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1 Supplementary Text
1.1 Fine-graining, Information and Learning

In the main text we introduced, Eq. 1, the relation

p(yelny) = we;p(ye),

for the distribution of some individual trait y (such as income) at two levels of (spatial) aggre-
gation. Here, we show more explicitly why the weights, wy ;, should be interpreted in terms of
information and how their specification is a process of information gain, i.e., of learning.

In the main text, we used the interpretation of Eq. 1 as Bayes’ relation to write the weights

as

s = Plyeng) _ p(yelny) 1)

p(ye) p(ny)  p(ye)

Taking the logarithm, we obtain

y 1
log p(ye|n;) = log we; + log p(ye) = log Plye J)) + log p(ve), (S2)

p(ye) p(n;
where we identify the log w,; term as the specific mutual information (before averaging) be-

tween the states y, and n;. Moreover, note that the specific Shannon entropies are h(y,|n;) =

—log p(ye|n;) and h(y,) = —log p(y,) (22). We can then write

h(ye) = h(ye|n;) + i(yeln;), (S3)

which states that the (higher) entropy of the city wide income distribution is equal to the lower
entropy of the same distribution in each neighborhood plus the mutual information that such
neighborhood has on the city wide distribution. This statement is usually presented in averaged
form (where all three quantities are provably positive (22)), by tracing under the joint p(y,, ;)

as,

H(y) = H(y|n) + I(y;n). (S4)
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Here, (logw) = I(y;n) and is given by

(yg,n])
(logw) = Zp (Y, ny) log ————"~ o(00) pn) (S5)

Thus, the operation of disaggregating the structure of the system as a whole to smaller
spatial units requires in general the addition of information (or "structure”) to that present in
the averaged distribution across the city. What this means is that there is, in general, higher
complexity of system spatial configurations at the more disaggregated level. In turn, the advent
of this local complexity is associated with the breaking of spatial symmetries of the system (37,
38). As a consequence, we conclude that the process by which (spatial) complexity arises is
driven by selection associated with successive levels of symmetry breaking. Intuitively, this
is why local models of neighborhood structure, typical of social scientific approaches, must
contain more information than coarse-grained models, based on statistical physics approaches.

This raises an interesting question of how to do the opposite, namely how to obtain the
aggregated distribution from that of the smaller spatial pieces. This operation is known in sta-
tistical physics as ’coarse-graining” (39) and is at the basis of some of the most important results
for the behavior of systems undergoing critical phenomena, via the application of renormaliza-
tion group techniques (39). These methods perform successive levels of spatial (and sometimes
temporal) averaging to obtain the large-scale (averaged) behavior of a physical system. For
most systems, this procedure either leads to the uninteresting outcomes of an increasingly uni-
form or an increasingly noisy system (it is said that the system flows towards zero or infinite
temperature, respectively, under coarse-graining). But at phase transitions - critical phenomena
when the global properties of the system change coherently, such as a liquid-vapor transition
- the operations of coarsening lead to systems that are spatially self-similar, regardless of a
number of details of the microscopic physics (irrelevant operators) (39). In our case, cities

obtained as averages over neighborhoods, emerge as a kind of self-similar structure out of this



kind of procedure, Fig. 1C, as they are characterized by the same simple statistics although with
parameters that themselves depend on city size (scaling) (1/7,18).
To see what is entailed by coarse-graining in terms of the framework developed in this

section we simply write the inverse of Eq. 1 as

p(ye) = we;p(yeln;), (S6)

and by taking logarithms and comparing to Eq. 1 we readily identify

plyeny) o, PWe) p(ng)

p(ye) p(n;) poony) W) (S7)

wy; = — log
Thus, we write
h(yelng) = h(ye) — i(yeln;) — H(yln) = H(y) — I(y;n), (S8)

where the last relation is obtained under averaging, as above, under the joint distribution. As
might have been expected, we see that the operation of coarse-graining entails the removal of
information present at the neighborhood level to obtain a spatially averaged distribution. This
corresponds to the common intuition that averaging can mask important or revealing detail.
How much information is ”thrown away” in this process is quantified on average by the mutual
information between units of analysis at different levels of aggregation and the variable(s) of
interest. Thus, the mutual information I(y;n) is a city-wide average measure of the strength
of neighborhood effects. It should be clear that such transformation maps potentially very
complex patterns, such as those of Fig. 1A, to relatively simple ones, such as those of Fig.
1C. The formal treatment of this operation and its more common uses in statistical physics will
be presented elsewhere. It should nevertheless be clear that such coarse-graining operations
typically lead to simpler aggregate statistics and can, under certain specific conditions, result
in Zipfian scale-free phenomena in ways that generalize approaches to criticality in physical

systems (5).



1.2 Average Household Income & Information Maps for US Urban Areas

In the main text we illustrated the diversity of income across American urban areas using a map
of New York City, because we thought that this would be the best known case to most readers.
Figures S1 - S5 and Figures S11 - S15 show similar maps (average household income by block
group and the (log w;) for each neighborhood) for other large US metropolitan areas, including

a larger map of New York City.

1.3 The Statistics of Urban Income and Urban Scaling Relations

In Figure 1C, we showed that the frequency distribution of average household income in New
York City (MSA) is visually well described by a lognormal distribution (green line). Here
we demonstrate that this is a general property of all US metropolitan areas and show how the
two parameters of the distribution (the mean logarithmic income and its logarithmic variance)
express scaling relations with city size.

Figures S6 and S7 present the results of comparing the goodness of fit of the lognormal
distribution to that of other alternative distributions using the Bayesian Information Criterion (2)
for each city. In the vast majority of cities (83%) the lognormal is the best distribution. Many
other plausible distributions manifestly fail to even occasionally fit the data. In a small number
of cases, we find reasonable fits to the data using an exponential Weibull distribution, but there
has not been much work providing a theoretical justification for such a distribution in other
studies of income distributions (for a notable exception see reference (3)). The lognormal,
on the other hand, is well known to fit well the body of distributions of income (/, 4) and
is generally explained in terms of models of multiplicative random growth. The extreme 1%
wealthiest part of the frequency distribution has been known to deviate from the lognormal
pattern at the national level but, as discussed above, this regime of urban wealth is not well

represented in the ACS survey data.



The lognormal is characterized by two parameters, the mean of the log-household income
for each city and its variance. Figure S8 shows the correlation between the log-mean income
vs household size for each city (MSA). This relationship is a well known urban scaling rela-
tion (17,18), y(N) = yoN?, characterizing many urban systems around the world, which share
the same scaling approximate exponent 9 > 0. Figure S9 shows the scaling plot for the log-
variance. We see that the existence of such a scaling relation is less clear, in the sense that the
relationship is noisier, and may be consistent with no variation of this parameter with city size,
as has been e.g. observed for violent crime in Ref. (5).

A fuller exposition and analysis of these results will be presented elsewhere. Nevertheless,
we would like to emphasize that the present results, in conjunction to other recent research
involving crime (5), the degree of cell phone urban social networks (6) and mobility (7) point
to a general form of the statistics of urban indicators (a sort of statistical universality), that may

also hold not only for contemporary cities, but throughout history (8, 9).

1.4 Information, the Theil Inequality Index and the Aggregation Problem

The Theil Index as a Kulback-Leibler divergence
This section expands on the more succinct arguments given in the main text about Theil’s
T index of inequality and its connection to information theoretic quantities. Theil explicitly

seeked to connect Shannon’s measure of entropy, /7,

H(p) = plye)log 1/p(ye), (89)

where p(y,) is a (discrete) population density such that >, p(y,) = 1, to issues of economic
inequality in a human population.

To do this, he defined an income share density, ¢(y,). This follows from the standard density,
p(ye), which is the share of the population in some group indexed by ¢, as q(y,) = %p(yg),

where y = >, yep(y,) is the average income per capita in the population.
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The Theil index 7' then compares the income shares of individuals to the case where income

is distributed uniformly, that is y; = y; for all ¢, j, in terms of a difference of entropies as

N
1 Yk, Yk

T(y) = — = log =, (S10)

=k g

where the sum is over individuals in a population of size N. Taking the same population to be

aggregated into groups indexed by ¢, we can write the same expression more elegantly as

T(y) = XZ: q(ye) log ;E‘Z; = Dlq(y)|lp(v)], (S11)

which is the Kulback-Leibler divergence between the density of income and population shares
in the groups. This expression reveals the informational character of the Theil index and leads
to the interpretation of 7' as the information error (measured in bits) between describing the
distribution of income via assuming it is proportional to the population in each group, that is to
the case of absolute equality.

We can also now compare and contrast the approach to patterning of distributions across
scales in the main paper, and Theil’s measure of inequality. While the former explores how a
distribution (of income or of any other quantity) changes across (spatial) scales of aggregation,
revealing a pattern of sorting or selection, the latter compares two different types of distribution
at the same scale, manifesting how two different quantities, say income and population, are
distributed into population groups in the same way or otherwise.

Because both approaches rely on the comparison of distributions via information quantities,
they share some common properties, to which we now turn.

The Aggregation Problem, the Theil Index and Information across Scales

The definition of the Theil index, discussed above, was originally motivated by informa-
tion theory and its properties under multilevel set (dis)aggregation. This means more specifi-
cally that if we successively decompose a population into sets, and sets of sets etc, in a non-

overlapping hierarchical way, we can compute inequality sequentially.
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To see this explicitly, consider the fact that we can write a total distribution of income p(yy),

using the same distribution within groups n;, p(y¢|n;) as,

= p(yelni)p(ny), (S12)

where p(n;) is the probability of an individual in the population belonging to set i. These
sets can be spatial, such as neighborhoods, but they need not be; in his book Theil uses the
example of racial groups. If we define N; as the population of set n; then p(n;) = N;/N
and g; = >, yep(ye|n;) is the average income in set n,;. It follows immediately that we can
decompose the income share distribution ¢(y,) is the same way, so that
o) = 30 Eptwdn)p(n) = 3 Epluins) Lon) = 3 alwln)a(n). (S13)
i i=1 7* i

Introducing this expression into the informational definition for 7', and noting that

q(yelni) o, 400

lo a(ye) =lo y—f = log % + log y—f = log og , (S14)
p(Ye) Y Ui y p(yelns) p(ni)
we obtain the hierarchical decomposition,
. q(yeln;)
T@y) =) aq(n) log + 3 a(n) Y alyelni) log X T
7 7 V4 v
)+ Z n)T(yln,), (S15)

where the first term is the inequality across sets and the second term is the set average of the
inequality index within each subgroup.

Naturally, the patterning functions developed in the main text have an analogous aggregation
property. To see this consider two levels of (dis)aggregation, from a general (metropolitan)
population into sets n;, which are then further decomposed into sets m;. This implies two

successive levels of selection, which we can write as

P(Yelni, my) = wiy;p(yelni) = wiy; wep(ye) = wy;;p(ye) (S16)
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with

pyelni) — pye,ni)

W = = , (S17)
“T ply)  p(na)p(ye)
(= pyelni,my) — plye,mylni) — plye, my, ni) (S18)

plyelna) — pOmylna)p(yelni) — plmy, na)p(yelna)
This also implies the identity log wy; ; = log U)Zij + log wy;, which will reappear below under av-

eraging. Now, using the definition of the conditional densities, we can then write the following

quantities
g, m,;
(ogut) = Dol m ) = 3 pludnemy g T (519
= Zp(ydni,mj) [logM + log p(yg\ni)] , (S20)
; p(yln;) p(y)

which can then be averaged over the two-set level decomposition, to give the multi-information

I(y;n,m) Zp ni, m;)(log wy;) Zp (ns)p(m;|ng) ZD ylni; m;)|p(y))
= Zp ni) D(p(y|ni)llp(y))
+ZP ni, m;) D(p(y|ni, m;)||p(y[ni))

= Zp n;)(logw;) + Zp nl,m])<logw”> (S21)

]

=1I(y;n)+ Zp(m) (y; m|n;),

i
which shows how the information in the pattern is contained in the two levels of selection and
how each level contributes according to the respective set probabilities.

Thus, in our view, information theoretic quantities are the most natural way to express dif-
ferences in distribution of either income in a population (revealing issues of inequality) or its
patterning across scales (sorting, or selection). A family of quantities, sharing analogous prop-

erties under (dis)aggregation into sets can in this way be created that reveals how populations
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are structures across quantities and scales in a systematic quantitative manner, measured in units

of information.

1.5 Spatial Selection, Neighborhood Effects and Income Polarization

In this section, we briefly discuss how our approach and results relate to relevant work in sociol-
ogy and economics on neighborhood effects and the spatial characteristics of household income
distributions.

Differences between neighborhoods are perhaps the clearest manifestation of the spatial
heterogeneity of urban areas, that is, the uneven and complex distribution of individuals and
households within cities (/0). The question of how the composition of a population affects
the sorting of individuals by place of residence, what sociologist term “residential selection”,
has been a long-standing question for sociology. In its earliest terms, somewhat simplistic by
today’s standards, Park and Burgess (//) proposed a explanation for spatial urban patterning
in direct analogy to darwinian selection, an approach known as urban ecology. Thinking in
sociology has come a long way since then, but echoes of these first attempts to conceptualize
the issue remain even as a new literature on neighborhood effects has emerged with a strong
empirical base, especially in Chicago (12—14).

The importance of neighborhood selection has been emphasized in this literature because
of its consequences or “contextual effects”. This refers to the way in which individuals’ social,
economic and health outcomes are affected by the physical and socioeconomic characteristics
of their residential communities (/5—18). Income differentials are a major determinant of spa-
tial residential selection and the associated “neighborhood effects” as higher-income individuals
tend to want to live next to other higher-income individuals while low-income individuals may
have fewer choices, increasingly tied to residing next to other poor households (/9), see also

Fig. 2B. This residential selection is often associated with changes in real estate market valu-
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ations and tax revenue bases which together have been proposed as a means to sustain cycles
of increasing neighborhood polarization (/7). While many of these patterns and their tempo-
ral change are being reveled by new data and detailed studies at the neighborhood level, much
remains to be done toward a general understanding of the social and economic causes and conse-
quences of spatial selection in cities. This requires a development of socioeconomic theories of
spatial selection that, neighborhood by neighborhood, can account for the differential amounts
of spatial sorting quantified here.

As the evidence and concern mounts for growing income inequality at the national level
(21-23), so it has for the growing income segregation in US urban areas (20, 24-28). Residential
selection on the basis of income is related to income inequality but also to the ability and
willingness of individuals to act on preferences regarding who they reside next to. However,
measuring income segregation in urban areas is not a straightforward matter. The workhorse
metric for income inequality, the Gini Index, suffers from several deficiencies when measured
at a spatially disaggregated level, such as neighborhoods. For one thing, the Gini is sensitive
to the number of income categories used when constructing the measure. The typical manner
in which the index is constructed assumes that the spatial units of observation are similar in
population size (but U.S. census tracts or block groups differ in their population size). But
most importantly, the Gini Index cannot distinguish between the effects of an overall increase
in income inequality and increasing income differentiation inside neighborhoods (17, 29). As
an alternative approach, a variety of studies have turned to entropy-based measures as these
are able to capture how individuals or households are distributed across various income groups
within neighborhoods (77, 30—33). But while purely justified on statistical grounds, the use of
entropy measures to capture income inequality across and within neighborhoods is not typically
grounded on a firm theoretical framework.

In this light, we emphasize that the measures introduced here are not new ad-hoc socio-
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economic indices but follow inevitably from treating neighborhood heterogeneity as an instance
of spatial selection defined as the relationship between income distributions at two different spa-
tial levels of analysis. Nevertheless, we note that our informational measures of spatial selection
are close relatives of the Rank-Order Information Theory Index (/7), which compares the vari-
ation in household incomes within neighborhoods (census tracts) to the variation in household
incomes in the metropolitan area in which the tracts are embedded. Although formally and
quantitatively different, our results agree qualitatively with those of (/7), in that we also find
increasing income segregation between neighborhoods in US metropolitan areas over the last
twenty years. This phenomenon is often referred to as neighborhood polarization, and is very
visible e.g. in Detroit, Figs. S4, S14, St. Louis, S5, S15, where poor and rich section of the city
are clearly physically separated almost as a dipole. In other cities, the overall spatial pattern of
rich and poor neighborhoods is often more mixed spatially.

The mathematical account of selection developed here thus allows us to express neighbor-
hood heterogeneity in terms of the mathematics of evolution and information, thereby connect-
ing the diversity of patterns in urban neighborhoods to the study of of how structure, complexity

and diversity arise in other complex systems (35, 36).
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2 Supplementary Tables

Table S1: Top 10 US Metropolitan Areas by /(y;n)

City Mutual Information Total Population

Dallas, TX 0.697 6,154,265

New York City, NY 0.689 18,700,715

New Orleans, LA 0.685 1,105,020
Reno, NV 0.681 416,860
College Station, TX 0.680 219,058
Morgantown, WV 0.677 125,691

Memphis, TN 0.671 1,301,248
Midland, TX 0.667 132,103
Fresno, CA 0.666 908,830

San Antonio, TX 0.665 2,057,782

Table S2: Lowest 10 US Metropolitan Areas by /(y; n)

City Mutual Information Total Population
Mount Vernon, WA 0.378 115,231
Hinesville, GA 0.372 76,996
Palm Coast, FL 0.362 91,806
Wausau, WI 0.357 132,644
Glens Falls, NY 0.328 128,795
Dover, DE 0.327 156,918
Coeur d’Alene, ID 0.323 134,851
Mankato, MN 0.319 94,990
Sheboygan, WI 0.315 115,328
St. George, UT 0.310 134,033
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Table S3: Top 10 US Micropolitan Areas by /(y; n)

City Mutual Information Total Population
Lamesa, TX 0.774 13,853
Beeville, TX 0.763 31,896
Bay City, TX 0.723 36,647
Hobbs, NM 0.710 62,503
Edwards, CO 0.690 57,832
Wauchula, FL. 0.680 27,521

Greenville, MS 0.651 52,455
Arcadia, FL. 0.649 34,557
Clewiston, FL 0.648 39,030
Clovis, NM 0.645 46,924

Table S4: Lowest 10 US Micropolitan Areas by /(y; n)

City Mutual Information Total Population
Sayre, PA 0.260 62,415
Huntingdon, PA 0.252 45,830
Cadillac, MI 0.250 47,615
Bradford, PA 0.245 43,853
DeRidder, LA 0.241 35,000
Platteville, WI 0.235 50,716
Menomonie, WI 0.230 43,365
Miami, OK 0.229 32,193
Natchitoches, LA 0.222 39,274
Baraboo, WI 0.206 60,957

Supplementary Figures
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Figure S16: The (logw;) for different neighborhoods obtained from random sampling of the
metropolitan income distribution, c. f. Fig. 2A. We clearly observe that most observations of
the strength of local selection that are not very small (> 0.03) cannot have arisen by chance.

32



References and Notes

1.

10.

11.

12.

E. W. Montroll, M. F. Shlesinger, On 1/f noise and other distributions with long tails. Proc.
Natl. Acad. Sci. U.S.A. 79, 3380-3383 (1982).

. E. Wit, E. van den Heuvel, J. W. Romeijn, All models are wrong...: an introduction to

model uncertainty. Statistica Neerlandica 66, 217-236 (2012).

. S. K. Singh, G. S. Maddala, A function for size distribution of incomes. Econometrica 44,

963-970 (1976).

J. Aitchinson, J. A. Brown, The Lognormal Distribution (Cambridge Univ. Press, Cam-
bridge, 1957).

. A. Gomez-Lievano, H. Youn, L. M. A. Bettencourt, The Statistics of Urban Scaling

and Their Connection to Zip’s Law. PLoS ONE 7(7), e40393 (2012) doi:10.1371/
journal.pone.0040393.

M. Schlidpfer et al., The scaling of human interactions with city size. J. R. Soc. Interface
11, 20130789 (2014) do1:10.1098/rsif.2013.0789.

P. Wang et al., Understanding Road Usage Patterns in Urban Areas. Scientific Reports 2,
Article number: 1001 (2012) doi:10.1038/srep01001.

. S. G. Ortman, A. H. F. Cabaniss, J. O. Sturm, L. M. A. Bettencourt, The Pre-History

of Urban Scaling. PLoS ONE 9(2), 87902 (2014) doi:10.1371/journal.pone.
0087902.

. S. G. Ortman et al., Settlement scaling and increasing returns in an ancient society. Sci.

Adv. 1, 1400066 (2015) doi1:10.1126/sciadv.1400066.

D. S. Massey, N. A. Denton, The dimensions of residential segregation. Social Forces 67,
281-315 (1988).

R. Park, E. W. Burgess, R. D. McKenzie, The City (Univ. of Chicago Press, Chicago, 1925).

W. J. Wilson, The Truly Disadvantaged: The Inner City, the Underclass, and Public Policy
(Univ. of Chicago Press, Chicago, 1987).

33



13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. R. J. Sampson, P. Sharkey, Neighborhood Selection and the Social Reproduction of Con-
centrated Racial Inequality. Demography 45, 1-29 (2008).

E. E. Bruch, How population structure shapes neighborhood segregation. Amer. J. Soc. 119,
1221-1278 (2014).

C. E. Ross, J. Mirowksy, S. Pribesh, Powerlessness and the amplification of threat: neigh-
borhood disadvantage, disorder, and mistrust, Ame. Soc. Rev. 66, 443-478 (2001).

R. J. Sampson, J. D. Morenoff, T. Gannon-Rowley, Assessing neighborhood effects: social

processes and new directions in research, Ann. Rev. Soc. 28, 443-478 (2002).

S. F. Reardon, K. Bischoff, Income inequality and income segregation, Am. J. Soc. 116,
1092-1153 (2011).

J. Ludwig et al., Neighborhood effects on the long-term well-being of low-income adults,
Science 337, 1505-1510 (2012).

S. F. Reardon, D. OSullivan, Measures of spatial segregation, Soc. Metho. 34, 121-162
(2004).

S. F. Reardon, B. Bischoff, ”Growth in the Residential Segregation of Families by Income,
1970-2009” (Russell Sage Foundation, Providence, RI, 2011).

T. Piketty, E. Saez, Income inequality in the United States, 1913-1998, Qua. J. Econ. 118,
1-39 (2003).

T. Piketty, Capital in the 21st Century (Belknap Press, Cambridge, MA, 2014).
T. Piketty, E. Saez, Inequality in the long run, Science 344, 838-843 (2014).

D. S. Massey, M. J. Fischer, The geography of inequality in the United States, 1950-2000.
Brookings-Wharton Papers on Urban Affairs, 1-40 (2003).

T. Watson, Inequality and the measurement of residential segregation by income in Ameri-
can neighborhoods. Rev. Inc. Wealth 55, 820-844 (2009).

D. H. Weinberg, ”U.S. neighborhood income inequality in the 2005-2009 period” (Ameri-
can Community Survey Reports, U.S. Census Bureau, Washington, D.C. 2011).

34



27

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

. E. Kneebone, C. Nadeau, A. Berube, “The re-emergence of concentrated poverty:
metropolitan trends in the 2000s” (Metropolitan Policy Program, Brookings Institution,
Washington, D.C., 2011).

R. Fry, P. Taylor, The Rise of Residential Segregation by Income (Pew Research Center,
Washington, D.C., 2012).

A. Walks, Income Inequality and Polarization in Canada’s Cities: An Examination and New

Form of Measurement (Research Paper 227, Cities Centre, University of Toronto, 2013).

B. Harsman, J. M. Quigley, The spatial segregation of ethnic and demographic groups:

comparative evidence from Stockholm and San Francisco. J. Urb. Econ. 37, 1-16 (1995).

M. J. Fischer, The relative importance of income and race in determining residential out-
comes in U.S. urban areas 1970-2000. Urban Affairs Review 38, 669-696 (2003).

E. Talen, Neighborhood-level social diversity: insights from Chicago. J. Ame. Plan. Asso.
72, 431-446 (2006).

G. C. Galster, J. C. Booza, J. M. Cutsinger, Income diversity within neighborhoods and
very low-income families. Cityscape 10, 257-300 (2008).

S. A. Frank, Foundations of Social Evolution (Princeton Univ. Press, Princeton, 1998).

J. T. Bonner, The Evolution of Complexity by Means of Natural Selection (Princeton Univ.
Press, Princeton, 1988).

J. K. Parrish, L. Edelstein-Keshet, Complexity, pattern, and evolutionary trade-offs in ani-
mal aggregation. Science 284, 99-101 (1999).

A. M. Turing, The Chemical Basis of Morphogenesis. Philosophical Transactions of the
Royal Society of London B 237, 37-72 (1952).

P. W. Anderson, More is Different. Science 177, 393-396 (1972).

N. Goldenfeld, ”Lectures On Phase Transitions And The Renormalization Group” (Fron-
tiers in Physics, Addison-Wesley, Boston, MA, 1992).

35



