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Abstract:

Accurate capacity estimation is critical for reliable and safe operation of lithium-
ion batteries. A proposed approach exploiting features from the relaxation voltage curve
enables battery capacity estimation without requiring previous cycling information.
Machine learning methods are used in the approach. A dataset including 27,330 data
units are collected from batteries with LiNio.86Coo.11Alp.0302 cathode (NCA battery)
cycled at different temperatures and currents until reaching about 71% of their nominal
capacity. One data unit comprises three statistical features (variance, skewness, and
maxima) derived from the relaxation voltage curve after fully charging and the
following discharge capacity for verification. Models adopting machine learning
methods, i.e., ElasticNet, XGBoost, Support Vector Regression (SVR), and Deep
Neural Network (DNN), are compared to estimate the battery capacity. Both XGBoost
and SVR methods show good predictive ability with 1.1 % root-mean-square error
(RMSE). The DNN method presents a 1.5% RMSE higher than that obtained using
ElasticNet and SVR. 30,312 data units are extracted from batteries with
LiNio.83C00.11Mno.070> cathode (NCM battery). The model trained by the NCA battery
dataset is verified on the NCM battery dataset without changing model weights. The
test RMSE is 3.1% for the XGBoost method and 1.8% RMSE for the DNN method,
indicating the generalizability of the capacity estimation approach utilizing battery
voltage relaxation.
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Introduction

Lithium-ion batteries have become the dominant energy storage device for portable
electric devices, electric vehicles (EVs), and many other applications '. However,
battery degradation is an important concern in the use of lithium-ion battery as its
performance decreases over time due to irreversible physical and chemical changes 2.
State of Health (SoH) has been used as an indicator of the state of the battery, and is
usually expressed by the ratio of the relative residual capacity with respect to the initial
capacity 4. The accurate battery capacity estimation is challenging but critical to the
reliable usage of lithium-ion battery, i.e., accurate capacity estimation allows an
accurate driving range prediction and accurate calculation of the maximum energy
storage capability in a vehicle. Typically, the battery capacity is gained by a full
discharge process after it has been fully charged. In a real-life usage scenario, the
battery full charge is often achieved while the EVs are parking with grid connection,
however, the battery discharge depends on the user behavior with uncertainties in
environmental and operational conditions, a complete discharge curve is seldom
available for on-board battery health monitoring. The battery charging and discharging
voltage, as one of the easily obtained parameters, depend on both, thermodynamic and
kinetic characteristics of the battery. Thus, some capacity estimation methods using a
partial charge/discharge process are proposed to estimate capacity for practical
applications. The Ampere-hour counting method, which utilizes the accumulated
charge value and the corresponding state of charge (SoC) change during a certain
charge or discharge process is used to calculate the battery capacity *. A partial charge
process in a specific voltage range as a feature is used for on-board capacity estimation
3. Some transformations of the partial voltage curves, i.e., differential voltage analysis
% and incremental capacity analysis "%, are used for battery capacity loss evaluation and
aging mechanism identification. Eddahech et al. ° proposed a battery SoH determination
method based on a constant-voltage charge phase for batteries under calendar aging. A
battery capacity estimation method which utilizes the resting process after charging or
discharging, that is, the relaxation voltage process, is also proposed. Baghdadi et al.'
used the relaxation voltage after full charge and 30 min of rest, and proposed a linear
model to estimate battery capacity for three different commercial batteries. Schindler
et al. ! and C. Liiders et al. '? took the voltage relaxation for the lithium plating
detection in the battery capacity fade process. The relaxation process was also
transferred to several models for parameterization '*!°. Literature shows that the
equivalent circuit model (ECM) provides excellent accuracy in terms of modeling the
battery transient and steady state. The ECM is composed of multiple resistor-capacitor
(RC) parallel links to accurately fit the relaxation voltage curve over a long period of
time. Qian et al. !¢ used a second-order ECM to describe the voltage relaxation, and
found that the extracted parameters provided an evaluation of the battery SoH and aging
mechanisms. Attidekou et al. !” modelled the battery capacity decay during rest periods
at 100% SoC using a dynamic time constant derived from the RC network model. Fang
et al.!® proposed a battery SoH estimation method based on the linear relationship
between feature parameters and open circuit time during the battery relaxation even
under different SoCs. However, as the amount of RC links increases, the complexity of
the ECM will increase accordingly, which makes it difficult to use in an on-board
application '°. Besides, the accuracy and robustness of capacity estimation are difficult
to evaluate because of the differences in battery types and working conditions.

The data-driven methods using statistical and machine learning techniques have

been popular in battery research recently 2°?!. The data-driven methods do not need
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deep understanding of battery electrochemical principles, but large numbers of data are
required to ensure the model reliability 22. Severson et al. 2 reported a promising route
using machine learning to construct models that accurately predicted LiFePOs
(LFP)/graphite battery lives using charge-discharge voltage data. Zhang et al.
identified battery degradation patterns from impedance spectroscopy using gaussian
process machine learning models. Ding et al. 2 introduced a machine learning method
for the improvement of the efficiency of membrane electrode assembly design and
experiment. Such data-driven methods focus on the relationships among the input and
output features, a key part of data-driven battery state estimation is the extraction of
degradation features 22, It has been proven that the relaxation process including the
relaxation voltage value at a specific time and the voltage curve during a period shows
a relationship with the battery SoH 12118 To our best knowledge, the relaxation
process curve of the battery has not yet been studied with machine learning methods
for large scale data. The relaxation process after a battery is fully charged is easy to
obtain during EV operation, as there is no need of additional devices and controls
consuming resources. Herein, an approach based on features extracted from the battery
voltage relaxation is proposed, which focuses on short-term battery capacity estimation
without any previous cycling information for on-board implementation. Four machine
learning methods, i.e., ElasticNet 2, XGBoost *, Support Vector Regression (SVR) 3!,
and Deep Neural Network (DNN) *2, using large datasets from two kinds of 18650-type
commercial lithium-ion batteries, are employed in this study. Six statistical features, i.e.,
variance (VAR), skewness (SKE), maxima (MAX), minima (MIN), mean (MEAN),
and kurtosis (KUR), extracted from the voltage relaxation curve together with the
following discharge capacity are treated as one data unit. 27,330 data units from
batteries with LiNio86Co00.11Al0.0302> cathode (NCA battery) cycled at different
temperature and current rates are used for model training and test. The root-mean-
square errors (RMSEs) under different feature combinations are compared. It is found
that all machine learning methods reach below 2.2% test RMSE by using three features
(VAR, SKE, MAX) as input. XGBoost and SVR methods show the best performance
with 1.1% test RMSE for NCA batteries. 30,312 data units from batteries with
LiNi.83C00.11Mno0702 cathode (NCM battery) are used to validate the model
effectiveness. The DNN method obtains 1.8% RMSE, presenting the best estimation
for the NCM battery without changing model weights.

Results

Data generation

Commercial 18650-type batteries are cycled in a temperature-controlled chamber
with different charge current rates. Two battery brands with 3500 mAh (1C) nominal
capacity, i.e., NCA battery and NCM battery, are selected for the dataset generation.
The battery specifications are listed in Table.S1. Long-term cycling at three defined
temperatures is conducted on 66 NCA cells and 55 NCM cells with a summary of
cycling conditions provided in Table 1. Temperatures chosen are 25 °C, 35 °C and 45 °C.
Three charge current rates (0.25C, 0.5C, 1C) are used for the NCA cells at 25 °C. All
discharge rates are set to 1C. The number of cells assigned to each cycling condition in

Table 1 is aimed to obtain a dataset covering the variation between cells. One data unit
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comprises a relaxation voltage curve after fully charged with the following discharge
capacity. Each relaxation voltage curve is transformed into six statistical features, i.e.,
VAR, SKE, MAX, MIN, MEAN, and KUR. The datasets are collected for NCA and
NCM cells, respectively. The NCA cell dataset with a total of 27,330 data units is used
for model training and model test. The NCM cell dataset with 30,312 data units is used
for assessing generalizability of the model.

Table 1 Cycling conditions for NCA and NCM batteries

Cycling Number of
Charge current =~ Number of .
Cell type temperature data units
rate (C) cells
O
0.25 7 1,825
25 0.5 19 3,557
NCA battery
1 9 373
2.65-42V
35 3 1,400
45 28 20,175
0.5
25 23 7,054
NCM battery
35 4 4,716
2.5-42V
45 28 18,542
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Fig.1 Battery cycling data. a, voltage and current profile in one cycle. b, NCA battery
discharge capacity versus cycle number, with a violin plot of the cycle numbers at 2500
mAh. ¢, NCM battery discharge capacity versus cycle number, with a violin plot of the
cycle numbers at 2500 mAh. d, schematic plot of relaxation voltage change (region I1I)
while cycling for one NCA cell.

Voltage and current are the basic data recorded in this experiment, which includes
charging, discharging, and relaxation processes. The cell cycling is performed with
constant current (CC) charging to 4.2 V in a current rate ranging from 0.25 C to 1 C,
followed by a constant voltage (CV) charging step at 4.2 V until a current corresponding
to 0.05 C is reached. Constant current is then employed for the discharge at 3500 mA
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(1C) to 2.65 V for the NCA cells and 2.5 V for the NCM cells, respectively. One
complete cycling curve using 0.5 C charging rate for the NCA cell is shown in Fig.1a,
which includes five processes, i.e. (I) CC charging, (II) CV charging, (III) relaxation
after charging, (IV) CC discharging, and (V) relaxation after discharging. The CC
discharging capacity is treated as the battery residual capacity during cycling. The
relaxation time between the CV charging and CC discharging is 30 minutes with a
sampling time of 120 s. A Biologic BCS potentiostat is used for the cell cycling in a
temperature chamber. A dataset in a range of capacity fade to 2500 mAh (around 71%
of nominal capacity) is generated. The battery capacity as a function of cycle number
for the NCA cells is shown in Fig.1b. The cycle number is ranging from 50 to 800 in
the 100% - 71% capacity window. It is evident that both, charging current and
temperature have a strong influence on the capacity decay, and the battery capacity
shows significant variance as depicted in the embedded violin plot, indicating the
degradation distribution of the cycled cells. The worst scenario is the one with cells
cycled at 1C at 25 °C (CY25-1C), only 50 cycles can be obtained until the cells reach
71% of the nominal capacity. 71% capacity is reached after 125 and 600 cycles at 25 °C
and 35 °C respectively, for cells charged with 0.5 C (CY25-0.5C, and CY35-0.5C). 71%
capacity is reached after 250 cycles at 25 °C with 0.25 C charging current (CY25-0.25C)
and in a range of 500 to 800 cycles at 45 °C with 0.5C charging current (CY45-0.5C).
The cycling data of the NCM cells are shown in Fig. 1c. A fatigue down to 71% residual
capacity is found between 250 and 500 cycles (25 °C), 1250 and 1500 cycles (35 °C)
and around 1000 cycles at 45 °C cycling temperature. The capacity fade results indicate
that increasing the temperature to 35 °C and 45 °C has a beneficial effect on the capacity
retention, and that the charging current is at the limit of what the cells can handle. The
major capacity loss is from loss of active lithium and is most likely consumed in the
SEI formation as proven by in-situ neutron powder diffraction along with
electrochemical analysis in our previous work *3. Nevertheless, as this study aims to
estimate the battery capacity based on data-driven methods, the relaxation process after
fully charging is taken for feature extraction as the relaxation process is easily obtained
in battery real use conditions. A schematic plot of relaxation voltage change against
cycle number is presented in Fig.1d, which shows a declining trend with increasing
cycle number. Summary statistics are proven to be effective to illustrate the shape and
position change of the voltage curve numerically ?*, thus, each voltage relaxation curve
is converted to six statistical features, i.e., VAR, SKE, MAX, MIN, MEAN, and KUR,
as displayed in Fig.2. The mathematical description of the six features is depicted in
Table S2.
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Fig.2 Extracted features from the voltage relaxation curves as a function of battery
capacity for NCA cells. (a) VAR, (b) SKE, (¢) MAX, (d) MIN, (e) MEAN, and (f) KUR.

The relationship between battery capacity and the corresponding features are
dependent on the cycling conditions, from Fig.2, it is difficult to describe the
relationships only by linear functions. The VAR in Fig.2a represents the distribution of
the data, a decrease of VAR against capacity fade means that the relaxation voltages
show a sharper distribution with increasing cycle number, and vice versa. Both SKE
and KUR are normalized using VAR, they are used to describe the shape of the
corresponding voltage curve. The SKE in Fig.2b is positive for almost all cycling
conditions, indicating that more than half of the sampled voltage data are below the
average voltage (MEAN), and which corresponds to the shape of the relaxation voltage
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curve, i.e., the relaxation voltage drops fast at first and then gradually slows down. The
MAX in Fig.2c presents a monotonous decrease of the maximum voltage with capacity
drop for all cycling conditions. The MIN and MEAN first increase and then decrease
versus the capacity reduction as displayed in Fig.2d and Fig.2e, respectively. The KUR
shown in Fig. 2f is the excess kurtosis obtained from the kurtosis of the raw data minus
the kurtosis of a normal distribution. The excess kurtosis is negative for all cycling
conditions, meaning that the distribution of the relaxation voltage is flat.

Based on the extracted features from the relaxation voltage curve after charging,
data-driven methods are used for battery capacity estimation. Owing to the difference
in cathode materials and the manufacturing process for cycled batteries, a standard
normalization for battery features and capacity is performed. Four machine learning
algorithms, ElasticNet, XGboost, SVR, and DNN, are used in this study. ElasticNet %
is a multivariate linear algorithm. XGBoost *° is developed by improving ensemble
algorithms including gradient boosting decision trees (GBDTs) and regularized greedy
forest (RGF) algorithms **. SVR 3! is a kernel-based learning method which is used on
data classification and clustering, regression estimation, and function approximation.
DNN 32 is an artificial neural network with multiple layers and maps the nonlinearity
between inputs and outputs. The hyperparameters of each algorithm are available in
Table S3, and the results are compared in Fig.3.
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Fig.3 Capacity estimation results for cycled batteries. a, feature importance given by
the F-score in XGBoost algorithm. b-e, RMSE change under different feature
combinations by different estimation methods, ElasticNet (b), XGboost (¢), SVR (d),
and DNN (e). NCA train is the RMSE of NCA battery model training, NCA test
presents the RMSE of the model test of NCA battery. NCM _test] means that all NCM
battery data are used in the model trained by NCA battery data without changing the
model weights. NCM _test2 means the test results by modifying the model weights to
adapt the self-characteristics of the NCM battery.

Feature reduction

XGBoost provides an assessment of the relevance of the individual input features.
The importance of a feature in the XGBoost method is evaluated by the F-score *. The
F-score is commonly adopted to measure the ability of features to distinguish between
two categories and has been recognized as one of the best criteria to accomplish feature
selection. The larger the F-score, the stronger is the discrimination ability of the
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corresponding feature. The F-score results are presented in Figure 3a. It shows that VAR
has the highest priority, followed by SKE and MAX. Correlation analysis is conducted
to check the linear relationships between features. Strong correlations (close to +1)
indicate that these two features contain redundant information, meaning that a feature
reduction is possible to reduce the model complexity. As shown in Table S4, the VAR
does not show strong correlations with any other feature, indicating its discrimination
ability. The SKE and KUR show a 0.96 correlation coefficient, likewise, MAX, MEAN,
and MIN present a strong positive linear correlation (> 0.90). Therefore, the MAX is
recommended as the representative feature. The results of the correlation analysis are
consistent with the feature importance ranking from the F-score. Thus, feature reduction
is conducted by using different feature combinations according to the F-score list. The
feature combination 1 in Fig.3a means only the VAR is used in the model, 2 means the
top two features (VAR and SKE), and so on. As two types of batteries are cycled for
this study, the NCA cell dataset is used for the model building, and the NCM cell dataset
is used for model verification. The capacity estimation results are summarized in Fig.
3b-3e.

Capacity estimation

For model training and test, firstly, the NCA data are randomly split into training
set and test set in a 4:1 ratio. In the model training process, the K-fold Cross Validation
with K=5 is used to determine the hyperparameters of the models. Further model tests
are conducted using the NCM battery dataset. The results are summarized in Fig. 3b-
3e, in which NCA train is the RMSE of NCA battery model training, NCA test
presents the RMSE of the model test of NCA battery. To assess the generalizability of
the model, two model verification strategies are conducted for the NCM battery data.
NCM testl means that all NCM battery data are used in the model trained by NCA
battery data without changing the model weights. To check the universality of methods,
the NCM battery data are also split for training and test to adapt the self-characteristics
of the NCM battery, NCM test2 means the test results by modifying the model weights.
The NCA _train and NCA test RMSE curves in Fig.3b - 3e are close to each other,
indicating the effectiveness of data splitting. The curves show that RMSE gradually
decreases for all models, and the accuracy improvement is no longer obvious after using
three features (VAR, SKE, and MAX), which agrees with the discussion in the feature
reduction part as mentioned above. By comparing the RMSE with three features in table
2, it can be concluded that the RMSE of XGBoost and SVR reaches to 1.1%, showing
better performance than the other two methods. The estimated capacity versus real
capacity under three features is illustrated in Fig.4 and Fig.S1.

Table 2 RMSE of battery capacity estimation with three features (VAR, SKE, and
MAX) by different estimation methods

ElasticNet XGboost SVR DNN
NCA _train 0.021 0.011 0.011 0.015
NCA _test 0.022 0.011 0.011 0.015
NCM _testl 0.044 0.031 0.043 0.018
NCM_test2 0.018 0.011 0.011 0.014
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Verification of approach generalizability

The estimation results (NCA _test) by the XGBoost method are presented in Fig.4a.
The coefficient of determination (R?) is 0.97, showing that the model accurately
estimates the battery capacity for the cycled NCA cells. The model trained by the NCA
battery dataset without changing model weights is verified directly using 30,312 data
units extracted from the NCM batteries. The XGBoost obtains about 3.1% test RMSE
on NCM battery (NCM testl) as presented Fig.4b. When the model is re-trained with
the NCM battery dataset, the XGBoost method reaches a 1.1% test RMSE (NCM _test2),
and the corresponding capacity results with R?=0.97 are shown in Fig.4c. It can be
found that the NCM_test] RMSE (1.8%) of DNN is similar to NCA_test RMSE (1.5%)
if the feature combination = 3, as presented in Fig.3e. The corresponding capacity
results are displayed in Fig.4e with R?=0.91 and in Fig.4d with R?=0.94, respectively.
An estimation improvement is observed in Fig.4f, in which RMSE of the NCM _test2
is 1.4% and the R? is equal to 0.95. In summary, DNN gives better accuracy of capacity
estimation if the model weights are not adapted, and the estimation accuracy is
independent of the datasets. The method verification indicates that the proposed
approach using the relaxation voltage curve can accurately estimate the battery capacity,
and nonlinear methods are suggested to improve the estimation accuracy.

Discussion

Accurate identification of lithium-ion battery capacity facilitates the accurate
estimation of driving range which is a primary concern for EVs. An approach without
requiring information from previous cycling to estimate battery capacity is proposed.
The proposed approach uses three statistical features (VAR, SKE, and MAX) extracted
from the voltage relaxation curve as input. Four machine learning methods, i.e.,
ElasticNet, XGBoost, SVR, and DNN are applied on NCA and NCM batteries to
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establish a suitable model and for the approach verification. The XGBoost, and SVR
methods show good predictive ability with 1.1% RMSE for the NCA battery. The
XGBoost obtains about 3.1% RMSE for the method verification on NCM batteries
without changing the model weights, and it goes down to 1.1% test RMSE by
modifying the model weights. The DNN method presents results within 1.5% RMSE
for the NCA and NCM battery if the model weights are changed, and 1.8% RMSE for
the NCM battery with the same model weights as trained by the NCA battery dataset,
indicating the applicability of the proposed capacity estimation approach. This work
promotes the development of using data-driven methods for battery SoH estimation in
EVs.

Methods

Cell selection and cycling

Commercially available lithtum-ion batteries with a nominal capacity of 3500mAh
(INR18650-35E and INR18650-MJ1) have been tested. Inductively coupled plasma
optical emission spectrometry (ICP-OES) shows that the composition of the cathode of
a fresh cell in the discharged state is LiNio.86C00.11Al0.0302 for the INR18650-35E
batteries and Li(Nio.83C00.11Mno.07)O2 for the INR18650-MJ1 batteries. The anode
composition for both cell types is determined by a Carbon Hydrogen Nitrogen (CHN)
Analyzer to have roughly 97 wt% C and 2 wt% Si as well as traces of H, N and S. The
INR18650-35E battery is named as NCA battery, and the INR18650-MJ1 is named as
NCM battery according to their cathode material. A biologic BCS potentiostat is
employed for the cell cycling and the measurements are conducted in a climate chamber.
Long term cycling is conducted on 66 NCA cells and 55 NCM cells with a summary of
cycling conditions as provided in Table 1.

ElasticNet method

The ElasticNet algorithm is proposed by Zou et al. =, which is a regularized
regression method that linearly combines the L1 and L» penalties of the lasso and ridge
methods. ElasticNet is an extension of ordinary least square (OLS) regression. In OLS
regression, given d features x;1, ..., Xi4, the response y; is predicted by:

L 29

d
Yi=PBo+ Z Bjxij (1)
=

A model fitting procedure produces the parameter vector B = (Bo, ..., Ba)-
For the data set having n observations with p features, let y = (yy, ..., %), X =

xll Xy xld
xl-j
Xn1 Xnd
The ElasticNet loss function is defined as:
Ly, 25,8) = ly - Xﬁ“% + Az”ﬁ“% + 41811 (2)
If we set a = A,/(A + A;), the optimized parameters vector is obtained by:
B = argmingL(a, B) = lly — XBII3 + all Bl + (1 — )8, 3)

where al|f]|3 + (1 — a)||B]l; is called the ElasticNet penalty, which is a convex
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combination of the lasso and ridge penalty.

XGBoost method

The XGBoost method ° is a scalable end-to-end tree boosting system designed to
be highly efficient, flexible, and portable. It implements machine learning algorithms
in the Gradient Boosting framework. Compared with multiple linear regression,

XGBoost has the advantage of being able to handle nonlinear relationships. The tree
f(x) is defined as:

fr(0) = wge) (: R* > {1,2,...,T},w € RT) (4)

where t represents a tree, g represents the structure of each tree that maps an example
to the corresponding leaf index. T 1is the number of leaves in the tree. Each f;
corresponds to an independent tree structure ¢ and leaf weights w(output of a tree).

The objective function is defined as:
n

t
0bj© = > (3, 9:0) + ) 2(f) 5)
i=1 i=1
where [ is a differentiable convex loss function that measures the difference between
the prediction y and the target y;. The second term (2 penalizes the complexity of

the model, which helps to smooth the final learnt weights to avoid over-fitting.

T
1
Q) =yT+§AZw]? 6)
j=1

where w; is the weight of the /" leaf node. y and A are the coefficients for penalty
term (2.
Using the second-order Taylor’s formula, the objective function can be given as:

n

obj(t) = Z l (yl-,fll-(t_l) + ft(xl-)) + 2(f;) + constant
= @)
_ 1

(l(yl-, 9 + gifolx) + ~hif? (xi)) + 0(f,) + constant

~
~

n
i=1
where x; is the input of the sample, g; =6§(t_1)l(yi,y(t"1)) and h; =

aﬁ(t—nl (yl";’(t_l))

After removing the constant, the objective function at step ¢ becomes
n T

(1) 1 2 1 2
obj\" = Z (giwq(xi) +§hiwq(xi)> +yT+§/12 wj
j=1

=1 Jj=

T ) (©))
= Z (ij]- + E(Hj + A)w]-z) +yT

Jj=1
Where G; = Zielj gi,-H;y = Zielj hi, I = {ilq(x; = j)} is instance set of leaf j.
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the optimal weight w; ofleaf j for a fixed structure q(x) can be computed by:

. Gj
YT TH +2 ®
The optimal loss is:

T 2

1 (G;)

bj* = ——Z d T
obj 7 2 ; H; A+y (10)

J:

obj* is a function of marking tree structure and measuring the quality of tree structure
q. The smaller the value of obj*, the better.

SVR method

SVR approach *! is a kernel-based method which does not regress on the original
input vector, but on its nonlinear expansion, which is mapped from a kernel function to
a very high-dimensional feature space. Given a training set of data
{(x1,v1), ... (X, Vo) }, where x; < R% donates the input space of the sample, y; € R
is the target value. i = 1, ...,n, corresponds to the size of the training data.

The generic SVR estimating function takes the form

Pi=(w-®(x))+b (11)

where w € R%, b c R, and ®(x) is a nonlinear transformation from R< to a high-
dimensional space. The w has the following expansion:

w= ) (a—a)®(x;) (12)
)

where «@; and a; are the Lagrange multiplier. With the expression of the kernel
function k(x;, x) = ®(x;) - ®(x), the SVR estimating function can be expressed as:

n
9= ) (@i = a)) k(v 2) + b (13)
i=1
The goal of SVR is to find the value of w and b that minimizing the total loss
1 !
min{§||w||§ +C) L0 —y»} (4
i=1

where C is a constant, and vector ¥, is the loss function, the e-insensitive loss
function is used in this research:
19i—yil—€,  Ji—wl=¢€
2.(V: — v :{ " 15
E(yl yl) 0, |yi _yil <e ( )

DNN method

A deep neural network (DNN) * is an artificial neural network with multiple layers
as presented in Fig.S2. It can approximate the non-linear mapping between inputs and
outputs. For a DNN with m hidden layers, the output is predicted by

12



P =@ (vr(p <W<m><p ( W(Z)w(W(l)xi)))>

where x; is the input of the model (i.e., three statistical features VAR, SKE, MAX), v
and W are the weights of output layer and hidden layers, respectively, ¢(*) is the
activation function, which can introduce the nonlinearity of the model. For different
layers in the DNN model, the activation function can be different. In our study, the
DNN has five dense hidden layers and each with a sigmoid activation function. The
output layer predicts the relative capacity using an sofiplus activation function, which
ensures that the output is greater than 0 Dropout layers with a rate of 0.1 are also added
between dense layers to avoid over-fitting. A summary of the NN model structure can
be found in Table S3.

The goal of training a DNN model is to find the weights of v and 7 that minimizing
the total loss

n
1
mng(yl yi)
i=

where ¥; is the predicted relative capacity generated by the model and y; is the
corresponding true relative capacity. The NN is trained with Keras and Adam algorithm
is used as the optimizer to update the weights of the model.

Data availability

The data that support the findings of this study are available at publication, further
information and request for resources should be directed to the contact, Dr. Michael
Knapp and Dr. Haifeng Dai. Full access to data can be required for peer review.
review

Code availability
The data processing and the proposed method is performed in python and is available
at publication. Full access to code can be required for peer review.
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