
Supplementary Information

Operating advanced scientific instruments with AI agents that learn on the job

Aikaterini Vriza1,*, Michael H. Prince2, Tao Zhou1, Henry Chan1, Mathew J. Cherukara2,*

1 Center for Nanoscale Materials, Argonne National Laboratory, IL, USA
2 Advanced Photon Source, Argonne National Laboratory, IL, USA

email: kvriza@gmail.com, mcherukara@anl.gov

Table of Contents

1.	Workflow description	2
1.1.	Hard X-ray Nanoprobe	3
1.2.	Robotic platform for thin film fabrication (N9 robot)	10
2.	Multi-agent system	12
3.	Memory creation and teachability	13
4.	Performance evaluation	16
4.1	Evaluation metrics on the Hard X-ray Nanoprobe	16
4.1.1 Task 1	16
4.1.2 Task 2	19
4.1.3 Task 3	21
4.2	Evaluation metrics of the N9 platform	25
4.2.1 Task 1	25
4.1.2 Task 2	26
4.1.3 Task 3	28
5.	User interface	33

1. [bookmark: _Toc205531478]Workflow description
1.1. [bookmark: _Toc205531479]Hard X-ray Nanoprobe
Enables command line scripting for HXN microscope operation
start this with /APSshare/anaconda/x86_64/bin/ipython -i S26_commandline.py
When you create a code script for execution always import the libraries and define the motors to be used
import sys
import epics
import epics.devices
import time
import datetime
import numpy as np
import os
import math

Define motors
fomx = epics.Motor('26idcnpi:m10.') # motor for moving focusing optics in the x direction, a positive value moves the motor in the outboard direction
fomy = epics.Motor('26idcnpi:m11.') # motor for moving focusing optics in the y direction, a positive value moves the motor up in the lab frame
fomz = epics.Motor('26idcnpi:m12.') # motor for moving focusing optics in the z direction, a positive value moves the motor further downstream
samy = epics.Motor('26idcnpi:m17.') # motor for moving the sample in the y direction, a positive value moves the sample up in the lab frame
samth = epics.Motor('atto2:PIC867:1:m1.')
osax = epics.Motor('26idcnpi:m13.')
osay = epics.Motor('26idcnpi:m14.')
osaz = epics.Motor('26idcnpi:m15.')
condx = epics.Motor('26idcnpi:m5.')
objx = epics.Motor('26idcnpi:m1.')
xrfx = epics.Motor('26idcDET:m7.') # motor for moving the XRF detector in

DCMenergy = epics.Motor("26idbDCM:sm8")
zpx = epics.Device('26idcnpi:X_HYBRID_SP.', attrs=('VAL','DESC')) # motor for moving the x-ray beam in the x direction. A positive value moves the beam outboard. The range is from -50 um to 50 um.
zpx.add_pv('26idcnpi:m34.RBV', attr='RBV')
zpy = epics.Device('26idcnpi:Y_HYBRID_SP.', attrs=('VAL','DESC')) # motor for moving the x-ray beam in the y direction. A positive value moves the beam up in the lab frame. The range is from -50 um to 50 um.
zpy.add_pv('26idcnpi:m35.RBV', attr='RBV')
twotheta = epics.Motor('26idcSOFT:sm3.')
not_epics_motors = [zpx.NAME, zpy.NAME, twotheta.NAME]
Supplementary Fig. 1. Python script for initializing motor control and library imports for the Hard X-ray Nanoprobe (HXN). This script serves as the foundation for command-line scripting of microscope operations. It imports the necessary Python libraries (including epics for EPICS-based device communication), defines the key motors used in positioning optics and samples, and annotates their function with descriptive comments. The script facilitates automation of beamline tasks by providing context and low-level access for agent-based or user-defined routines. Motors defined include those for focusing optics (fomx, fomy, fomz), sample positioning (samy, samth), beam steering (zpx, zpy).

def mov(motor,position):
 # move motor to absolute position defined by the 2nd argument.
 if motor in [fomx, fomy, samy]:
 epics.caput('26idcnpi:m34.STOP',1)
 epics.caput('26idcnpi:m35.STOP',1)
 epics.caput('26idcSOFT:userCalc1.SCAN',0)
 epics.caput('26idcSOFT:userCalc3.SCAN',0)
 if motor.NAME in not_epics_motors:
 motor.VAL = position
 time.sleep(1)
 print(motor.DESC+"---> "+str(motor.RBV))
 else:
 result = motor.move(position, wait=True)
 if result==0:
 time.sleep(0.5)
 print(motor.DESC+" ---> "+str(motor.RBV))
 fp = open(logbook,"a")
 fp.write(motor.DESC+" ---> "+str(motor.RBV)+"\n")
 fp.close()
 epics.caput('26idcSOFT:userCalc1.SCAN',6)
 epics.caput('26idcSOFT:userCalc3.SCAN',6)
 else:
 print("Motion failed")

def movr(motor,tweakvalue):
 """
 Tweak motor relatively by value defined by the 2nd argument, tweakvalue is in um"""

 # move motor by tweakvalue

 if motor in [fomx, fomy, samy]:
 epics.caput('26idcnpi:m34.STOP',1)
 epics.caput('26idcnpi:m35.STOP',1)
 if ((motor in [zpx, zpy]) and ((abs(zpx.RBV-zpx.VAL)>100) or (abs(zpy.RBV-zpy.VAL)>100))):
 print("Please use lock_hybrid() to lock piezos at current position first...")
 return
 if motor.NAME in not_epics_motors:
 motor.VAL = motor.VAL+tweakvalue
 time.sleep(1)
 print(motor.DESC+"---> "+str(motor.RBV))
 else:
 result = motor.move(tweakvalue, relative=True, wait=True)
 if result==0:
 time.sleep(0.5)
 print(motor.DESC+" ---> "+str(motor.RBV))
 fp = open(logbook,"a")
 fp.write(motor.DESC+" ---> "+str(motor.RBV)+"\n")
 fp.close()
 else:
 print("Motion failed")

def scan1d(motor,startpos,endpos,numpts,dettime, absolute=False):
 # scan 1 motor from start position (startpos) to end position (endpos), with number of points (numpts) and count time (dettime)

 if motor in [fomx, fomy, samy]:
 epics.caput('26idcnpi:m34.STOP',1)
 epics.caput('26idcnpi:m35.STOP',1)
 if ((motor in [zpx, zpy]) and ((abs(zpx.RBV-zpx.VAL)>100) or (abs(zpy.RBV-zpy.VAL)>100))):
 print("Please use lock_hybrid() to lock piezos at current position first...")
 return
 sc1.P1PV = motor.NAME+'.VAL'
 if absolute:
 sc1.P1AR=0
 else:
 sc1.P1AR=1
 sc1.P1SP = startpos
 sc1.P1EP = endpos
 sc1.NPTS = numpts
 count_time(dettime)
 fp = open(logbook,"a")
 fp.write(' ----- \n')
 fp.write('SCAN #: '+epics.caget(scanrecord+':saveData_scanNumber',as_string=True)+' ---- '+str(datetime.datetime.now())+'\n')
 if absolute:
 fp.write('Scanning '+motor.DESC+' from '+str(startpos)+' ---> '+str(endpos)+' in '+str(numpts)+' points at '+str(dettime)+' seconds acquisition\n')
 else:
 fp.write('Scanning '+motor.DESC+' from '+str(startpos+motor.VAL)+' ---> '+str(endpos+motor.VAL))
 fp.write(' in '+str(numpts)+' points at '+str(dettime)+' seconds acquisition\n')
 fp.write(' ----- \n')
 fp.close()
 time.sleep(1)
 stopnow = prescan();
 if (stopnow):
 return
 sc1.execute=1
 print("Scanning...")
 time.sleep(1)
 while(sc1.BUSY == 1):
 time.sleep(1)
 postscan()

def fly2d(motor1,startpos1,endpos1,numpts1,motor2,startpos2,endpos2,numpts2,dettime, absolute=False):
 # scan two motors for a mesh scan
 # the unit of the scan is in um
 # motor1 is the outer loop motor, and is scanned in step mode. The step size or resolution in this case is defined as the difference between endpos1 and startpos1, divided by (numpts1-1)
 # notor2 is the inner loop motor, and is scanned continuously in fly mode. The step size or resolution in this case is defined as the difference between endpos2 and startpos2, divided by numpts2

 if (motor1 in [fomx, fomy, samy]) or (motor2 in [fomx, fomy, samy]):
 epics.caput('26idcnpi:m34.STOP',1)
 epics.caput('26idcnpi:m35.STOP',1)
 if (((motor1 in [zpx, zpy]) or (motor2 in [zpx,zpy])) and ((abs(zpx.RBV-zpx.VAL)>100) or (abs(zpy.RBV-zpy.VAL)>100))):
 print("Please use lock_hybrid() to lock piezos at current position first...")
 return
 sc2.P1PV = motor1.NAME+'.VAL'
 sc1.P1PV = motor2.NAME+'.VAL'
 if absolute:
 sc1.P1AR=0
 sc2.P1AR=0
 else:
 sc1.P1AR=1
 sc2.P1AR=1
 sc2.P1SP = startpos1
 sc1.P1SP = startpos2
 sc2.P1EP = endpos1
 sc1.P1EP = endpos2
 sc2.NPTS = numpts1
 sc1.NPTS = numpts2
 count_time(dettime)
 fp = open(logbook,"a")
 fp.write(' ----- \n')
 fp.write('SCAN #: '+epics.caget(scanrecord+':saveData_scanNumber',as_string=True)+' ---- '+str(datetime.datetime.now())+'\n')
 if absolute:
 fp.write('2D Scan:\n')
 fp.write('Inner loop: '+motor2.DESC+' from '+str(startpos2)+' ---> '+str(endpos2))
 fp.write(' in '+str(numpts2)+' points at '+str(dettime)+' seconds acquisition\n')
 fp.write('Outer loop: '+motor1.DESC+' from '+str(startpos1)+' ---> '+str(endpos1))
 fp.write(' in '+str(numpts1)+' points at '+str(dettime)+' seconds acquisition\n')
 else:
 fp.write('2D Scan:\n')
 fp.write('Outer loop: '+motor1.DESC+' from '+str(startpos1+motor1.VAL)+' ---> '+str(endpos1+motor1.VAL))
 fp.write(' in '+str(numpts1)+' points at '+str(dettime)+' seconds acquisition\n')
 fp.write('Inner loop: '+motor2.DESC+' from '+str(startpos2+motor2.VAL)+' ---> '+str(endpos2+motor2.VAL))
 fp.write(' in '+str(numpts2)+' points at '+str(dettime)+' seconds acquisition\n')
 fp.write(' ----- \n')
 fp.close()
 time.sleep(1)
 stopnow = prescan();
 if (stopnow):
 return
 sc2.execute=1
 print("Scanning...")
 time.sleep(1)
 while(sc2.BUSY == 1):
 time.sleep(1)
 postscan()

Supplementary Fig. 2. Detailed description of some of the functions extensively used to operate the X-ray Nanoprobe.

[image: A white text with black text

AI-generated content may be incorrect.]
Supplementary Fig. 3. User provided context describing the process of getting visual insights from nano-diffraction and nano-fluorescence images.

[image:]
Supplementary Fig. 4. The agentic output for task 2 using GPT-4o (left). The nano-diffraction 2D scan used for task 2.

In the nano-diffraction image, the bright spots indicating strong diffraction are located at:

1. Approximately (-40, 40) µm
2. Approximately (20, 20) µm
3. Approximately (0, -20) µm

In the nano-fluorescence image, we need to avoid areas with clusters larger than 10x10 µm. The isolated bright spot that corresponds to a strong diffraction and is not in a clustered area is:

- Approximately (20, 20) µm

This location is suitable for further analysis. Move the beam to (20, 20) µm.

Move the beam to the coordinates (20, 20) µm
mov(zpx, 20) # Move zpx motor to 20 µm
mov(zpy, 20) # Move zpy motor to 20 µm
Supplementary Fig. 5. The agentic output for task 3 using GPT-4o. The model fails to retrieve the coordinates of the bright spots with high accuracy.

1.2. [bookmark: _Toc205531480]Robotic platform for thin film fabrication (N9 robot)

[image:]
Supplementary Fig. 6. Example of the N9 station layout information provided as context to the LLM agents.

[image: A white text with black text

AI-generated content may be incorrect.]
Supplementary Fig. 7. Example of the operating functions that interface with the underlying control system of the N9 robot. The main instructions and commands are provided to the LLM agents as context to create the operating environment, accompanied by a brief description of each function as text.

2. [bookmark: _Toc205531481]Multi-agent system
Below we present the agents used to operate the N9 robotic station.
Administrator agent: The administrator agent is designed to function as an administrative interface between users and the other agents. Its primary responsibilities include task delegation to other agents, receiving human input before a further action is taken and code execution in the specified working directory.
Literature Scraping Agent: The literature scraping agent is responsible for extracting key information from scientific literature and transferring this knowledge to other agents. It has access to an external tool that converts PDFs into textual format, enabling efficient data extraction.
System Message:
• ”You are a PDF scraper and can extract information from any provided PDF using the available tools.”
• ”After reading the text, you can provide specific answers based on the PDF’s context.”
• ”Return ’TERMINATE’ when the scraping process is complete.”
Code writer agent: This agent is responsible for providing the execution code as a python script. We provide the operating functions with a short description about the utility of each function in the system message. An example is shown in Figure 4.
Code reviewer agent: This agent is designed to evaluate the code created by the code writer and provide feedback.
System Message:
• ”Your task is to review the code provided by the code writer agent and provide feedback on necessary corrections.”
• ”Ensure that all required libraries are imported and that only the existing approved operation functions are used.”
Manager: This agent is creating a group with all the existing agents and is responsible for selecting the next relevant agent in the workflow.

The agent-to-agent communication is achieved via a dynamic group chat pattern, in which participating agents share the same context and converse with the others in a dynamic manner instead of following a pre-defined order.

3. [bookmark: _Toc205531482]Memory creation and teachability
To further enhance functionality and reliability, we integrated a teachability component. In this approach, agent capabilities are updated by appending new instruction to the system message, integrating storage and retrieval functionalities, and interacting with a background agent that decides whether the human provided information is important and should be stored. In that way, any new interaction with the human researcher that provides significant guidelines for the execution of the experimental protocol is stored as an input-output pair in a local vector database. This process enables the agents to recall and apply previously learnt information when facing similar tasks, thereby supporting long-term learning and adaptability. Autogen has a teachability feature that can add memory capabilities to any existing agent. By analyzing the incoming messages from the interaction with the human user, it detects whether the message contains general information that should be remembered or a task/problem with accompanying advice. If any of these are found, it extracts and generalizes the content, storing it as input-output pairs in the ChromaDB vector database (Supplementary Fig. 8 &9). The input-output pairs are stored as text embeddings enabling semantic similarity searches. When a new task is provided by the user, the teachable agents perform a similarity search to find the most relevant past teachings. In that way, the agent can automatically apply relevant past learnings to new situations. The default teachability agent is storing all the created memories, even if they are very similar. To avoid storing very similar memories, we added a similarity search before storage. The new memories are compared to the existing ones using ChromaDB’s similarity search, and a new memory is only stored if it is above a certain distance threshold. Using the memory component can also enable for the training and memory creation with more expensive Language models and operate with open-source and smaller ones.
[image:]
Supplementary Fig. 8. Example of memories created from gpt-4o on the operation of the beamline.

[image:]
Supplementary Fig. 9. Example of memories created from gpt-4o on the operation on the N9 robotic station.
4. [bookmark: _Toc205531483]Performance evaluation
For the evaluation of the agents performance we Focused on five tasks:
1. Code quality check: Checking if the code reviewer was initiated to check the initial code written by the code writer. That is basicallt focusing checking if the correct functions have been imported and that the code is operational.
2. Correctness: Checking if the final code is correct and calls the correct functions sequentially. Evaluating the functionality of the generated code and checking whether the sequential steps are performed in the correct order. The score is counting how many steps of the required ones have been identified from the agents. The best score is 8, 10, 25 for the first, second and third task accordingly.
3. Code execution: How many of the steps can the code run without doing something wrong. This differs from the code correctness, as all the steps might have been identified correct but placed in a wrong sequence and as such the operation of the robot will break. The score is counting how many steps of the required ones have been identified from the agents. The best score is 8, 10, 25 for the first, second and third task accordingly.
4. Code repeatability: Evaluating whether the same code is generating after running the same prompt task for two times. The temperature of the models is set to 0 in all cases.
5. Reproducibility: Assess the consistency of the generated code when provided with altered
prompts for the same task. This is particularly crucial in user facilities, where different users may describe identical tasks using various expressions.

4.1 [bookmark: _Toc205531484]Evaluation metrics on the Hard X-ray Nanoprobe
[bookmark: _Toc205531485]4.1.1 Task 1
prompt_1 = """I need to scan a 100 um x 100 um area, with 1 um resolution, 0.01 sec exposure time."""
prompt_1a = """Scan a 100 micrometer x 100 micrometer area, with 1 micrometer resolution and 0.01 sec exposure time."""
Expected output: Define the correct parameters for a 100x100 um area and resolution 0.01 sec, identify the correct motors, identify the correct function. For a 100% score all these three steps should be correct.

Supplementary Table 1. Evaluation table for task 1 in the S26 beamline experiments without human intervention for teachability. The first three trials are performed using the same exact prompt, whereas the fourth trial is using a slightly different prompt (referred a prompt 1a) but with the same meaning.
	Trial
	model
	Code quality check

	Code correctness (%)
	Code execution (correct order of functions) (%)
	Comments

	1
	gpt-4o-mini
	V
	33.33
	33.33
	Correct function but selected wrong motors and wrong parameters (1/3)

	2
	gpt-4o-mini
	V
	33.33
	33.33
	Correct function but selected wrong motors and wrong parameters(1/3)

	3
	gpt-4o-mini
	V
	33.33
	33.33
	Correct function but selected wrong motors and wrong parameters (1/3)

	4
	gpt-4o-mini
	X
	33.33
	33.33
	Correct function but selected wrong motors and wrong parameters (1/3)

	1
	gpt-4o
	V
	66.66
	66.66
	Correct function, correct motors but not correct numpts1&2 (2/3)

	2
	gpt-4o
	V
	66.66
	66.66
	Correct function, correct motors but not correct numpts1&2 (2/3)

	3
	gpt-4o
	V
	66.66
	66.66
	Correct function, correct motors but not correct numpts1&2 (2/3)

	4
	gpt-4o
	V
	66.66
	66.66
	Correct function, correct motors but not correct numpts1&2 (2/3)

	1
	claude-3.5
	V
	33.33
	33.33
	Correct function and parameters but picked up wrong motors

	2
	claude-3.5
	V
	33.33
	33.33
	Correct function and parameters but picked up wrong motors

	3
	claude-3.5
	V
	33.33
	33.33
	Correct function and parameters but picked up wrong motors

	4
	claude-3.5
	V
	66.66
	66.66
	Correct function and correct motors but added several unnecessary steps and calls

	1
	o3
	V
	100
	100
	Correct function, correct motors and correct parameters (3/3)

	2
	o3
	V
	100
	100
	Correct function, correct motors and correct parameters (3/3)

	3
	o3
	V
	100
	100
	Correct function, correct motors and correct parameters (3/3)

	4
	o3
	V
	100
	100
	Correct function, correct motors and correct parameters (3/3)

Supplementary Table 2. Evaluation table for task 1 in the S26 beamline experiments with human intervention for teachability. The first three trials are performed using the same exact prompt, whereas the fourth trial is using a slightly different prompt (referred a prompt 1a) but with the same meaning.
	Trial
	model
	Code quality check

	Code correctness (%)
	Code execution (correct order of functions) (%)
	Comments

	1
	gpt-4o-mini
	V
	100
	100
	Correct function, correct motors and correct parameters (3/3)

	2
	gpt-4o-mini
	V
	100
	100
	Correct function, correct motors and correct parameters (3/3)

	3
	gpt-4o-mini
	V
	100
	100
	Correct function, correct motors and correct parameters (3/3)

	4
	gpt-4o-mini
	V
	100
	100
	Correct function, correct motors and correct parameters (3/3)

	1
	gpt-4o
	V
	100
	100
	Correct function, correct motors and correct parameters (3/3)

	2
	gpt-4o
	V
	100
	100
	Correct function, correct motors and correct parameters (3/3)

	3
	gpt-4o
	V
	100
	100
	Correct function, correct motors and correct parameters (3/3)

	4
	gpt-4o
	V
	100
	100
	Correct function, correct motors and correct parameters (3/3)

	1
	claude-3.5
	V
	100
	100
	Correct function, correct motors and correct parameters (3/3)

	2
	claude-3.5
	V
	100
	100
	Correct function, correct motors and correct parameters (3/3)

	3
	claude-3.5
	V
	66.66
	66.66
	Correct function and parameters but picked up wrong motors

	4
	claude-3.5
	V
	66.66
	66.66
	Correct function and parameters but picked up wrong motors

	1
	o3
	V
	100
	100
	No human intervention is required since the model performs 100%

	2
	o3
	V
	100
	100
	No human intervention is required since the model performs 100%

	3
	o3
	V
	100
	100
	No human intervention is required since the model performs 100%

	4
	o3
	V
	100
	100
	No human intervention is required since the model performs 100%

[bookmark: _Toc205531486]4.1.2 Task 2
prompt_2 = f"""In the result of the previous scan we see a bright dot. Find out the location of the particle and move the beam there."""
prompt_2a = f"""Check the scan , find out the location of the particle and move the beam towards this location."""
Expected output: Identify the approximate location of the bright spot in the 2D heatmap (0, -40), use these coordinates to call the correct function to move the beam there.

Supplementary Table 3. Evaluation table for task 2 in the S26 beamline experiments without any human intervention. The first three trials are performed using the same exact prompt, whereas the fourth trial is using a slightly different prompt (referred a prompt 2a) but with the same meaning.
	Trial
	model
	Code quality check

	Code correctness (%)
	Code execution (correct order of functions) (%)
	Comments

	1
	gpt-4o-mini
	X
	50
	50
	Correct location but made up the function

	2
	gpt-4o-mini
	X
	50
	50
	Correct location but made up the function

	3
	gpt-4o-mini
	X
	50
	50
	Correct location but made up the function

	4
	gpt-4o-mini
	V
	100
	100
	Correct location and function

	1
	gpt-4o
	X
	100
	100
	Correct location and function

	2
	gpt-4o
	X
	100
	100
	Correct location and function

	3
	gpt-4o
	X
	100
	100
	Correct location and function

	4
	gpt-4o
	X
	100
	100
	Correct location and function

	1
	claude-3.5
	X
	100
	50
	Correct location and correct function. But it performed a scan without being asked for. The instructions were to move to the location not to take a scan.

	2
	claude-3.5
	X
	100
	50
	Correct location and correct function. But it performed a scan without being asked for. The instructions were to move to the location not to take a scan.

	3
	claude-3.5
	X
	100
	50
	Correct location and correct function. But it performed a scan without being asked for. The instructions were to move to the location not to take a scan.

	4
	claude-3.5
	X
	100
	50
	Correct location and correct function. But it performed a scan without being asked for. The instructions were to move to the location not to take a scan.

	1
	o3
	V
	100
	100
	Correct location and correct function

	2
	o3
	V
	100
	100
	Correct location and correct function

	3
	o3
	V
	100
	100
	Correct location and correct function

	4
	o3
	V
	100
	100
	Correct location and correct function

Observations: when code-reviewer wasn’t called the model was making up functions. In 4o the reviewer wasn;t called but functions were correct.

Supplementary Table 4. Evaluation table for task 2 in the S26 beamline experiments with teachability through human intervention. The first three trials are performed using the same exact prompt, whereas the fourth trial is using a slightly different prompt (referred a prompt 2a) but with the same meaning.
	Trial
	model
	Code quality check

	Code correctness (%)
	Code execution (correct order of functions) (%)
	Comments

	1
	gpt-4o-mini
	V
	100
	100
	Correct location and function

	2
	gpt-4o-mini
	V
	100
	100
	Correct location and function

	3
	gpt-4o-mini
	V
	50
	50
	Correct location but made up the function

	4
	gpt-4o-mini
	V
	100
	100
	Correct location and function

	1
	gpt-4o
	V
	100
	100
	Correct location and function

	2
	gpt-4o
	V
	100
	100
	Correct location and function

	3
	gpt-4o
	V
	100
	100
	Correct location and function

	4
	gpt-4o
	V
	100
	100
	Correct location and function

	1
	claude-3.5
	V
	100
	100
	Correct location and function

	2
	claude-3.5
	X
	50
	50
	Correct location but called several functions without being asked to

	3
	claude-3.5
	X
	100
	50
	Correct location and mov function but again called several functions without being asked to

	4
	claude-3.5
	X
	50
	50
	Correct location but called several functions without being asked to

	1
	o3
	V
	100
	100
	No human intervention is required since the model performs 100%

	2
	o3
	V
	100
	100
	No human intervention is required since the model performs 100%

	3
	o3
	V
	100
	100
	No human intervention is required since the model performs 100%

	4
	o3
	V
	100
	100
	No human intervention is required since the model performs 100%

[bookmark: _Toc205531487]4.1.3 Task 3
 prompt_3 = f"""The nano-diffraction image from the previous scan is shown in , and the corresponding nano-fluorescence image is shown in . Provide the coordinates of the particle that diffracts strongly and is also isolated. And move the beam towards this location."""
 prompt_3a = f"""The nano-diffraction image from the previous scan is shown in , and the assosciated nano-fluorescence image is shown in . Find the coordinates of the particle that diffracts best and is also isolated. Then move the beam to this location."""
Expected output: Identify the location of the brightest spot in the 2D heatmap of the nano-diffraction image and also simultaneously check the corresponding nano-fluorescence image to make sure that the previously identified area is isolated (away from bright spots). Then use these coordinates to call the correct function to move the beam there.

Supplementary Table 5. Evaluation table for task 3 in the S26 beamline experiments. The first three trials are performed using the same exact prompt, whereas the fourth trial is using a slightly different prompt (referred a prompt 3a) but with the same meaning.
	Trial
	model
	Code quality check

	Code correctness (%)
	Code execution (correct order of functions) (%)
	Comments

	1
	gpt-4o-mini
	X
	0
	0
	Cannot identify the correct points, makes up a wrong function

	2
	gpt-4o-mini
	X
	0
	0
	Cannot identify the correct points, makes up a wrong function

	3
	gpt-4o-mini
	X
	0
	0
	Cannot identify the correct points, makes up a wrong function

	4
	gpt-4o-mini
	X
	0
	0
	Cannot identify the correct points, makes up a wrong function

	1
	gpt-4o
	V
	50
	50
	Identified all the three spots with low accuracy and select the wrong location for scanning (20, 20). Correct function.

	2
	gpt-4o
	V
	50
	50
	Identified all the three spots with low accuracy and select the wrong location for scanning (20, 20). Correct function.

	3
	gpt-4o
	V
	50
	50
	Identified all the three spots with low accuracy and select the wrong location for scanning (20, 20). Correct function.

	4
	gpt-4o
	V
	50
	50
	Identified all the three spots with low accuracy and select the wrong location for scanning (0, -20). Correct function.

	1
	claude-3.5
	X
	50
	50
	Identified the correct spot (-40, 45) but called the wrong function: movr instead of mov.

	2
	claude-3.5
	X
	0
	0
	Identified all the three spots with low accuracy and select the wrong location for scanning (20, 20). Wrong function.

	3
	claude-3.5
	X
	0
	0
	Identified all the three spots with low accuracy and select the wrong location for scanning (20, 20). Wrong function.

	4
	claude-3.5
	X
	50
	50
	Identified the correct spot (-40, 45) but called the wrong function: movr instead of mov.

	1
	o3
	V
	100
	100
	Correct cross-modal location and correct function

	2
	o3
	V
	100
	100
	Correct cross-modal location and correct function

	3
	o3
	V
	100
	100
	Correct cross-modal location and correct function

	4
	o3
	V
	100
	100
	Correct cross-modal location and correct function

Supplementary Table 6. Evaluation table for task 3 in the S26 beamline experiments with teachability through human intervention. The first three trials are performed using the same exact prompt, whereas the fourth trial is using a slightly different prompt (referred a prompt 3a) but with the same meaning.
	Trial
	model
	Code quality check

	Code correctness (%)
	Code execution (correct order of functions) (%)
	Comments

	1
	gpt-4o-mini
	X
	50
	50
	Cannot identify the correct points, found the correct function

	2
	gpt-4o-mini
	X
	50
	50
	Cannot identify the correct points, found the correct function

	3
	gpt-4o-mini
	X
	50
	50
	Cannot identify the correct points, found the correct function

	4
	gpt-4o-mini
	X
	50
	50
	Cannot identify the correct points, found the correct function

	1
	gpt-4o
	V
	50
	50
	Identified all the three spots with low accuracy and select the wrong location for scanning (20, 20). Correct function.

	2
	gpt-4o
	V
	100
	100
	Identified all the three spots with selected the correct one. Correct function.

	3
	gpt-4o
	V
	100
	100
	Identified all the three spots with selected the correct one. Correct function.

	4
	gpt-4o
	V
	50
	50
	Identified all the three spots with low accuracy and select the wrong location for scanning (0, -20). Correct function.

	1
	claude-3.5
	X
	50
	50
	Identified the correct spot (-40, 45) but called the wrong function: movr instead of mov.

	2
	claude-3.5
	X
	0
	0
	Identified all the three spots with low accuracy and select the wrong location for scanning (20, 20). Wrong function.

	3
	claude-3.5
	X
	0
	0
	Identified all the three spots with low accuracy and select the wrong location for scanning (20, 20). Wrong function.

	4
	claude-3.5
	X
	50
	50
	Identified the correct spot (-40, 45) but called the wrong function: movr instead of mov.

	1
	o3
	V
	100
	100
	No human intervention is required since the model performs 100%

	2
	o3
	V
	100
	100
	No human intervention is required since the model performs 100%

	3
	o3
	V
	100
	100
	No human intervention is required since the model performs 100%

	4
	o3
	V
	100
	100
	No human intervention is required since the model performs 100%

[image: A graph of a bar chart

AI-generated content may be incorrect.]
Supplementary Fig. 10. LLM model consistency on the operation of the X-ray nanoprobe system calculated by comparing the standard deviation of each task. Claube 3.5 showed the highest inconsistency among the tasks as the output of the model was varying across the different trials.

4.2 [bookmark: _Toc205531488]Evaluation metrics of the N9 platform
[bookmark: _Toc205531489]4.2.1 Task 1
prompt_1 = """Write the execution code to move the vial with PEDOT:PSS defined as polymer A to the clamp holder."""
prompt_1a = """Write the code to move the vial with polymer A to the clamp."""
Expected output: The eight (8) sequential tasks are organized as follows:
i) Import the correct libraries
ii) Initialize the required system components
iii) Identify the location of the vial
iv) Move gripper to the vial position
v) Close the gripper to pick up the vial
vi) Move the gripper with the vial to the clamp holder
vii) Close the clamp holder to hold the vial
viii) Release the gripper
We give one point for each correct step

Supplementary Table 7. Evaluation table for task 1 on the N9 robotic station without human intervention for teachability. The first three trials are performed using the same exact prompt, whereas the fourth trial is using a slightly different prompt (referred a prompt 1a) but with the same meaning.
	Trial
	model
	Code quality check

	Code correctness (%)
	Code execution (correct order of functions) (%)
	Comments

	1
	gpt-4o-mini
	V
	87.5
	75
	7/8 of the steps were identified. It didn’t close the clamp to hold the gripper. For code execution it will stop in step 6 the rest is not correct and will break the process so 6/8.

	2
	gpt-4o-mini
	V
	87.5
	75
	

	3
	gpt-4o-mini
	V
	87.5
	75
	

	4
	gpt-4o-mini
	V
	87.5
	75
	

	1
	gpt-4o
	V
	100
	100
	8/8 of the steps were identified and in the correct order.

	2
	gpt-4o
	V
	100
	100
	

	3
	gpt-4o
	V
	100
	100
	

	4
	gpt-4o
	V
	100
	100
	

	1
	claude-3.5
	V
	75
	50
	8/8 of the steps were identified. But the two final steps were not in the correct order: it first release the gripper and then closed the clamp. Also added extra step for vertical movement which will break the code (-2 points). Code execution Will stop in step 4 the rest is not correct and will break the process

	2
	claude-3.5
	V
	75
	50
	

	3
	claude-3.5
	V
	75
	50
	

	4
	claude-3.5
	V
	75
	50
	

	1
	o3
	V
	0
	0
	Hallucinated not existing functions

	2
	o3
	V
	0
	0
	

	3
	o3
	V
	0
	0
	

	4
	o3
	V
	0
	0
	

Table S2 Evaluation table for task 1 on the N9 robotic station with human intervention for teachability. The first three trials are performed using the same exact prompt, whereas the fourth trial is using a slightly different prompt (referred a prompt 1a) but with the same meaning.
	Trial
	model
	Code quality check

	Code correctness (%)
	Code execution (correct order of functions) (%)
	Comments

	1
	gpt-4o-mini
	V
	100
	100
	8/8 of the steps were identified and in the correct order.

	2
	gpt-4o-mini
	V
	100
	100
	

	3
	gpt-4o-mini
	V
	100
	100
	

	4
	gpt-4o-mini
	V
	100
	100
	

	1
	gpt-4o
	V
	100
	100
	8/8 of the steps were identified and in the correct order.

	2
	gpt-4o
	V
	100
	100
	

	3
	gpt-4o
	V
	100
	100
	

	4
	gpt-4o
	V
	100
	100
	

	1
	claude-3.5
	V
	100
	100
	8/8 of the steps were identified and in the correct order.

	2
	claude-3.5
	V
	100
	100
	

	3
	claude-3.5
	V
	100
	100
	

	4
	claude-3.5
	V
	100
	100
	

	1
	o3
	V
	100
	100
	8/8 of the steps were identified and in the correct order.

	2
	o3
	V
	100
	100
	

	3
	o3
	V
	100
	100
	

	4
	o3
	V
	100
	100
	

[bookmark: _Toc205531490]4.1.2 Task 2
prompt_2 = """Write the execution code to pick up a substrate from the substrate rack and move it to the coating station."""
prompt_2a = """Write the code to pick up a substrate and move it to the coating stage."""
Expected output: The ten (10) sequential tasks are organized as follows:
i) Import the correct libraries
ii) Initialize the required system components
iii) Pick up the Bernoulli tool
iv) Identify the location of the substrate
v) Move the Bernoulli tool to the location of the substrate
vi) Activate the vacuum to pick up the substrate
vii) Move the substrate to the blade coating station
viii) Activate the vacuum of the coating station to hold the substrate
ix) Deactivate the vacuum of the Bernoulli tool to release the substrate
x) Return the Bernoulli tool to its location
We give one point for each correct step
Supplementary Table 8. Evaluation table for task 2 N9 robotic station experiments without any human intervention. The first three trials are performed using the same exact prompt, whereas the fourth trial is using a slightly different prompt (referred a prompt 2a) but with the same meaning.
	Trial
	model
	Code quality check

	Code correctness (%)
	Code execution (correct order of functions) (%)
	Comments

	1
	gpt-4o-mini
	V
	60
	50
	For the code correctness: 8/10 of the steps were identified. It didn’t activate the vacuum of the coating station, and it didn’t return the Bernoulli tool back. Also -1 point as it a made up a function (c9.wait_until_reached()) (total: 7/10). For the code execution, it will stop in step 5 the rest is not correct and will break the process

	2
	gpt-4o-mini
	V
	60
	50
	

	3
	gpt-4o-mini
	V
	60
	50
	

	4
	gpt-4o-mini
	V
	80
	80
	8/10 steps correct and no made up function

	1
	gpt-4o
	V
	90
	70
	Code correctness: 9/10 of the steps were identified. It didn’t activate the vacuum on the coating station. Code execution: 7/10 sequential steps correct

	2
	gpt-4o
	V
	90
	70
	

	3
	gpt-4o
	V
	90
	70
	

	4
	gpt-4o
	V
	100
	100
	Using the prompt 2a it worked well and activated the coating stage vacuum in correct order

	1
	claude-3.5
	V
	60
	60
	10/10 of the steps were identified. But added extra steps for vertical movement which will break the code and hallucinated commands (-4 points). Will stop in step 6 the rest is not correct and will break the process

	2
	claude-3.5
	V
	60
	60
	

	3
	claude-3.5
	V
	60
	60
	

	4
	claude-3.5
	V
	100
	100
	10/10 steps were identified in correct order

	1
	o3
	V
	100
	100
	10/10 steps are correct

	2
	o3
	V
	100
	100
	

	3
	o3
	V
	100
	100
	

	4
	o3
	V
	100
	100
	

Supplementary Table 9. Evaluation table for task 2 N9 robotic station experiments with teachability through human intervention. The first three trials are performed using the same exact prompt, whereas the fourth trial is using a slightly different prompt (referred a prompt 2a) but with the same meaning.
	Trial
	model
	Code quality check

	Code correctness (%)
	Code execution (correct order of functions) (%)
	Comments

	1
	gpt-4o-mini
	V
	100
	100
	10/10 steps are correct

	2
	gpt-4o-mini
	V
	100
	100
	10/10 steps are correct

	3
	gpt-4o-mini
	V
	100
	100
	10/10 steps are correct

	4
	gpt-4o-mini
	V
	100
	100
	10/10 steps are correct

	1
	gpt-4o
	V
	100
	100
	10/10 steps are correct

	2
	gpt-4o
	V
	100
	100
	10/10 steps are correct

	3
	gpt-4o
	V
	100
	100
	10/10 steps are correct

	4
	gpt-4o
	V
	100
	100
	10/10 steps are correct

	1
	claude-3.5
	V
	100
	100
	10/10 steps are correct

	2
	claude-3.5
	V
	100
	100
	10/10 steps are correct

	3
	claude-3.5
	V
	100
	100
	10/10 steps are correct

	4
	claude-3.5
	V
	100
	100
	10/10 steps are correct

	1
	o3
	V
	100
	100
	10/10 steps are correct

	2
	o3
	V
	100
	100
	10/10 steps are correct

	3
	o3
	V
	100
	100
	10/10 steps are correct

	4
	o3
	V
	100
	100
	10/10 steps are correct

[bookmark: _Toc205531491]4.1.3 Task 3
prompt_3 = """Write the execution code to create a polymer film using only PEDOT:PSS defined as polymer A. Extract the best range of the film processing conditions from the paper PEDOT_PSS_manuscript.pdf."""
prompt_3a = """ Write the code to create a polymer film with only PEDOT:PSS defined as polymer A. Identify the best processing conditions from the paper PEDOT_PSS_manuscript.pdf."""
Expected output: The twenty-five (25) sequential tasks are organized as follows:
i) Read the paper and extract the correct experimental parameters
ii) Import the correct libraries
iii) Initialize the required hardware modules
iv) Pick up the Bernoulli tool
v) Identify the location of the substrate
vi) Move the Bernoulli tool to the location of the substrate
vii) Activate the vacuum to pick up the substrate
viii) Move the substrate to the blade coating station
ix) Activate the vacuum of the coating station to hold the substrate
x) Deactivate the vacuum of the Bernoulli tool to release the substrate
xi) Return the Bernoulli tool to its location
xii) Identify the location of the vial
xiii) Move gripper to the vial position
xiv) Close the gripper to pick up the vial
xv) Move the gripper with the vial to the clamp holder
xvi) Close the clamp holder to hold the vial
xvii) Uncap the vial
xviii) Pick up a pipette from the pipette rack
xix) Go to the clamp holder to aspirate the polymer
xx) Go to the coating station to dropcast the polymer solution to the substrate
xxi) Drop the pipette
xxii) Cap the vial
xxiii) Set the temperature and speed of the coating station (identified from literature)
xxiv) Blade-coat the polymer
xxv) Return the substrate to initial rack location``
We give one point for each correct step

Supplementary Table 10. Evaluation table for task 3 N9 robotic station experiments without any human feedback. The first three trials are performed using the same exact prompt, whereas the fourth trial is using a slightly different prompt (referred as prompt 3a) but with the same meaning.
	Trial
	model
	Code quality check

	Code correctness (%)
	Code execution (correct order of functions) (%)
	Comments

	1
	gpt-4o-mini
	V
	44
	24
	11/25 of the steps were identified. Missed many steps and incorrect order. The process stops in step 6 as the rest is not correct and will break the process.

	2
	gpt-4o-mini
	V
	44
	24
	

	3
	gpt-4o-mini
	V
	44
	24
	

	4
	gpt-4o-mini
	V
	44
	24
	

	1
	gpt-4o
	V
	48
	36
	12/25 of the steps were identified. It didn’t get a pipette and substrate. The process will stop after 9 steps.

	2
	gpt-4o
	V
	48
	36
	

	3
	gpt-4o
	V
	48
	36
	

	4
	gpt-4o
	V
	48
	24
	The process stops after 6 steps.

	1
	claude-3.5
	V
	64
	32
	16/25 of the steps were identified. But the two final steps were not in the correct order: it first release the gripper and then closed the clamp. Will stop after 8 steps the rest is not correct and will break the process.

	2
	claude-3.5
	
	80
	60
	20/25 steps were identified. Picks up random temperature instead of retrieving the correct from the paper. The process will break after 15 steps as it is not holding the vial when tries to uncap.

	3
	claude-3.5
	
	64
	32
	16/25 of the steps were identified. But the two final steps were not in the correct order: it first release the gripper and then closed the clamp. Will stop after 8 steps the rest is not correct and will break the process.

	4
	claude-3.5
	
	64
	16
	16/25 steps were correct but not in correct order. The execution breaks after 4 steps. It tries to incorrectly identify a vial with additive ethylenoglycole (EG) which is referred in the paper, even though in the prompt it is clear that we ask to use only PEDOT:PSS

	1
	o3
	V
	100
	64
	25/25 steps were identified but the process will break in 16 steps as it was not holding the vial when uncapping.

	2
	o3
	V
	100
	64
	25/25 steps were identified but the process will break in 16 steps as it was not holding the vial when uncapping.

	3
	o3
	V
	100
	64
	25/25 steps were identified but the process will break in 16 steps as it was not holding the vial when uncapping.

	4
	o3
	V
	100
	80
	20/25 steps were executed correctly

Supplementary Table 11. Evaluation table for task 3 N9 robotic station experiments with teachability through human intervention. The first three trials are performed using the same exact prompt, whereas the fourth trial is using a slightly different prompt (referred a prompt 3a) but with the same meaning.
	Trial
	model
	Code quality check

	Code correctness (%)
	Code execution (correct order of functions) (%)
	Comments

	1
	gpt-4o-mini
	V
	84
	64
	16/25 steps were executed in correct order

	2
	gpt-4o-mini
	V
	84
	64
	

	3
	gpt-4o-mini
	V
	84
	64
	

	4
	gpt-4o-mini
	V
	84
	64
	

	1
	gpt-4o
	V
	100
	100
	25/25 steps were identified correctly

	2
	gpt-4o
	V
	100
	100
	

	3
	gpt-4o
	V
	100
	100
	

	4
	gpt-4o
	V
	100
	100
	

	1
	claude-3.5
	V
	100
	100
	25/25 steps were identified correctly

	2
	claude-3.5
	V
	100
	100
	

	3
	claude-3.5
	V
	100
	100
	

	4
	claude-3.5
	V
	100
	100
	

	1
	o3
	V
	100
	100
	25/25 steps were identified correctly

	2
	o3
	V
	100
	100
	

	3
	o3
	V
	100
	100
	

	4
	o3
	V
	100
	100
	

[image:]
Supplementary Fig. 11. LLM model consistency on the operation of the N9 robotic system calculated by comparing the standard deviation of each task. Claube 3.5 showed the highest inconsistency among the tasks as the output of the model was varying across the different trials.

[image:]
Supplementary Fig. 12. Comparison of the agentic output for gpt-4o-mini (left) and gpt-4o (right) for the simplest task in the N9 robotic station. The major error of gpt-4o-mini is highlighted in the red box, where it releases the vial by opening the gripper without first closing the clamp to securely hold it.

5. [bookmark: _Toc205531492]User interface
[image: A screenshot of a computer

AI-generated content may be incorrect.]
Supplementary Fig. 13. User interface for enabling real time in-lab operations of the agentic system.
image1.png
General information for nano-diffraction and nano-fluorescence imaging

Nano-Diffraction Images:

In the nano-diffraction image, we expect to see a few bright spots.

They correspond to particles that diffract at this diffraction condition.

Those are the particles we are interested in measuring. The brighter the spot, the better for further analysis.

Nano-Fluorescence Images:

In the nano-fluorescence image, we expect to see a lot of bright areas that look like clusters of bright spots of more than 10x10
micrometer. We should avoid bright areas that look like clusters of bright spots of more than 10x10 micrometer to ensure we
measure single, non-clustered particles. All particles will fluoresce regardless of the diffraction condition, so we see all the particles
at the same time, and not just the one that diffract in the nano-diffraction image. The particles tend to coalesce and form clusters of
bright spots of more than 10x10 micrometer we observe the nano-fluorescence image. We want to avoid those areas because we
would like to measure isolated particles (particles that are not clustered with others). Also, the fluorescence intensity is proportional
to the thickness of the clusters, and we want to avoid the areas with a thicker layer of particles which are brighter on the nano-
fluorescence image.

We should identify isolated and avoid bright areas the better for further analysis. When you find the possition
of the bright spot on the difraction image or when you find the possition of the clusters to avoid on the fluoresence image
the precision of possition should be on the order of Tum.

image2.png
Task 2

User prompt: Identify the location of the particle in the nano-diffraction
image and move the beamline there.

image-explainer:

The strongest isolated diffraction spot is located at approximately
#ezpx =0 pm

#+2zpy -39 pm

target_zpx
target_zpy
tolerance

1) Move

mov(zpx, target_zpx)
mov(zpy, target_zpy)

2py (um)

40

20

2px (um)

Nano-diffraction image

image3.png
#These are the location settings for the rack that contains the existing polymers which are
imported whenimportloca is called
#If a polymerdoes not exist in this list, then respond "Experiment cannot be initiated."”
ro.runtime['rack_status']={

‘vial': pd.DataFrame(

[#These are the location settings for the rack that contains the solvents and the polymers
A 6x8 rack, top-left corner is at index [0,0]
#e.g.,'NaCl'is atindex [0,1] of the rack
#'None' means empty, 'False’ means do notuse (keep empty).
['water_gap’,'NaCl', None, None, None, None, None, None],
[False, None, 'polymer_A', None, None, None, None, None],
[False, None, None, 'carbon_black’, None, None, None, None],
[None, None, False, None, None, None, None, None],
[None, None, False, None, None, None, None, None],
[None, None, None, None, None, None, None, None],
]
)

'substrate': pd.DataFrame(

[#These are the location settings for the rack that contains the substrates
A 12x6 rack, 'new' means new, unused substrate
['new’, 'new’, 'new’, 'new’, 'new’, 'new'],

['new’, 'new’, 'new’, 'new’, 'new’, 'new'],
['new’, 'new’, 'new’, 'new’, 'new’, 'new'],
['new’, 'new’, 'new’, 'new’, 'new’, 'new'],
['new’, 'new’, 'new’, 'new’, 'new’, 'new'],
['new’, 'new’, 'new’, 'new’, 'new’, 'new'],
['new’, 'new’, 'new’, 'new’, 'new’, 'new'],
['new’, 'new’, 'new’, 'new’, 'new’, 'new'],
['new’, 'new’, 'new’, 'new’, 'new’, 'new'],
['new’, 'new’, 'new’, 'new’, 'new’, 'new'],
['new’, 'new’, 'new’, 'new’, 'new’, 'new'],
['new’, 'new’, 'new’, 'new’, 'new’, 'new'],

image4.png
These are the functions that should always be imported before running the N9 robotic system
import loca # location information

import pandas as pd

import robotics as ro

from robotics import procedure as proc

import rack_status

Vaccum functions

c9.set_output(‘'substrate_tool', True) # when True activate the vaccum on the bernoulli gripper
to pick up substrates

c9.set_output(‘'substrate_tool', False) #when False deactivate the vaccum bernoulli gripper to
releaze substrates

aspirate the solution in the clamp
c9.aspirate_ml(0, 0.5) # aspirate 0.5mL
c9.dispense_ml(0, 0.2) # dispense 0.2mL

Pick up a pipette
proc.new_pipette(c9) # get a new pipette
proc.remove_pipette(c9) # remove the pipette

image5.png
Memory ID: 10

Input:

What are the considerations to ensure the provided code works properly in my environment?
Output:

1. Ensure that the motors “zpx™ and “zpy" are properly initialized and available in your environment.
2. The order of parameters in the " fly2d™ function is correct as provided.

3. If your scan requires absolute positioning, ensure that the " fly2d™ function is set up to handle this.
4. Ensure that there is a logbook and scan record setup to capture the scan details.

5. Ensure that all required libraries are imported at the beginning of your script....

Memory ID: 11

Input:

What are the key points to ensure successful execution of the 2D scan code?
Output:

The code provided is correct for performing a 2D scan over a 100 micrometer x 100 micrometer area with 1 micrometer resolution and 0.01
second exposure time. Here are some key points to ensure successful execution:

1. **Motor Initialization**: Ensure that the motors “zpx"~ and “zpy" are properly initialized and available in your environment. These should
be defined as motor objects or similar entities that your control system can interface with.

2. **QOrder of Parameters in " fly2d" Function**: The order of parameters in the “fly2d" function is correct as provided. Ensure that your
implementation of “fly2d" matches this order.

3. **Absolute Positioning**: If your scan requires absolute positioning, ensure that the " fly2d" function is set up to handle this. Some
implementations might have an “absolute” parameter to specify this.

4. **Logbook and Scan Record**: The code assumes that there is a logbook and scan record setup. Ensure that these are correctly
configured in your environment to capture the scan details.

5. **Check for Required Libraries**: Ensure that all required libraries are imported at the beginning of your script.
Here is the code snippet with these considerations in mind:
* " python
Ensure all required libraries are imported
import epics
import time
import datetime
import numpy as np
Define the scan parameters
startpos1 = 0 # Starting position for the first motor (e.g., zpx)
endpos1 = 100 # Ending position for the first motor (e.g., zpx)
numpts1 =101 # Number of points for the first motor (1 um resolution)
startpos2 = 0 # Starting position for the second motor (e.g., zpy)
endpos2 = 100 # Ending position for the second motor (e.g., zpy)
numpts2 = 101 # Number of points for the second motor (1 um resolution)
dettime = 0.01 # Exposure time in seconds
Perform the scan

fly2d(zpx, startpos1, endpos1, numpts1, zpy, startpos2, endpos2, numpts2, dettime)

Make sure that the motors “zpx™ and “zpy" are correctly defined and initialized in your setup. Additionally, ensure that the logbook and
scan record are properly configured to capture the scan details. If you have any specific requirements or configurations in your environment,
adjust the code accordingly....

image6.png
Example of memories created from GPT40

Memory ID: 3

Input:

How do | pick up a substrate and move it to the coating station?

Output:

To pick up a substrate and move it to the coating station, we need to follow these steps:

1. Pick up the substrate using the Bernoulli substrate gripper tool.
2. Move the substrate to the coating station.
3. Activate the vacuum on the coater stage to hold the substrate.

Here's the code to perform these actions:

" python
filename: move_substrate_to_coating_station.py

import loca
import robotics as ro

Initialize the robot controller
c9 =ro.system.init(‘controller')

Pick up the Bernoulli substrate gripper tool
c9.tool ='substrate_tool'

Activate the vacuum on the Bernoulli gripper to pick up substrates
c9.set_output('substrate_tool', True)

Move to the substrate rack and pick up a substrate
c9.position = loca.substrate_rack_seq[0, 0] # Move to the top-left position of the substrate rack

Move the substrate to the coating station
c9.position = loca.s_coater

Activate the vacuum on the coater stage to hold the substrate
c9.set_output('coater_stage_vacuum/, True)

Drop off the Bernoulli substrate gripper tool
c9.tool =None

Please save this code in a file named " move_substrate_to_coating_station.py and execute it. This
will pick up a substrate from the rack and move it to the coating station....

Memory ID: 4

Input:

The task involves managing vacuum systems to handle a substrate during a coating process.
Output:

After activating the vacuum on the coater stage, deactivate the vacuum of the Bernoulli tool to
release the substrate.

image7.png
Standard Deviation (%)

30

25

20

15

10

Al Model Consistency: Standard Deviation Comparison

Task 1 Task 2 Task 3
30
No intervention
ZZ with teachability
289 28.9 sl 250 25.0 30 285 289
25.0
25
20
19.2 20
15
15
10
10
5 5
0.0 0.0 00 00 o 0.0 0.0 00 0.0 0.0 00 0.0 00 00
& & & &
S & & &

«

3
Lowr values indicate more consistent performance across trials

image8.png
Standard Deviation (%)

30

25

20

15

10

Task 1

Al Model Consistency: Standard Deviation Comparison

<
3
Low&F values indicate more consistent performance across trials

Task 2 Task 3
No intervention
ZZ With teachability 200
28.9 20.0 183
20
175
15.0
15.0 15.0
15
125
100
10
8.0
75
6.0
5 5.0
25
0.0 00 00 o 00 0.0 0.0 00 0.0 0.0
o o o o 9
& & « & S
& &
N
& &

image9.png
User input

Move the vial with PEDOT:PSSto the clamp holder.

import loca
import robotics as ro
[from robotics import procedure as proc

import loca
import robotics as ro
[from robotics import procedure as proc

ro.system.init(
c9 = ro.system.init()

jpolymer_label =

vial_index = proc.find_rack_index(S)

vial_index = proc.find_rack_index(, polymer_label)

c9.position = loca.vial_rack[vial_index]

c9.position = loca.vial_rack[vial_index]
c9 . set_output(, True)

jc9. set_output(,» True)

c9.position = loca.clamp

c9.position = loca.clamp

Ic9.set_output(, True)

lc9. set_output(, False) .set_output(, False)

gpt-40-mini

image10.png
SDL Agents Chat nterface

all flan[autonl] to enable AL
Running on WRL: http

To create a public in in " launch(
autogen s,

N TYPE u ser_proxy_sg
Agent*
DE WRITER TYPE: <cla: . conversable_o
nt.C bleAgent

adnin (to chat_manager)

h PEDOT:PSS and nol

