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Abstract: 

Accurate capacity estimation is critical for reliable and safe operation of lithium-

ion batteries. A proposed approach exploiting features from the relaxation voltage curve 

enables battery capacity estimation without requiring previous cycling information. 

Machine learning methods are used in the approach. A dataset including 27,330 data 

units are collected from batteries with LiNi0.86Co0.11Al0.03O2 cathode (NCA battery) 

cycled at different temperatures and currents until reaching about 71% of their nominal 

capacity. One data unit comprises three statistical features (variance, skewness, and 

maxima) derived from the relaxation voltage curve after fully charging and the 

following discharge capacity for verification. Models adopting machine learning 

methods, i.e., ElasticNet, XGBoost, Support Vector Regression (SVR), and Deep 

Neural Network (DNN), are compared to estimate the battery capacity. Both XGBoost 

and SVR methods show good predictive ability with 1.1 % root-mean-square error 

(RMSE). The DNN method presents a 1.5% RMSE higher than that obtained using 

ElasticNet and SVR. 30,312 data units are extracted from batteries with 

LiNi0.83Co0.11Mn0.07O2 cathode (NCM battery). The model trained by the NCA battery 

dataset is verified on the NCM battery dataset without changing model weights. The 

test RMSE is 3.1% for the XGBoost method and 1.8% RMSE for the DNN method, 

indicating the generalizability of the capacity estimation approach utilizing battery 

voltage relaxation. 
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Introduction 

Lithium-ion batteries have become the dominant energy storage device for portable 

electric devices, electric vehicles (EVs), and many other applications 1. However, 

battery degradation is an important concern in the use of lithium-ion battery as its 

performance decreases over time due to irreversible physical and chemical changes 2,3. 

State of Health (SoH) has been used as an indicator of the state of the battery, and is 

usually expressed by the ratio of the relative residual capacity with respect to the initial 

capacity 4. The accurate battery capacity estimation is challenging but critical to the 

reliable usage of lithium-ion battery, i.e., accurate capacity estimation allows an 

accurate driving range prediction and accurate calculation of the maximum energy 

storage capability in a vehicle. Typically, the battery capacity is gained by a full 

discharge process after it has been fully charged. In a real-life usage scenario, the 

battery full charge is often achieved while the EVs are parking with grid connection, 

however, the battery discharge depends on the user behavior with uncertainties in 

environmental and operational conditions, a complete discharge curve is seldom 

available for on-board battery health monitoring. The battery charging and discharging 

voltage, as one of the easily obtained parameters, depend on both, thermodynamic and 

kinetic characteristics of the battery. Thus, some capacity estimation methods using a 

partial charge/discharge process are proposed to estimate capacity for practical 

applications. The Ampere-hour counting method, which utilizes the accumulated 

charge value and the corresponding state of charge (SoC) change during a certain 

charge or discharge process is used to calculate the battery capacity 4. A partial charge 

process in a specific voltage range as a feature is used for on-board capacity estimation 
5. Some transformations of the partial voltage curves, i.e., differential voltage analysis 
6 and incremental capacity analysis 7,8, are used for battery capacity loss evaluation and 

aging mechanism identification. Eddahech et al. 9 proposed a battery SoH determination 

method based on a constant-voltage charge phase for batteries under calendar aging. A 

battery capacity estimation method which utilizes the resting process after charging or 

discharging, that is, the relaxation voltage process, is also proposed. Baghdadi et al.10 

used the relaxation voltage after full charge and 30 min of rest, and proposed a linear 

model to estimate battery capacity for three different commercial batteries. Schindler 

et al. 11 and C. Lüders et al. 12 took the voltage relaxation for the lithium plating 

detection in the battery capacity fade process. The relaxation process was also 

transferred to several models for parameterization 13-15. Literature shows that the 

equivalent circuit model (ECM) provides excellent accuracy in terms of modeling the 

battery transient and steady state. The ECM is composed of multiple resistor-capacitor 

(RC) parallel links to accurately fit the relaxation voltage curve over a long period of 

time. Qian et al. 16 used a second-order ECM to describe the voltage relaxation, and 

found that the extracted parameters provided an evaluation of the battery SoH and aging 

mechanisms. Attidekou et al. 17 modelled the battery capacity decay during rest periods 

at 100% SoC using a dynamic time constant derived from the RC network model. Fang 

et al.18 proposed a battery SoH estimation method based on the linear relationship 

between feature parameters and open circuit time during the battery relaxation even 

under different SoCs. However, as the amount of RC links increases, the complexity of 

the ECM will increase accordingly, which makes it difficult to use in an on-board 

application 19. Besides, the accuracy and robustness of capacity estimation are difficult 

to evaluate because of the differences in battery types and working conditions. 

The data-driven methods using statistical and machine learning techniques have 

been popular in battery research recently 20,21. The data-driven methods do not need 
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deep understanding of battery electrochemical principles, but large numbers of data are 

required to ensure the model reliability 22. Severson et al. 23 reported a promising route 

using machine learning to construct models that accurately predicted LiFePO4 

(LFP)/graphite battery lives using charge-discharge voltage data. Zhang et al. 24 

identified battery degradation patterns from impedance spectroscopy using gaussian 

process machine learning models. Ding et al. 25 introduced a machine learning method 

for the improvement of the efficiency of membrane electrode assembly design and 

experiment. Such data-driven methods focus on the relationships among the input and 

output features, a key part of data-driven battery state estimation is the extraction of 

degradation features 26-28. It has been proven that the relaxation process including the 

relaxation voltage value at a specific time and the voltage curve during a period shows 

a relationship with the battery SoH 11,12,16-18. To our best knowledge, the relaxation 

process curve of the battery has not yet been studied with machine learning methods 

for large scale data. The relaxation process after a battery is fully charged is easy to 

obtain during EV operation, as there is no need of additional devices and controls 

consuming resources. Herein, an approach based on features extracted from the battery 

voltage relaxation is proposed, which focuses on short-term battery capacity estimation 

without any previous cycling information for on-board implementation. Four machine 

learning methods, i.e., ElasticNet 29, XGBoost 30, Support Vector Regression (SVR) 31, 

and Deep Neural Network (DNN) 32, using large datasets from two kinds of 18650-type 

commercial lithium-ion batteries, are employed in this study. Six statistical features, i.e., 

variance (VAR), skewness (SKE), maxima (MAX), minima (MIN), mean (MEAN), 

and kurtosis (KUR), extracted from the voltage relaxation curve together with the 

following discharge capacity are treated as one data unit. 27,330 data units from 

batteries with LiNi0.86Co0.11Al0.03O2 cathode (NCA battery) cycled at different 

temperature and current rates are used for model training and test. The root-mean-

square errors (RMSEs) under different feature combinations are compared. It is found 

that all machine learning methods reach below 2.2% test RMSE by using three features 

(VAR, SKE, MAX) as input. XGBoost and SVR methods show the best performance 

with 1.1% test RMSE for NCA batteries. 30,312 data units from batteries with 

LiNi0.83Co0.11Mn0.07O2 cathode (NCM battery) are used to validate the model 

effectiveness. The DNN method obtains 1.8% RMSE, presenting the best estimation 

for the NCM battery without changing model weights. 

 Results 

Data generation  

Commercial 18650-type batteries are cycled in a temperature-controlled chamber 

with different charge current rates. Two battery brands with 3500 mAh (1C) nominal 

capacity, i.e., NCA battery and NCM battery, are selected for the dataset generation. 

The battery specifications are listed in Table.S1. Long-term cycling at three defined 

temperatures is conducted on 66 NCA cells and 55 NCM cells with a summary of 

cycling conditions provided in Table 1. Temperatures chosen are 25 °C, 35 °C and 45 °C. 

Three charge current rates (0.25C, 0.5C, 1C) are used for the NCA cells at 25 oC. All 

discharge rates are set to 1C. The number of cells assigned to each cycling condition in 

Table 1 is aimed to obtain a dataset covering the variation between cells. One data unit 
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comprises a relaxation voltage curve after fully charged with the following discharge 

capacity. Each relaxation voltage curve is transformed into six statistical features, i.e., 

VAR, SKE, MAX, MIN, MEAN, and KUR. The datasets are collected for NCA and 

NCM cells, respectively. The NCA cell dataset with a total of 27,330 data units is used 

for model training and model test. The NCM cell dataset with 30,312 data units is used 

for assessing generalizability of the model.  

 

Table 1 Cycling conditions for NCA and NCM batteries 

Cell type 

Cycling 

temperature 

(oC) 

Charge current 

rate (C) 

Number of 

cells 

Number of 

data units 

NCA battery 

2.65 - 4.2V 

25 

0.25 7 1,825 

0.5 19 3,557 

1 9 373 

35 

0.5 

 

3 1,400 

45 28 20,175 

NCM battery 

2.5 - 4.2V 

25 23 7,054 

35 4 4,716 

45 28 18,542 

 

 

Fig.1 Battery cycling data. a, voltage and current profile in one cycle. b, NCA battery 

discharge capacity versus cycle number, with a violin plot of the cycle numbers at 2500 

mAh. c, NCM battery discharge capacity versus cycle number, with a violin plot of the 

cycle numbers at 2500 mAh. d, schematic plot of relaxation voltage change (region III) 

while cycling for one NCA cell.  

Voltage and current are the basic data recorded in this experiment, which includes 

charging, discharging, and relaxation processes. The cell cycling is performed with 

constant current (CC) charging to 4.2 V in a current rate ranging from 0.25 C to 1 C, 

followed by a constant voltage (CV) charging step at 4.2 V until a current corresponding 

to 0.05 C is reached. Constant current is then employed for the discharge at 3500 mA 
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(1C) to 2.65 V for the NCA cells and 2.5 V for the NCM cells, respectively. One 

complete cycling curve using 0.5 C charging rate for the NCA cell is shown in Fig.1a, 

which includes five processes, i.e. (I) CC charging, (II) CV charging, (III) relaxation 

after charging, (IV) CC discharging, and (V) relaxation after discharging. The CC 

discharging capacity is treated as the battery residual capacity during cycling. The 

relaxation time between the CV charging and CC discharging is 30 minutes with a 

sampling time of 120 s. A Biologic BCS potentiostat is used for the cell cycling in a 

temperature chamber. A dataset in a range of capacity fade to 2500 mAh (around 71% 

of nominal capacity) is generated. The battery capacity as a function of cycle number 

for the NCA cells is shown in Fig.1b. The cycle number is ranging from 50 to 800 in 

the 100% - 71% capacity window. It is evident that both, charging current and 

temperature have a strong influence on the capacity decay, and the battery capacity 

shows significant variance as depicted in the embedded violin plot, indicating the 

degradation distribution of the cycled cells. The worst scenario is the one with cells 

cycled at 1C at 25 oC (CY25-1C), only 50 cycles can be obtained until the cells reach 

71% of the nominal capacity. 71% capacity is reached after 125 and 600 cycles at 25 °C 

and 35 °C respectively, for cells charged with 0.5 C (CY25-0.5C, and CY35-0.5C). 71% 

capacity is reached after 250 cycles at 25 °C with 0.25 C charging current (CY25-0.25C) 

and in a range of 500 to 800 cycles at 45 °C with 0.5C charging current (CY45-0.5C). 

The cycling data of the NCM cells are shown in Fig. 1c. A fatigue down to 71% residual 

capacity is found between 250 and 500 cycles (25 °C), 1250 and 1500 cycles (35 °C) 

and around 1000 cycles at 45 °C cycling temperature. The capacity fade results indicate 

that increasing the temperature to 35 °C and 45 °C has a beneficial effect on the capacity 

retention, and that the charging current is at the limit of what the cells can handle. The 

major capacity loss is from loss of active lithium and is most likely consumed in the 

SEI formation as proven by in-situ neutron powder diffraction along with 

electrochemical analysis in our previous work 33. Nevertheless, as this study aims to 

estimate the battery capacity based on data-driven methods, the relaxation process after 

fully charging is taken for feature extraction as the relaxation process is easily obtained 

in battery real use conditions. A schematic plot of relaxation voltage change against 

cycle number is presented in Fig.1d, which shows a declining trend with increasing 

cycle number. Summary statistics are proven to be effective to illustrate the shape and 

position change of the voltage curve numerically 23, thus, each voltage relaxation curve 

is converted to six statistical features, i.e., VAR, SKE, MAX, MIN, MEAN, and KUR, 

as displayed in Fig.2. The mathematical description of the six features is depicted in 

Table S2. 
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Fig.2 Extracted features from the voltage relaxation curves as a function of battery 

capacity for NCA cells. (a) VAR, (b) SKE, (c) MAX, (d) MIN, (e) MEAN, and (f) KUR. 

The relationship between battery capacity and the corresponding features are 

dependent on the cycling conditions, from Fig.2, it is difficult to describe the 

relationships only by linear functions. The VAR in Fig.2a represents the distribution of 

the data, a decrease of VAR against capacity fade means that the relaxation voltages 

show a sharper distribution with increasing cycle number, and vice versa. Both SKE 

and KUR are normalized using VAR, they are used to describe the shape of the 

corresponding voltage curve. The SKE in Fig.2b is positive for almost all cycling 

conditions, indicating that more than half of the sampled voltage data are below the 

average voltage (MEAN), and which corresponds to the shape of the relaxation voltage 
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curve, i.e., the relaxation voltage drops fast at first and then gradually slows down. The 

MAX in Fig.2c presents a monotonous decrease of the maximum voltage with capacity 

drop for all cycling conditions. The MIN and MEAN first increase and then decrease 

versus the capacity reduction as displayed in Fig.2d and Fig.2e, respectively. The KUR 

shown in Fig. 2f is the excess kurtosis obtained from the kurtosis of the raw data minus 

the kurtosis of a normal distribution. The excess kurtosis is negative for all cycling 

conditions, meaning that the distribution of the relaxation voltage is flat. 

Based on the extracted features from the relaxation voltage curve after charging, 

data-driven methods are used for battery capacity estimation. Owing to the difference 

in cathode materials and the manufacturing process for cycled batteries, a standard 

normalization for battery features and capacity is performed. Four machine learning 

algorithms, ElasticNet, XGboost, SVR, and DNN, are used in this study. ElasticNet 29 

is a multivariate linear algorithm. XGBoost 30 is developed by improving ensemble 

algorithms including gradient boosting decision trees (GBDTs) and regularized greedy 

forest (RGF) algorithms 34. SVR 31 is a kernel-based learning method which is used on 

data classification and clustering, regression estimation, and function approximation. 

DNN 32 is an artificial neural network with multiple layers and maps the nonlinearity 

between inputs and outputs. The hyperparameters of each algorithm are available in 

Table S3, and the results are compared in Fig.3. 

 

Fig.3 Capacity estimation results for cycled batteries. a, feature importance given by 

the F-score in XGBoost algorithm. b-e, RMSE change under different feature 

combinations by different estimation methods, ElasticNet (b), XGboost (c), SVR (d), 

and DNN (e). NCA_train is the RMSE of NCA battery model training, NCA_test 

presents the RMSE of the model test of NCA battery. NCM_test1 means that all NCM 

battery data are used in the model trained by NCA battery data without changing the 

model weights. NCM_test2 means the test results by modifying the model weights to 

adapt the self-characteristics of the NCM battery. 

Feature reduction  

XGBoost provides an assessment of the relevance of the individual input features. 

The importance of a feature in the XGBoost method is evaluated by the F-score 35. The 

F-score is commonly adopted to measure the ability of features to distinguish between 

two categories and has been recognized as one of the best criteria to accomplish feature 

selection. The larger the F-score, the stronger is the discrimination ability of the 
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corresponding feature. The F-score results are presented in Figure 3a. It shows that VAR 

has the highest priority, followed by SKE and MAX. Correlation analysis is conducted 

to check the linear relationships between features. Strong correlations (close to ±1) 

indicate that these two features contain redundant information, meaning that a feature 

reduction is possible to reduce the model complexity. As shown in Table S4, the VAR 

does not show strong correlations with any other feature, indicating its discrimination 

ability. The SKE and KUR show a 0.96 correlation coefficient, likewise, MAX, MEAN, 

and MIN present a strong positive linear correlation (> 0.90). Therefore, the MAX is 

recommended as the representative feature. The results of the correlation analysis are 

consistent with the feature importance ranking from the F-score. Thus, feature reduction 

is conducted by using different feature combinations according to the F-score list. The 

feature combination 1 in Fig.3a means only the VAR is used in the model, 2 means the 

top two features (VAR and SKE), and so on. As two types of batteries are cycled for 

this study, the NCA cell dataset is used for the model building, and the NCM cell dataset 

is used for model verification. The capacity estimation results are summarized in Fig. 

3b-3e. 

Capacity estimation 

For model training and test, firstly, the NCA data are randomly split into training 

set and test set in a 4:1 ratio. In the model training process, the K-fold Cross Validation 

with K=5 is used to determine the hyperparameters of the models. Further model tests 

are conducted using the NCM battery dataset. The results are summarized in Fig. 3b-

3e, in which NCA_train is the RMSE of NCA battery model training, NCA_test 

presents the RMSE of the model test of NCA battery. To assess the generalizability of 

the model, two model verification strategies are conducted for the NCM battery data. 

NCM_test1 means that all NCM battery data are used in the model trained by NCA 

battery data without changing the model weights. To check the universality of methods, 

the NCM battery data are also split for training and test to adapt the self-characteristics 

of the NCM battery, NCM_test2 means the test results by modifying the model weights. 

The NCA_train and NCA_test RMSE curves in Fig.3b - 3e are close to each other, 

indicating the effectiveness of data splitting. The curves show that RMSE gradually 

decreases for all models, and the accuracy improvement is no longer obvious after using 

three features (VAR, SKE, and MAX), which agrees with the discussion in the feature 

reduction part as mentioned above. By comparing the RMSE with three features in table 

2, it can be concluded that the RMSE of XGBoost and SVR reaches to 1.1%, showing 

better performance than the other two methods. The estimated capacity versus real 

capacity under three features is illustrated in Fig.4 and Fig.S1.  

 

Table 2 RMSE of battery capacity estimation with three features (VAR, SKE, and 

MAX) by different estimation methods 

 ElasticNet XGboost SVR DNN 

NCA_train 0.021 0.011 0.011 0.015 

NCA_test 0.022 0.011 0.011 0.015 

NCM_test1 0.044 0.031 0.043 0.018 

NCM_test2 0.018 0.011 0.011 0.014 
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Fig.4 Test results of estimated capacity versus real capacity. NCA_test (a), NCM_test1 

(b), and NCM_test2 (c) of XGBoost method. NCA_test (d), NCM_test1 (e), and 

NCM_test2 (f) of DNN method. 

Verification of approach generalizability 

The estimation results (NCA_test) by the XGBoost method are presented in Fig.4a. 

The coefficient of determination (R2) is 0.97, showing that the model accurately 

estimates the battery capacity for the cycled NCA cells. The model trained by the NCA 

battery dataset without changing model weights is verified directly using 30,312 data 

units extracted from the NCM batteries. The XGBoost obtains about 3.1% test RMSE 

on NCM battery (NCM_test1) as presented Fig.4b. When the model is re-trained with 

the NCM battery dataset, the XGBoost method reaches a 1.1% test RMSE (NCM_test2), 

and the corresponding capacity results with R2=0.97 are shown in Fig.4c. It can be 

found that the NCM_test1 RMSE (1.8%) of DNN is similar to NCA_test RMSE (1.5%) 

if the feature combination ≥ 3, as presented in Fig.3e. The corresponding capacity 

results are displayed in Fig.4e with R2=0.91 and in Fig.4d with R2=0.94, respectively. 

An estimation improvement is observed in Fig.4f, in which RMSE of the NCM_test2 

is 1.4% and the R2 is equal to 0.95. In summary, DNN gives better accuracy of capacity 

estimation if the model weights are not adapted, and the estimation accuracy is 

independent of the datasets. The method verification indicates that the proposed 

approach using the relaxation voltage curve can accurately estimate the battery capacity, 

and nonlinear methods are suggested to improve the estimation accuracy. 

Discussion 

Accurate identification of lithium-ion battery capacity facilitates the accurate 

estimation of driving range which is a primary concern for EVs. An approach without 

requiring information from previous cycling to estimate battery capacity is proposed. 

The proposed approach uses three statistical features (VAR, SKE, and MAX) extracted 

from the voltage relaxation curve as input. Four machine learning methods, i.e., 

ElasticNet, XGBoost, SVR, and DNN are applied on NCA and NCM batteries to 
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establish a suitable model and for the approach verification. The XGBoost, and SVR 

methods show good predictive ability with 1.1% RMSE for the NCA battery. The 

XGBoost obtains about 3.1% RMSE for the method verification on NCM batteries 

without changing the model weights, and it goes down to 1.1% test RMSE by 

modifying the model weights. The DNN method presents results within 1.5% RMSE 

for the NCA and NCM battery if the model weights are changed, and 1.8% RMSE for 

the NCM battery with the same model weights as trained by the NCA battery dataset, 

indicating the applicability of the proposed capacity estimation approach. This work 

promotes the development of using data-driven methods for battery SoH estimation in 

EVs. 

Methods 

Cell selection and cycling 

Commercially available lithium-ion batteries with a nominal capacity of 3500mAh 

(INR18650-35E and INR18650-MJ1) have been tested. Inductively coupled plasma 

optical emission spectrometry (ICP-OES) shows that the composition of the cathode of 

a fresh cell in the discharged state is LiNi0.86Co0.11Al0.03O2 for the INR18650-35E 

batteries and Li(Ni0.83Co0.11Mn0.07)O2 for the INR18650-MJ1 batteries. The anode 

composition for both cell types is determined by a Carbon Hydrogen Nitrogen (CHN) 

Analyzer to have roughly 97 wt% C and 2 wt% Si as well as traces of H, N and S. The 

INR18650-35E battery is named as NCA battery, and the INR18650-MJ1 is named as 

NCM battery according to their cathode material. A biologic BCS potentiostat is 

employed for the cell cycling and the measurements are conducted in a climate chamber. 

Long term cycling is conducted on 66 NCA cells and 55 NCM cells with a summary of 

cycling conditions as provided in Table 1. 

ElasticNet method  

The ElasticNet algorithm is proposed by Zou et al. 29, which is a regularized 

regression method that linearly combines the L1 and L2 penalties of the lasso and ridge 

methods. ElasticNet is an extension of ordinary least square (OLS) regression. In OLS 

regression, given d features xi1, …, xid, the response yi is predicted by: 𝑦𝑦�𝑖𝑖 = 𝛽𝛽0 + �𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗𝑑𝑑
𝑗𝑗=1 (1) 

A model fitting procedure produces the parameter vector 𝛽̂𝛽 = (𝛽̂𝛽0, … , 𝛽̂𝛽𝑑𝑑). 

For the data set having n observations with p features, let 𝑦𝑦 = (𝑦𝑦1, … ,𝑦𝑦𝑛𝑛)𝑇𝑇, 𝑋𝑋 =�𝑥𝑥11 … 𝑥𝑥1𝑑𝑑
… 𝑥𝑥𝑖𝑖𝑗𝑗 …𝑥𝑥𝑛𝑛1 … 𝑥𝑥𝑛𝑛𝑑𝑑�. 

The ElasticNet loss function is defined as： 𝐿𝐿(λ1, λ2,𝛽𝛽) = ‖𝑦𝑦 − 𝑋𝑋𝛽𝛽‖22 + 𝜆𝜆2‖𝛽𝛽‖22 + 𝜆𝜆1‖𝛽𝛽‖1 (2) 

If we set α = λ2/(λ1 + λ2), the optimized parameters vector is obtained by: 𝛽̂𝛽 = argmin𝛽𝛽𝐿𝐿(𝛼𝛼,𝛽𝛽) = ‖𝑦𝑦 − 𝑋𝑋𝛽𝛽‖22 + 𝛼𝛼‖𝛽𝛽‖22 + (1− 𝛼𝛼)‖𝛽𝛽‖1 (3) 

where 𝛼𝛼‖𝛽𝛽‖22 + (1− 𝛼𝛼)‖𝛽𝛽‖1  is called the ElasticNet penalty, which is a convex 
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combination of the lasso and ridge penalty. 

XGBoost method  

The XGBoost method 30 is a scalable end-to-end tree boosting system designed to 

be highly efficient, flexible, and portable. It implements machine learning algorithms 

in the Gradient Boosting framework. Compared with multiple linear regression, 

XGBoost has the advantage of being able to handle nonlinear relationships. The tree 𝑓𝑓(𝑥𝑥) is defined as: 𝑓𝑓𝑡𝑡(𝑥𝑥) = 𝜔𝜔𝑞𝑞(𝑥𝑥), (𝑞𝑞:ℝ𝑑𝑑 → {1,2, … ,𝑇𝑇},𝜔𝜔 ∈ ℝ𝑇𝑇) (4) 

where 𝑡𝑡 represents a tree, q represents the structure of each tree that maps an example 

to the corresponding leaf index. 𝑇𝑇  is the number of leaves in the tree. Each 𝑓𝑓𝑡𝑡 
corresponds to an independent tree structure q and leaf weights 𝜔𝜔(output of a tree). 

The objective function is defined as: 𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) = �𝑙𝑙�𝑦𝑦𝑖𝑖, 𝑦𝑦�𝑖𝑖(𝑡𝑡)�𝑛𝑛
𝑖𝑖=1 + �𝛺𝛺(𝑓𝑓𝑖𝑖)𝑡𝑡

𝑖𝑖=1 (5) 

where 𝑙𝑙 is a differentiable convex loss function that measures the difference between 

the prediction 𝑦𝑦� and the target 𝑦𝑦𝑖𝑖. The second term 𝛺𝛺 penalizes the complexity of 

the model, which helps to smooth the final learnt weights to avoid over-fitting.  𝛺𝛺(𝑓𝑓) = 𝛾𝛾𝑇𝑇 +
1

2
𝜆𝜆�𝜔𝜔𝑗𝑗2𝑇𝑇
𝑗𝑗=1 (6) 

where ωj is the weight of the jth leaf node. 𝛾𝛾 and 𝜆𝜆 are the coefficients for penalty 

term 𝛺𝛺. 

Using the second-order Taylor’s formula, the objective function can be given as: 

𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) = �𝑙𝑙�𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖(𝑡𝑡−1)
+ 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)�𝑛𝑛

𝑖𝑖=1 + 𝛺𝛺(𝑓𝑓𝑡𝑡) + 𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡
≈��𝑙𝑙(𝑦𝑦𝑖𝑖,𝑦𝑦�𝑖𝑖(𝑡𝑡−1)

) + 𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) +
1

2
ℎ𝑖𝑖𝑓𝑓𝑡𝑡2(𝑥𝑥𝑖𝑖)�𝑛𝑛

𝑖𝑖=1 + 𝛺𝛺(𝑓𝑓𝑡𝑡) + 𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡 (7) 

where 𝑥𝑥𝑖𝑖  is the input of the sample, 𝑔𝑔𝑖𝑖 = 𝜕𝜕𝑦𝑦^ (𝑡𝑡−1)𝑙𝑙 �𝑦𝑦𝑖𝑖,𝑦𝑦^ (𝑡𝑡−1)�  and ℎ𝑖𝑖 =𝜕𝜕𝑦𝑦^ (𝑡𝑡−1)

2 𝑙𝑙 �𝑦𝑦𝑖𝑖,𝑦𝑦^ (𝑡𝑡−1)� 

After removing the constant, the objective function at step t becomes 𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) ≈��𝑔𝑔𝑖𝑖𝜔𝜔𝑞𝑞(𝑥𝑥𝑖𝑖) +
1

2
ℎ𝑖𝑖𝜔𝜔𝑞𝑞(𝑥𝑥𝑖𝑖)2 �+ 𝛾𝛾𝑇𝑇 +

1

2
𝜆𝜆�𝜔𝜔𝑗𝑗2𝑇𝑇
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1
= ��𝐺𝐺𝑗𝑗𝜔𝜔𝑗𝑗 +

1

2
(𝐻𝐻𝑗𝑗 + 𝜆𝜆)𝜔𝜔𝑗𝑗2�+ 𝛾𝛾𝑇𝑇𝑇𝑇

𝑗𝑗=1
(8) 

Where 𝐺𝐺𝑗𝑗 = ∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝐼𝐼𝑗𝑗 , 𝐻𝐻𝑗𝑗 = ∑ ℎ𝑖𝑖𝑖𝑖∈𝐼𝐼𝑗𝑗 , 𝐼𝐼𝑗𝑗 = {𝑖𝑖|𝑞𝑞(𝑥𝑥𝑖𝑖 = 𝑜𝑜)} is instance set of leaf 𝑜𝑜. 
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the optimal weight 𝜔𝜔𝑗𝑗∗ of leaf 𝑜𝑜 for a fixed structure 𝑞𝑞(𝑥𝑥) can be computed by: 

𝜔𝜔𝑗𝑗∗ = − 𝐺𝐺𝑗𝑗𝐻𝐻𝑗𝑗 + 𝜆𝜆 (9) 

The optimal loss is: 𝑜𝑜𝑜𝑜𝑜𝑜∗ = −1

2
�  

𝑇𝑇
𝑗𝑗=1  

�𝐺𝐺𝑗𝑗�2𝐻𝐻𝑗𝑗 + 𝜆𝜆 + 𝛾𝛾𝑇𝑇 (10) 𝑜𝑜𝑜𝑜𝑜𝑜∗ is a function of marking tree structure and measuring the quality of tree structure 

q. The smaller the value of 𝑜𝑜𝑜𝑜𝑜𝑜∗, the better. 

SVR method 

SVR approach 31 is a kernel-based method which does not regress on the original 

input vector, but on its nonlinear expansion, which is mapped from a kernel function to 

a very high-dimensional feature space. Given a training set of data 

{(𝑥𝑥1,𝑦𝑦1), … (𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛)}, where 𝑥𝑥𝑖𝑖  ⊂ 𝑅𝑅𝑑𝑑 donates the input space of the sample, 𝑦𝑦𝑖𝑖  ⊂ 𝑅𝑅 

is the target value. 𝑖𝑖 = 1, … ,𝑐𝑐, corresponds to the size of the training data. 

The generic SVR estimating function takes the form 𝑦𝑦�𝑖𝑖 = �𝜔𝜔 ∙ Φ(𝑥𝑥𝑖𝑖)� + 𝑜𝑜 (11) 

where 𝜔𝜔 ⊂ 𝑅𝑅𝑑𝑑 , 𝑜𝑜 ⊂ 𝑅𝑅, and Φ(𝑥𝑥)  is a nonlinear transformation from 𝑅𝑅𝑑𝑑 to a high-

dimensional space. The ω has the following expansion: 𝜔𝜔 = �(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)Φ(𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (12) 

where 𝛼𝛼𝑖𝑖  𝑐𝑐𝑐𝑐𝑎𝑎 𝛼𝛼𝑖𝑖∗  are the Lagrange multiplier. With the expression of the kernel 

function 𝑘𝑘(𝑥𝑥𝑖𝑖 , 𝑥𝑥) = Φ(𝑥𝑥𝑖𝑖) ∙ Φ(𝑥𝑥), the SVR estimating function can be expressed as: 𝑦𝑦�𝑖𝑖 = �(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)𝑛𝑛
𝑖𝑖=1 𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥) + 𝑜𝑜 (13) 

The goal of SVR is to find the value of 𝜔𝜔 and 𝑜𝑜 that minimizing the total loss 

min �1
2
‖𝜔𝜔‖22 + 𝐶𝐶�ℓ𝜖𝜖(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑙𝑙

𝑖𝑖=1 � (14) 

where C is a constant, and vector ℓ𝜖𝜖  is the loss function, the 𝜖𝜖 -insensitive loss 

function is used in this research: ℓ𝜖𝜖(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖) = �|𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖| − 𝜖𝜖, |𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖| ≥ 𝜖𝜖
0, |𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖| < 𝜖𝜖 (15) 

DNN method 

A deep neural network (DNN) 32 is an artificial neural network with multiple layers 

as presented in Fig.S2. It can approximate the non-linear mapping between inputs and 

outputs. For a DNN with m hidden layers, the output is predicted by 
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𝑦𝑦�𝑖𝑖 = 𝜑𝜑 �𝑣𝑣𝑇𝑇𝜑𝜑 �𝑊𝑊(𝑚𝑚)𝜑𝜑 �⋯𝑊𝑊(2)𝜑𝜑�𝑊𝑊(1)𝑥𝑥𝑖𝑖���� (16) 

where xi is the input of the model (i.e., three statistical features VAR, SKE, MAX), v 

and W are the weights of output layer and hidden layers, respectively, 𝜑𝜑(∙)  is the 

activation function, which can introduce the nonlinearity of the model. For different 

layers in the DNN model, the activation function can be different. In our study, the 

DNN has five dense hidden layers and each with a sigmoid activation function. The 

output layer predicts the relative capacity using an softplus activation function, which 

ensures that the output is greater than 0 Dropout layers with a rate of 0.1 are also added 

between dense layers to avoid over-fitting. A summary of the NN model structure can 

be found in Table S3. 

The goal of training a DNN model is to find the weights of v and W that minimizing 

the total loss 

min
1𝑐𝑐�(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 (17) 

where 𝑦𝑦�𝑖𝑖  is the predicted relative capacity generated by the model and yi is the 

corresponding true relative capacity. The NN is trained with Keras and Adam algorithm 

is used as the optimizer to update the weights of the model. 

Data availability 

The data that support the findings of this study are available at publication, further 

information and request for resources should be directed to the contact, Dr. Michael 

Knapp and Dr. Haifeng Dai. Full access to data can be required for peer review. 

review 

Code availability 

The data processing and the proposed method is performed in python and is available 

at publication. Full access to code can be required for peer review. 
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