting

the model. SaH provides a deep prior over hidden states, APC modulates the precision of interoceptive

inference, and AHO sets prior preferences for internal homeostasis.

3 Methods

3.1 Simulation Setup

All simulations were implemented as discrete-time POMDPs with matched observation and action spaces

across models. Each episode ran for a fixed horizon (identical across all conditions); the exact horizon and

task generator settings are archived with the code and configs on Zenodo (10.5281/zenodo.17199777). For

each condition (full PESAM, lesioned variants, and non-PESAM baselines), we ran 𝑁=30 independent

episodes with distinct random seeds (logged at runtime). Model parameters were fixed per Appendix A;

no post-hoc tuning was applied per condition. Key simulation parameters across all tasks are summarized
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in Table 2. Reproducibility materials (code, task generators, and seed lists) are archived on Zenodo (DOI:

10.5281/zenodo.17199777).

3.2 Statistical Analysis

For each model, we ran 𝑁=30 episodes and report mean and SD. Group comparisons used Welch’s

two-sample 𝑡-tests. On the unified task, Full vs. No_APC: 𝑝=0.0275; Full vs. No_SaH: 𝑝=0.0275.

A one-way ANOVA over {Full, No_APC, No_SaH} confirmed a significant main effect of model

(𝑝<0.05). Effect sizes (Cohen’s 𝑑) are reported where informative; 95% CIs are computed as 𝑥 ± 1.96 SE

with SE=SD/
√
𝑁 . All analyses used the same seeds and episode counts across models to ensure fair

comparisons.

4 Results: A Synergistic Whole

4.1 The Unified Test: Social Threat & Body-Boundary Task

The critical test of PESAM is whether the integrated framework can solve a problem that is computationally

intractable for its constituent parts.

Task Design An agent faces another agent (’Other’) that alternates between ’Safe’ (neutral movement)

and ’Threatening’ (movement that encroaches on the agent’s personal space) policies. The agent can

’Hold’ its position to gather more information or ’Avoid’ to increase distance. An optimal strategy requires

avoiding genuine threats while tolerating safe movements to maximize long-term opportunities (e.g., for

future cooperation, not modeled here but implied as a cost of avoidance).

The Synergistic Challenge This task creates a computational trilemma that cannot be solved without

all three mechanisms:

• AHO produces intrinsic motivation to avoid threat and maintain a low internal stress state.

• APC calibrates anxiety-driven precision under ambiguous cues; miscalibration leads to pathological

avoidance.

• SaH maintains a stable self–other boundary to correctly attribute causes of sensations and actions.

As shown in Figure. 2, the full PESAM agent achieves higher mean performance than lesioned variants

on the unified task (mean ± SD).
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Figure 2: Unified task performance (mean ± SD; error bars show SD). The complete PESAM agent

outperforms No_APC and No_SaH.

Across 𝑁=30 runs per condition, the full PESAM agent significantly outperformed lesioned variants

lacking APC or SaH (Full: 𝜇=78.18; No_APC: 𝜇=74.91; No_SaH: 𝜇=74.91). Welch two-sample

𝑡-tests showed reliable advantages of Full over No_APC and No_SaH (both 𝑝≈0.0275). AHO proved

indispensable (No_AHO ≈ 0), establishing intrinsic homeostatic drives as necessary to engage the task at

all.

Behavioral mechanism profile. Beyond statistical significance, the ∼3.27-point advantage of the full

agent over partial models reflects distinct qualitative strategies. Lesioned agents typically adopt either

overcautious avoidance (No_APC) or unstable self–other attribution (No_SaH), which inflate cumulative

costs by (i) aborting potentially safe encounters too frequently or (ii) mis-ascribing external motion to the

self, thereby triggering maladaptive reactions. By contrast, the integrated agent simultaneously (1) gates

interoceptive uncertainty (APC) to prevent runaway anxiety, (2) stabilizes a temporally coherent self prior

(SaH) to anchor causal attribution, and (3) upholds homeostatic objectives (AHO) to regulate allostatic

value—yielding fewer unnecessary withdrawals and more selective, context-appropriate avoidance. In

short, synergy manifests as a coordinated policy that trades off short-term ambiguity resolution against

long-horizon homeostatic value in ways that no single mechanism—or additive pair—can realize.

Mechanistic interpretation. Why does the full model win? Under ambiguous encroachment, APC

up-weights interoceptive evidence only when volatility in 𝑢𝑡 is informative, preventing global hyper-
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vigilance. SaH, as a deep hyperprior, constrains posterior beliefs to favor self-consistent mappings,

reducing attributional flips between self-driven and other-driven motion. AHO then makes avoidance

selectively valuable by assigning extrinsic cost to sustained arousal. Removing APC collapses selective

salience: the agent over-avoids safe motions. Removing SaH destabilizes causal attribution and yields

erratic policies even with intact AHO. Without AHO, there is no intrinsic drive to regulate 𝑢𝑡 , so the agent

fails to value avoidance altogether. These interactions produce a synergy: each mechanism resolves a

distinct sub-problem of the trilemma, and only their conjunction supports stable, adaptive behavior (Parr

and Friston, 2019; Huys et al., 2016).

4.2 Competitive Validation against Alternative Models

We compared PESAM with strong non-PESAM baselines (risk-penalized RL, APC-like threshold RL,

fixed-precision Bayes) on the unified task. As summarized in Figure. 3, the full PESAM (A+B+C)

achieved the best performance (mean 78.18), clearly exceeding all alternative models.

Fair comparison and design controls. To ensure fairness, all baselines shared the same observation and

action spaces, horizon length, and episode count (𝑁=30), with matched task generators and seed protocols.

Risk-penalized RL received a tuned risk term but no external exploration bonus; the APC-like RL

incorporated a thresholded precision heuristic without SaH- or AHO-like structure; and the fixed-precision

Bayesian model lacked adaptive gain and deep self priors by design. Thus, differences in performance

arise from architectural commitments—precision control, deep self priors, and homeostatic value—not

from privileged task access or hyperparameter search.

Why baselines fall short. Risk-penalized RL learns to avoid elevated 𝑢𝑡 , but lacks epistemic value: it

under-explores ambiguous encounters and overfits to coarse penalties, missing instances where holding

position reduces uncertainty at low cost (Pezzulo et al., 2018). Fixed-precision Bayes cannot adapt

likelihood gain to volatility, so either under- or over-weights interoception. APC-like threshold RL

partially mimics precision control, but without a generative account of hidden causes its thresholds misfire

when context flips. In contrast, PESAM minimizes expected free energy: it unifies extrinsic risk and

epistemic value under a single objective, enabling targeted exploration and calibrated avoidance (Friston

et al., 2017; Parr and Friston, 2019).
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Figure 3: Competitive validation (mean ± SD; error bars show SD). PESAM_A+B+C outperforms

reinforcement learning and Bayesian alternatives.

4.3 Validation of Individual Mechanisms

Before the unified test, each mechanism reproduced canonical findings in its respective domain: somatic-

marker–style guidance (APC/AHO), rubber-hand–style ownership modulation (SaH), and allostatic stress

regulation (AHO). See Figure. 4 for a compact overview, and Appendix B for full details and plots.

5 Discussion

5.1 From a Collection of Parts to a Synergistic Whole

The central contribution of this work is the computational evidence that a unified model of emotional

selfhood is not merely additive but profoundly synergistic. While our initial simulations served to

validate the functional roles of APC, SaH, and AHO in specific contexts, it was the Social Threat &

Body-Boundary Task that provided the critical test. The catastrophic failure of the lesioned agents in this

complex, socially-relevant scenario reveals the deep interdependence of these mechanisms. An agent

cannot effectively regulate its internal state (AHO) without appropriately gating its sensory evidence

(APC), nor can it coherently interact with another agent without a stable sense of self (SaH). This finding

moves beyond prior work by demonstrating that the integration itself is what enables higher-order, adaptive
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behavior. This synergy provides a strong argument for PESAM as a truly unified framework, suggesting

that the evolution of emotion and self-awareness may have been driven by the need to solve exactly these

kinds of integrated, multi-constraint problems.

Behavioral profile view. The unified task can be decomposed into three latent control demands:

(i) ambiguity-resolving information seeking, (ii) boundary-preserving attribution, and (iii) cost-aware

avoidance. Lesioned agents satisfy at most one or two of these demands, generating characteristic

behavioral profiles (e.g., high avoidance rate but poor attribution stability). PESAM’s integrated

architecture yields a distinct profile—moderate information seeking under ambiguity, stable self–other

attribution, and selective avoidance—that aligns with long-horizon homeostatic value. This triadic profile

provides a compact lens through which to evaluate future extensions and stress tests (e.g., manipulations

of sensory reliability or threat volatility) without altering the core task.

Positioning within existing theory. PESAM complements active-inference accounts of affect and

self by showing that precision control, self-stabilizing hyperpriors, and homeostatic preferences are

not interchangeable knobs but interlocking necessities. Prior interoceptive models emphasize affect-as-

inference (Barrett, 2017; Barrett and Simmons, 2015) and self-modeling (Seth and Tsakiris, 2018; Allen

and Tsakiris, 2018); our unified task demonstrates that only a joint treatment explains adaptive behavior

under social ambiguity. In RL terms, APC resembles dynamic attention; SaH resembles architecture

priors; AHO resembles intrinsic reward. Yet PESAM derives these from a single normative quantity

(expected free energy), dissolving ad-hoc additions and predicting when each mechanism must dominate

(Friston et al., 2017; Parr and Friston, 2019).

It is important to acknowledge that PESAM does not attempt to capture the full phenomenology of

emotion or the richness of the narrative self. Instead, the present model operationalizes emotion and

selfhood in a necessarily narrow but computationally tractable sense, focusing on three core mechanisms:

attentional precision, self-stability, and homeostatic drives. These are not exhaustive definitions of

emotion and self, but rather the minimal computational substrate upon which more complex affective

valence and narrative identity could be built. By clarifying this scope, we emphasize that PESAM should

be viewed as a foundational framework rather than a complete account of human subjectivity.
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5.2 The Explanatory Power of Active Inference

A crucial question is why the complexity of active inference is necessary. Could simpler models not

suffice? A reinforcement learning (RL) agent with an added ’anxiety’ penalty could learn to avoid threats,

and a standard Bayesian sensory integration model can explain the RHI. The unique explanatory power of

PESAM, and active inference more broadly, lies in its ability to unify these phenomena and more under a

single, first-principles objective—free energy minimization. First, it provides a normative reason for why

an agent should have intrinsic, homeostatic goals: AHO is not an ad-hoc penalty but a necessary prior for

the agent to maintain its own existence (i.e., to resist a dispersion of its states). Second, it provides a

formal account of subjective, phenomenal experience. The feeling of anxiety can be formally described

as the inference that interoceptive precision is high, and the feeling of body ownership is the posterior

belief over self-states. Third, it dissolves the distinction between goal-seeking and information-seeking.

The agent’s drive to reduce ambiguity (epistemic value) explains why it might ’Hold’ its position to

gather more data, a behavior that is difficult to explain in standard RL without adding ad-hoc exploration

bonuses. Unlike simpler models that require separate mechanisms for reward, perception, and control,

PESAM elegantly integrates them into a single, coherent process of inference. (Friston et al., 2017; Parr

and Friston, 2019; Seth, 2021)

5.3 Implications and A Roadmap for Computational Psychiatry

PESAM provides a fertile platform for generating specific, falsifiable hypotheses about the computational

basis of psychiatric disorders (Montague et al., 2012; Huys et al., 2016; Friston et al., 2014; Carhart-Harris

and Friston, 2019; Smith et al., 2022). We can formally frame various psychopathologies as specific

miscalibrations within the framework (Table 1). For example, our simulation of an APC-lesioned agent,

which exhibited hyper-vigilance and maladaptive avoidance, provides a computational analogue for

anxiety disorders, where the precision of interoceptive signals may be pathologically high (Paulus and

Stein, 2010a). This moves beyond verbal theories to provide a quantitative, generative model of symptoms.

Future work can use this framework to simulate the effects of interventions: cognitive-behavioral therapy

could be modeled as a process of updating distorted priors (e.g., about the threat level of social encounters),

while medications like SSRIs could be modeled as agents that dampen aberrant precision weighting.

By fitting the model to patient data, it may be possible to develop "computational phenotypes" that can

predict treatment response and stratify patients (Huys et al., 2016). A consolidated hypothesis mapping

from PESAM mechanisms to putative clinical phenotypes is summarized in Table 1.

11



Toward clinically useful parameters. A practical path is to fit PESAM to behavioral paradigms that

probe self–other boundaries and interoceptive volatility (e.g., approach–avoid in peripersonal space) while

concurrently measuring autonomic markers. Posterior estimates of APC gain and SaH rigidity could

stratify anxiety-spectrum vs. dissociative profiles (Friston et al., 2014; Smith et al., 2022). Interventions

map naturally: CBT updates distorted priors (reducing SaH over-rigidity), SSRIs and anxiolytics modulate

aberrant precision weighting (APC), and exposure therapies recalibrate 𝐶-preferences around tolerable

arousal (Huys et al., 2016; Carhart-Harris and Friston, 2019). These hypotheses are falsifiable and invite

prospective tests.

Table 1: Mechanism-to-phenotype mapping within PESAM (hypotheses for future empirical testing).

Mechanism Hypothesized Dysfunction Potential Clinical Analogue Hypothesized Neural Substrate

APC Over-precision of interoceptive errors Anxiety, Panic Disorder Insula, Anterior Cingulate Cortex (ACC)

Under-precision of interoceptive errors Alexithymia, Apathy Ventromedial Prefrontal Cortex (vmPFC)

SaH Weakened or unstable self-prior Depersonalization, Schizophrenia Temporoparietal Junction (TPJ), Precuneus

Overly rigid self-prior Body Dysmorphic Disorder Somatosensory Cortex, Intraparietal Sulcus

AHO Distorted homeostatic setpoints Eating Disorders, Addiction Hypothalamus, Orbitofrontal Cortex (OFC)

Failure to initiate regulatory action Depression (Anhedonia) Ventral Striatum, vmPFC

The mappings presented in Table 1 should be regarded as hypotheses rather than definitive claims.

They are intended to illustrate how the framework may guide future empirical research, for example

through fMRI, EEG, or lesion studies, rather than to provide settled evidence of localization. In this sense,

Table 1 should be interpreted as a research program that generates testable predictions and motivates

interdisciplinary collaboration between computational modeling and experimental neuroscience.

5.4 Limitations and Future Directions

Conceptually, PESAM currently addresses a minimal substrate of emotion and selfhood (e.g., arousal

and body ownership). Richer aspects such as narrative identity and multidimensional valence remain

outside the present scope but are natural targets for expansion (Seth, 2021). Technically, parameters were

hand-tuned for proof-of-concept. Future work should include systematic sensitivity analyses and learning

mechanisms to estimate these parameters from experience or data, improving generalization and clinical

utility.

Beyond these core issues, our models remain simplified. The generative structures were hand-crafted;

the next frontier is to learn hierarchical models through developmental interaction and deep reinforcement

learning (Tschantz et al., 2020; Parr and Friston, 2019). Finally, clinical relevance requires validation

against neuroimaging and behavior at scale. As a measurement model, PESAM can invert patient

behavior into mechanistic parameters (APC gain, SaH precision, AHO setpoints), enabling computational
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phenotyping and treatment prediction (Huys et al., 2016; Friston et al., 2014).

6 Conclusion

This paper presented PESAM, a variational framework for emotional selfhood. By moving beyond isolated

demonstrations to a rigorous test of synergistic integration, we have provided strong computational

evidence that the interplay between affective precision, self-priors, and homeostatic drives is fundamental

to complex, adaptive behavior. PESAM offers a principled, unified approach to understanding the deep

connections between feeling, being, and acting. It paves the way for a new generation of artificial agents

that are not just intelligent but also self-aware and self-regulating, and provides a new set of computational

tools for unraveling the mysteries of the human mind.

Data and Code Availability

The final camera-ready manuscript (Artifact A) is openly available at Zenodo (10.5281/zenodo.17199752).

All datasets, seeds, and analysis scripts supporting this study (Artifact B) are openly available at Zenodo

(10.5281/zenodo.17199777). All simulation seeds (per-episode) are logged at runtime and archived

alongside raw CSV outputs and figure-generation scripts in the same Zenodo record.
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Appendix A Simulation Parameters and Generative Models

This appendix provides supplementary details for all simulations. The full code and data ensuring

reproducibility are available on Zenodo at 10.5281/zenodo.17199777.

A.1 Generative Model Structures (POMDP Formulation)

The generative model for each task was specified as a Partially Observable Markov Decision Process

(POMDP), using standard active inference matrices (A: likelihood, B: transitions, C: preferences, D:

initial state priors).
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Table 2: Key simulation parameters across all tasks.

Parameter Task Value Description

𝜂 SMT 0.2 Learning rate for state-outcome mappings

𝛽 All Action Tasks 4.0 Softmax inverse temperature (action precision)

𝑤AHO SMT, Stress, Unified 2.0 - 5.0 Weight of homeostatic objective in C matrix

𝑘 SMT, Unified 5.0 Steepness of APC sigmoid function

𝛼self RHI, Unified 1.0 - 10.0 Precision of the self-prior (inverse variance)

• SMT Model: Outcome space was 2D (economic, interoceptive). The C matrix encoded a strong

log-prior preference against negative interoceptive states, implementing AHO. The arousal state,

updated based on outcome volatility, modulated the precision of the interoceptive column of the A

matrix, implementing APC.

• RHI Model: A continuous state for hand position was discretized. The D matrix encoded a strong

prior belief in the ’mine’ ownership state. The A matrix encoded a high probability of congruent

visuotactile signals under this ’mine’ state, implementing SaH.

• Stress Model: A continuous state for stress level. The C matrix encoded a strong preference for

stress=0. The B matrix for the ’seek safety’ action specified transitions leading to a faster decay of

the stress state.

• Unified Model: A hierarchical model where a higher level inferred the Other’s intent (’Safe’ vs

’Threatening’). This top-level belief modulated the transition dynamics (B matrix) at the lower

level. The lower level integrated states for the agent’s stress, the relative agent-other positions, and

the self-other body mapping, requiring a multi-factor A matrix and coordinated operation of all

three mechanisms.

Appendix B Validation Task Results
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Figure 4: Validation summaries for the three canonical tasks.
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