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Figure S1. Top-view SEM images of PEAI-treated perovskite film.



DEACI — 1mg/mL
—2mg/mL
- 3D-PVK
>
i_ii LD phases 3D-PVK
= /
g "‘—n-—AAp
QL
£
3] 10 15 20 25

2 theta (degree)

Figure S2. XRD spectra of DEACI-treated samples at different concentrations.
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Figure S3. XRD spectra of PEAI-treated samples.
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Figure S4. The ESP distributions of PEA and DEA.
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Figure S5. XRD spectra of DEAPb(I, Cl); and DEAPDI; films.
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Figure S6. XPS spectra of I 3d for control and target films.
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Figure S7. PLQY distribution of control and target films.
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Figure S8. The Tauc plots of the (a) control and (b) target perovskite films.
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Figure S9. The EQE spectra perovskite devices. The integrated current density and the
scanned Jsc are within 5% difference which is within the accuracy confidence of the

measurements.



(a)

1.20
__ 115}
=
8 i
2 0‘17\;'5\\"'&
110} S
. L:/g’/‘.
1.05
Control Target
C
( ) 86 T
-
84t ' I P
\ Saa @ o L) “0 @
\‘\ *%a o
~82} \ B I/W/
= ?a °\\ {
8ot s e \
g N L 9;0 > 3»
78}t £ /
76}
Control Target

Figure S10. Statistics of (a) Voc, (b) Jsc, (¢) FF and (d) PCE of the control and target

devices
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Figure S11. The UPS spectra of control and target films.
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Figure S12. The potential images from KPFM of control and target films.
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Figure S13. Efficiency statistics of unencapsulated devices under continuous

illumination of one sun in air.



Table S1. Summary of the photovoltaic parameters of the PSCs devices. SC and FB

stand for short circuit and forward bias, respectively.

Devices Scan Jsc Voc FF PCE
direction (mA/cm?) ) (%) (%)
Control devices
Champion SC-FB 26.0 1.11 79.5 22.9
FB-SC 26.0 1.11 81.9 23.6
Target devices
Champion SC-FB 26.0 1.18 82.4 253

FB-SC 26.0 1.18 84.5 259



Table S2. Photovoltaic parameters of PSCs based on 1D perovskites, comparing recent

literature and this work.

1D perovskite Device structure PCE (%) Year Ref.
BnPbl; ITO/PTAA/PVK/Cso/BCP/Ag 2017 2021 !
MesSPbls ITO/grﬁé/Tng;pim' 2207 2021 2
FA(CBA)PbI, IT()OI\;E(ZSXE%/;T;' 2195 2021 °?
EMIMPbI; 1o/ ng&f?ﬁgﬂ;mf’ iro- 214 2021 ¢
DEAECPbI; o/ g‘;(/féfls/i/;pim' 290 2021 3
TMIMPb; o/ g‘;(/féfls/iﬁpim' 270 2021 °©
TPPbl ITO/PTAA/PVK/Cso/BCP/Ag 2200 2022 7
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ABTPbI; ITo/ Me%ifg gjgﬁmvs}dte/ 2327 2023 2
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TAPbI; ITo/ gﬁ;f:})siﬁpim' 2387 2023 1
TEAPbI; FTo/ C'Ti(%?igfzfmpm' 2441 2023 16
PFAPbLCI FTo/ gﬁﬁi}gﬁp iro- 2490 2023
TBMAPbI; FTo/ C'T(;(;Z/GSTTS/;\;IQS@”' 2509 2023 '8
ChPbL ITO/MeO-2PACz: Me- 403 0m4 1

4PACz/PVK/PCs1BM/BCP/Ag




ITO/NiOx/Me-4PACz/PVK

20
TZCPbl; /PCBM/BCP/Ag 2528 2024
ITO/MeO-
MTIm)PbI 23. 2024 2!
(MTIm)PbI3 2PACZ/PVK/PCsiBM/BCP/Ag 380 20
MDAPbI6 ITO/PTAA/PVK/ Cso/ BCP/ Cu 23.80 2024 %2
ITO/SnO2/PVSK/spiro- 23
EMIMPbI; OMCTAD/Au 2475 2024
SMORPbI; ITO/SAM/ PVK /Cs0/BCP/Ag 25.60 2025 %
PYFPbI; ITO/MeO-2PACz/PVK/Ceo/BCP/Ag 2539 2025 %
FTO/SnO2/PVSK/spiro- 2%
M-NMAPbI; OMeTAD/Au 2551 2025
(QA)Pbly ITO/SnO2/PVK/spiro-OMeTAD/Au ~ 24.80 2025 %7
TESI-Pbl> ITO/SnO2/PVK/spiro-OMeTAD/Ag ~ 25.03 2025 28
DEAPbl;  FTONiOx/SAMsPVK/Cq/BCP/Cu 2590 2025 LS
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