1	White-matter functional network dysfunction associated with cognitive deficits and
2	clinical phenotypes in patients with end-stage renal disease
3	Supplementary Materials
4	
5	Peng Li ^{#1,2,3} ; Yu-Xuan Shang ^{#3} ; Jun-Ya Mu¹; Xin-Yi Zhu¹; Zhao-Yao Luo¹; Qian-Ge Zhu¹;
6	Hui-Jie Yuan ¹ ; Ting Ge ³ ; Chen-Xi Wang ³ ; Wen Wang ^{*3} ; Ming Zhang ^{*1}
7	1 Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, No.
8	277, West Yanta Road, Xi'an, 710061, Shaanxi, China.
9	2 Department of Medical Imaging, Nuclear Industry 215 Hospital of Shaanxi Province, West
10	Weiyang Road, Xianyang, 712000, Shaanxi, China.
11	3 Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi
12	Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an
13	710038, Shaanxi, China.
14	
15	
16	
17	
18	
19	
20	

Supplementary Methods

MRI data acquisition

21

22

- 23 The T1-FLAIR was scanned before the rs-fMRI protocol to adapt to the MR environment and
- exclude intracranial lesions(echo time/repetition time = 24/1750 ms, matrix = 256×256 , flip
- angle = 111° , inversion time = 780 ms, slice thickness = 6 mm, slice gap = 0.6 mm). The T1-
- 26 weighted structural data were obtained with a three-dimensional brain volume imaging
- sequence (echo time/repetition time = 3.2/8.2, flip angle = 15° , matrix = 256×256 , slice
- 28 thickness = 1 mm, slice gap = 0 mm, slices number = 140). The rs-fMRI data were collected
- with an echo-planar imaging sequence (TE/TR = 50/2000 ms, matrix = 64×64 , FA = 90° ,
- field-of-view FOV = $240 \times 240 \text{ mm}^2$, slice thickness = 4 mm, slice gap = 0 mm, slices = 45,
- voxel size = $3 \times 3 \times 3$ mm³). Each rs-fMRI acquisition lasted for 6 min 10 s and included 185
- 32 functional volumes.

33 FC and FCC of WM networks

- 34 It is important to emphasize that the FCC and FC of WM functional networks are
- 35 complementary and contribute to the interpretation of rs-fMRI studies. FC refers to the
- 36 correlation between BOLD signals from two regions, so it can only reflect information from
- two limited regions (i.e., one-to-one information flow). In contrast, by integrating information
- from multiple regions, the FCC carries complex information interactions (i.e., one-to-many-
- 39 to-one information flow). The FC strength between WM functional networks reflects their
- inherent interactions, while the FCC strength balances the influence of gray matter on WM
- 41 functional networks^{1,2}. Therefore, in this study, we use both FC and FCC to characterize the
- 42 relationships between WM functional networks.

Supplementary Results

43

44

- Between-group differences of the FC in WM functional networks
- 45 Compared with HCs, ESRD patients exhibited widespread reductions in FC among 11 WM
- 46 functional networks (Figure 3a and Supplementary Table 2, p < 0.05, FDR corrected),
- 47 including between corona radiata network and frontal, middle temporal, orbitofrontal,
- 48 cerebellar, frontoparietal, and deep networks; between frontal network and middle temporal,
- 49 orbitofrontal, occipital, cerebellar, frontoparietal, and deep networks; between pre/post-
- central network and middle temporal, cerebellar, occipital, frontoparietal, and deep networks;
- between middle temporal network and orbitofrontal, frontoparietal, and deep networks;
- between cerebellar network and orbitofrontal, frontoparietal, and deep networks; between
- occipital network and frontoparietal network; between orbitofrontal network and
- frontoparietal network; and between deep network and frontoparietal, middle temporal,
- 55 cerebellar, and orbitofrontal networks.

56 Between-group differences of the FCC in WM functional networks

- 57 Compared with HCs, ESRD patients exhibited widespread reductions in FCC among WM
- functional networks (Figure 3b and Supplementary Table 3, p < 0.05, FDR corrected),
- 59 including reduced FCC between corona radiata network and frontal, middle temporal,
- orbitofrontal, cerebellar, frontoparietal, and deep networks; between frontal network and
- 61 middle temporal, orbitofrontal, occipital, cerebellar, frontoparietal, and deep networks;
- between pre/post-central network and middle temporal, cerebellar, occipital, and deep
- 63 networks; between middle temporal network and orbitofrontal, frontoparietal, and deep
- networks; between cerebellar network and orbitofrontal, frontoparietal, and deep networks;

between orbitofrontal network and deep network; and between deep network and frontoparietal, middle temporal, cerebellar, and orbitofrontal networks. In addition, compared with HCs, ESRD patients also exhibited localized increased in FCC among WM functional networks (p < 0.05, FDR corrected), including the middle temporal network and occipital network, as well as between cerebellar network and occipital network.

Clinical and neuropsychological variables associated with FC and FCC alterations in

ESRD patients

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

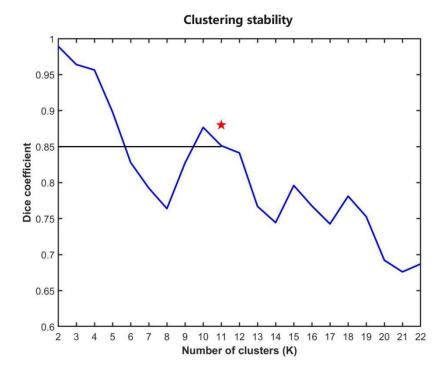
82

83

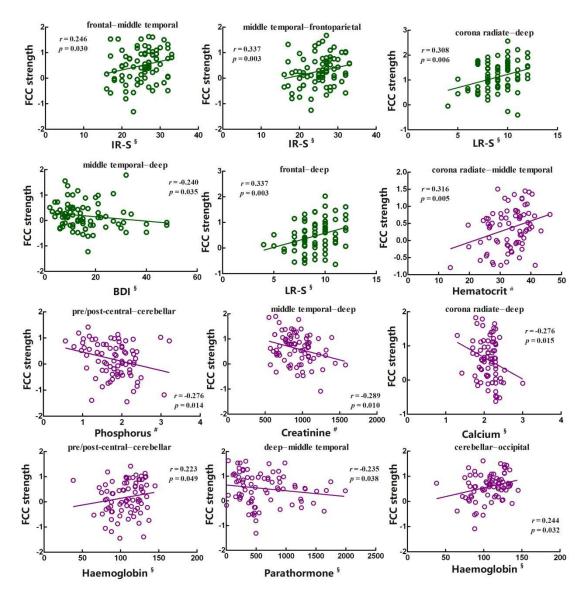
84

85

86

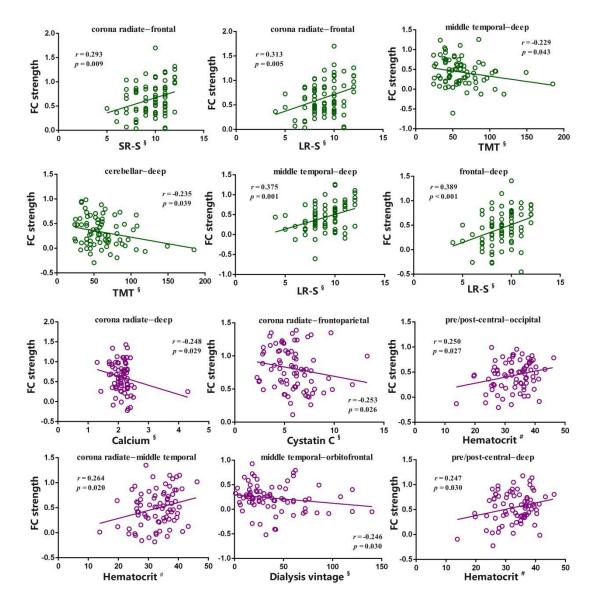

As shown in Supplementary Figure 2, neuropsychological scores in ESRD patients showed significant correlations with the FCC strength of WM networks. Specifically, the greater the cognitive deficits (short-term memory and long-term memory) and mood disorder (depression), the weaker the FCC strength (frontal-middle temporal network, middle temporal-frontparietal network, corona radiate-deep network, frontal-deep network, and middle temporal-deep network). Similarly, clinical indictors in ESRD patients were significantly correlated with FCC strength of WM network. Specifically, the lower the hematocrit and haemoglobin level, the weaker the FCC strength (corona radiate-middle temporal network, pre/post-central-cerebellar network, and cerebellar-occipital network). The severe the uremia toxins (creatinine) and calcium-phosphorus metabolism disorders (calcium, phosphorus, parathormone), the weaker the FCC strength (corona radiate-middle temporal network, pre/post-central-cerebellar network, cerebellar-occipital network, middle temporaldeep, corona radiate-deep network, and deep-middle temporal network). All significant correlations were identified using Spearman or Pearson correlation analyses (p < 0.05, FDRcorrected).

Neuropsychological scores in ESRD patients showed significant correlations with the FC
strength of WM networks (Supplementary Figure 3). Specifically, the greater the cognitive
deficits, the weaker the FC strength (corona radiate-frontal network, corona radiate-deep
network, middle temporal-deep network, cerebellar-deep network, frontal-frontoparietal
network, and frontal-deep network). Similarly, clinical indictors in ESRD patients were
significantly correlated with FC strength of WM network. Specifically, the lower the
hematocrit level, the weaker the FC strength (corona radiate-middle temporal network,
pre/post-central-cerebellar network, and cerebellar-occipital network). The longer the dialysis
vintage and cystatin C level, the weaker the FC strength (middle temporal-orbitofrontal
network, corona radiate-middle temporal network, pre/post-central-cerebellar network,
coronaradiate-frontoparietaln network, pre/post-central-deep network, and corona radiate-
deep network). All significant correlations were identified using Spearman or Pearson
correlation analyses ($p < 0.05$, FDR-corrected).


Supplementary References

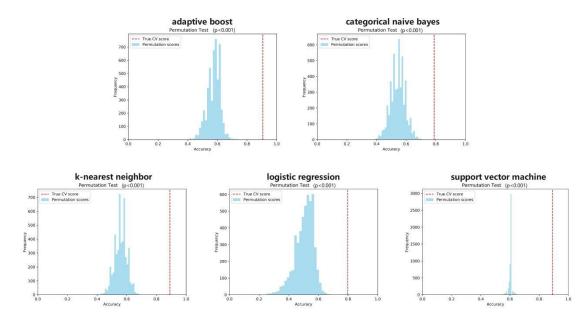
101 I Zhang, H. *et al.* Topographical Information-Based High-Order Functional 102 Connectivity and Its Application in Abnormality Detection for Mild Cognitive 103 Impairment. *J Alzheimers Dis* **54**, 1095-1112 (2016).

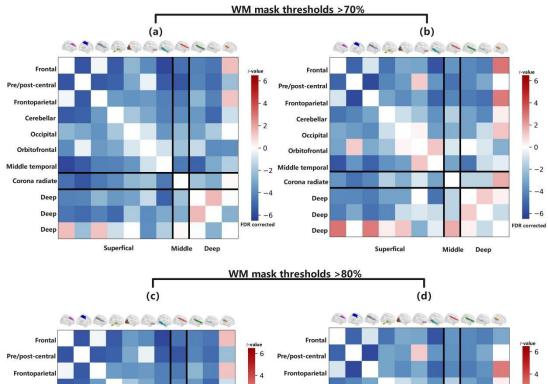
Jiang, Y. *et al.* Dysfunctional white-matter networks in medicated and unmedicated benign epilepsy with centrotemporal spikes. *Hum Brain Mapp* **40**, 3113-3124, doi:10.1002/hbm.24584 (2019).



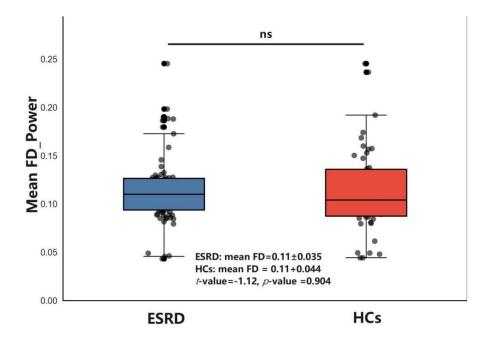
Supplementary Figure 1. Stability of clustering for different numbers of clusters. This graph provides the Dice's coefficient for each number of clusters, and shows that the most stable segregation number was eleven.

Supplementary Figure 2. Clinical and neuropsychological variables associated with FCC alterations in ESRD patients. Green circles denote correlations between the FCC strength of WM functional networks and neuropsychological variables. Purple circles denote correlations between the FCC strength of WM functional networks and clinical indicators,. Pearson (#) or Spearman (\$) correlation analyses was used to assess relationships between FCC alterations and both clinical indicators and neuropsychological variables. The significance threshold was set to p values of <0.05 after FDR correction. FCC, functional covariance connectivity; ESRD, end-stage renal disease; IR-S, immediate recall score; LR-S, long-term recall score; BDI,


134 Beck depression inventory.


Supplementary Figure 3. Clinical and neuropsychological variables associated with FC alterations in ESRD patients. Green circles denote correlations between the FC strength of WM functional networks and neuropsychological variables. Purple circles denote correlations between the FC strength of WM functional networks and clinical indicators. Pearson (#) or Spearman (§) correlation analyses was used to assess relationships between FC alterations and both clinical indicators and neuropsychological variables. The significance threshold was set to *p* values of <0.05 after FDR correction. ESRD, end-stage renal disease; SR-S, short-

term recall score; LR-S, long-term recall score; TMT, trail-making test.


Supplementary Figure 4. Permutation test results for multiple classification models (repeated 5,000 times).

Frontal
Pre/post-central
Pre/post-central
Cerebellar
Occipital
Orbitofrontal
Middle temporal
Corona radiate
Deep
Deep
Deep
Deep
Superfical
Middle Deep
Middle Deep
Superfical
Middle Deep
Middle Deep
Superfical
Middle Deep
Middle Deep
Middle Deep
Middle Deep
Superfical
Middle Deep

Supplementary Figure 5. Between-group differences of FC and FCC among WM

functional networks in ESRD patients and HCs (threshold > 70% and 80%, p < 0.05, FDR-corrected). (a) and (b) respectively show the between-group differences in FC and FCC of 11 WM networks under WM mask threshold > 70%. (c) and (d) respectively show the between-group differences in FC and FCC of 11 WM networks under WM mask threshold > 80%. Both the main results of 70 and 80% group-level masks were consistent with the main results of 60% masks. Thus, the main results were still stable even with stricter masks. ESRD, end-stage renal disease; HCs, healthy controls; WM, white matter; FC, functional connectivity; FCC, functional covariance connectivity.

Supplementary Figure 6. Box plots of the mean framewise displacement (FD) values. No

significant differences in the mean FD values between ESRD patients and HCs.

Supplementary Table 1. White-matter functional networks

White-matter functional network	Network-tract correspondence	Layer
Frontal network	Frontopontine tract and superior longitudinal fasciculus	Superficial
Pre/post-central network	Corticospinal tract and cingulum tracts	Superficial
Middle temporal network	Uncinate and middle temporal lobe tracts	Superficial
Cerebellar network	Inferior corticospinal and posterior cerebellar tracts	Superficial
Occipital network	Forceps major system	Superficial
Orbitofrontal network	Forceps minor system and anterior thalamic radiation	Superficial
Frontoparietal network	Cingulum and associated tracts	Superficial
Corona radiate network	Anterior corona radiata and superior corona radiata	Middle
Deep network	Superior longitudinal fasciculus and uncinate fasciculus	Deep
Deep network	Posterior thalamic radiation and internal capsule	Deep
Deep network	Inferior longitudinal fasciculus	Deep

Note: The network-tract correspondences were estimated based on the overlap between white-matter functional networks and two white-matter tractography atlases provided by Susumu Mori.

Supplementary Table 2. Between-group differences of the FC in WM functional network between ESRD patients and HCs (FDR corrected)

WM functional network	WM functional network	<i>t</i> -value	<i>p</i> -value
	Frontal network	-5.452	< 0.001
	Pre/post-central network	-0.904	0.368
	Deep network	-5.287	< 0.001
	Middle temporal network	-6.060	< 0.001
	Cerebellar network	-4.351	< 0.001
Corona radiate network	Occipital network	-1.614	0.109
	Orbitofrontal network	-3.667	< 0.001
	Deep network	-4.268	< 0.001
	Deep network	-4.536	< 0.001
	Frontoparietal network	-2.912	0.004
	Pre/post-central network	-0.429	0.669
	Deep network	-4.186	< 0.001
	Middle temporal network	-5.662	< 0.001
	Cerebellar network	-5.497	< 0.001
Frontal network	Occipital network	-2.182	0.031
	Orbitofrontal network	-3.027	0.003
	Deep network	-5.228	< 0.001
	Deep network	-5.630	< 0.001
	Frontoparietal network	-4.910	< 0.001
	Deep network	-1.179	0.241
	Middle temporal network	-4.035	< 0.001
	Cerebellar network	-3.495	0.001
Pre/post-central network	Occipital network	-3.797	< 0.001
rie/post-central network	Orbitofrontal network	-0.816	0.416
	Deep network	-3.020	0.003
	Deep network	-2.130	0.035
	Frontoparietal network	-3.954	< 0.001
	Middle temporal network	-4.334	< 0.001
Deep network	Cerebellar network	-2.514	0.013
	Occipital network	-0.071	0.943
	Occipital network	-0.071	0

	Orbitofrontal network	-3.171	0.002
	Deep network	-3.584	< 0.001
	Deep network	-2.108	0.037
	Frontoparietal network	1.670	0.098
	Cerebellar network	-0.338	0.736
	Occipital network	1.463	0.146
Middle temporal network	Orbitofrontal network	-2.545	0.012
Middle temporal network	Deep network	-5.516	< 0.001
	Deep network	-4.774	< 0.001
	Frontoparietal network	-4.672	< 0.001
	Occipital network	1.376	0.171
	Orbitofrontal network	-3.808	< 0.001
Cerebellar network	Deep network	-3.341	0.001
	Deep network	-4.558	< 0.001
	Frontoparietal network	-4.242	< 0.001
	Orbitofrontal network	0.007	0.995
Occipital network	Deep network	-0.978	0.330
Occipital network	Deep network	0.109	0.914
	Frontoparietal network	-2.710	0.008
	Deep network	-1.954	0.053
Orbitofrontal network	Deep network	-2.489	0.014
	Frontoparietal network	-1.719	0.088
Deep network	Deep network	-4.031	< 0.001
Deep network	Frontoparietal network	-5.016	< 0.001
Deep network	Frontoparietal network	-2.865	0.005

Abbreviations: FC, functional connectivity; ESRD, end-stage renal disease; HCs, healthy controls; WM, white matter; FDR, false discovery rate.

Supplementary Table 3. Between-group differences of the FCC in WM network between ESRD patients and HCs (FDR corrected) $\,$

WM functional network	WM functional network	<i>t</i> -value	<i>p</i> -value
	Frontal network	-3.670	< 0.001
	Pre/post-central network	1.343	0.182
	Deep network	-4.775	< 0.001
	Middle temporal network	-5.680	< 0.001
	Cerebellar network	-5.209	< 0.001
Corona radiate network	Occipital network	-0.552	0.582
	Orbitofrontal network	-3.345	0.001
	Deep network	-3.748	< 0.001
	Deep network	-3.158	0.002
	Frontoparietal network	-1.040	0.300
	Pre/post-central network	1.134	0.259
	Deep network	-4.100	< 0.001
	Middle temporal network	-5.162	< 0.001
	Cerebellar network	-5.999	< 0.001
Frontal network	Occipital network	0.010	0.992
	Orbitofrontal network	-3.491	0.001
	Deep network	-4.144	< 0.001
	Deep network	-4.748	< 0.001
	Frontoparietal network	-2.953	0.004
	Deep network	-0.002	0.999
	Middle temporal network	-3.215	0.002
	Cerebellar network	-2.970	0.004
Dro/post control notycork	Occipital network	-2.749	0.007
Pre/post-central network	Orbitofrontal network	0.239	0.811
	Deep network	-2.013	0.046
	Deep network	-0.809	0.420
	Frontoparietal network	-0.754	0.453
	Middle temporal network	-4.089	< 0.001
Deep network	Cerebellar network	-4.413	< 0.001
	Occipital network	0.305	0.761

	Orbitofrontal network	-3.153	0.002
	Deep network	-3.208	0.002
	Deep network	-1.393	0.166
	Frontoparietal network	1.200	0.233
	Cerebellar network	-0.870	0.386
	Occipital network	2.998	0.003
Middle Assessed to Assessed	Orbitofrontal network	-3.089	0.002
Middle temporal network	Deep network	-4.767	< 0.001
	Deep network	-3.672	< 0.001
	Frontoparietal network	-4.370	< 0.001
	Occipital network	2.888	0.005
	Orbitofrontal network	-4.096	< 0.001
Cerebellar network	Deep network	-3.038	0.003
	Deep network	-4.133	< 0.001
	Frontoparietal network	-4.724	< 0.001
	Orbitofrontal network	1.291	0.199
Occipital network	Deep network	0.411	0.682
Occipital network	Deep network	1.806	0.073
	Frontoparietal network	-1.151	0.252
	Deep network	-1.071	0.286
Orbitofrontal network	Deep network	-2.727	0.007
	Frontoparietal network	-1.048	0.297
Doon notwork	Deep network	-1.640	0.104
Deep network	Frontoparietal network	-4.080	< 0.001
Deep network	Frontoparietal network	-1.421	0.158

Abbreviations: FCC, functional covariance connectivity; ESRD, end-stage renal disease; HCs, healthy controls; WM, white matter; FDR, false discovery rate.

$Supplementary\ Table\ 4.\ Between-group\ differences\ in\ WM\ functional\ network\ interactions$ between ESRD patients and HCs (FDR corrected)

GC pattern	Layer	WM functional network	<i>t</i> -value	<i>p</i> -value
		Corona radiate network → Frontal network	-2.389	0.018
	Middle → Superficial	Corona radiate network \rightarrow Pre/post-central network	-3.404	0.001
		Corona radiate network → Cerebellar network	-3.469	0.001
	Superficial → Deep	Middle temporal network → Deep network	-3.076	0.003
	Superficial → Middle	Middle demporal network → Corona radiate network		0.044
Excitatory		$\label{eq:middle} \mbox{Middle temporal network} \rightarrow \mbox{Cerebellar} \\ \mbox{network}$	-3.196	0.002
	Superficial → Superficial	Middle temporal network \rightarrow Occipital network	-2.835	0.005
		$\label{eq:middle} \mbox{Middle temporal network} \rightarrow \mbox{Orbitofrontal} \\ \mbox{network}$	-1.985	0.049
		Middle temporal network \rightarrow Pre/post-central network	-3.716	< 0.001
		Frontoparietal network → Occipital network	-2.140	0.034
	Deep → Superficial	Deep network → Occipital network	-2.119	0.036
		$\begin{aligned} & \text{Pre/post-central network} \rightarrow \text{Middle} \\ & \text{temporal network} \end{aligned}$	2.283	0.024
	Superficial → Superficial	Orbitofrontal network \rightarrow Frontal network	2.136	0.035
T 1 1 2		Orbitofrontal network \rightarrow Pre/post-central network	2.171	0.032
Inhibitory		Cerebellar network → Middle temporal network	2.017	0.046
	Superficial → Deep	Orbitofrontal network → Deep network	3.302	0.001
	Superficial → Middle	$Pre/post-central\ network \rightarrow Corona\ radiate$ network	2.127	0.035

Abbreviations: GC, Granger causality; ESRD, end-stage renal disease; HCs, healthy controls; WM, white matter; FDR, false discovery rate.

Supplementary Table 5. The In/Out strength in tri-layer WM functional networks between ESRD patients and HCs (FDR corrected)

In/Out strength	HCs	ESRD	<i>t</i> -value	<i>p</i> -value
Superficial				
In strength	2.71(2.01)	1.97(1.45)	-2.490	0.014*
Out strength	2.73(2.00)	1.97(1.48)	-2.557	0.012*
Middle				
In strength	2.89(1.72)	1.35(1.10)	-2.385	0.028*
Out strength	4.09(2.16)	2.66(1.44)	-1.743	0.098
Deep				
In strength	2.62(1.88)	2.15(1.70)	-1.985	0.049*
Out strength	2.27(1.48)	1.84(1.58)	-1.014	0.315

Note.—data are mean (standard deviation). Abbreviations: ESRD, end-stage renal disease; HCs, healthy controls; WM, white matter; FDR, false discovery rate. * Indicates a statistically significant difference after FDR corrected.

Supplementary Table 6. The classification results based on WM functional network metrics (LOOCV cross-validation)

Classifier	Accuracy	Specificity	Sensitivity	AUC
K-Nearest Neighbor	89.06%	90.00%	88.46%	0.940
Logistic Regression	79.69%	74.00%	83.33%	0.858
Support Vector Machine	89.06%	80.00%	94.87%	0.919
Adaptive Boost	90.62%	82.00%	96.15%	0.916
Random Forest	95.31%	88.00%	99.00%	0.982
Categorical Naive Bayes	78.91%	74.00%	82.05%	0.832

Abbreviations: LOOCV = leave-one-out; CI = confidence interval; AUC = Area under curve