Supplementary Data.
Detailed calculations of Linear & Logarithmic model.
For completeness, this appendix provides a detailed description of the calculations used in the proposed linear & logarithmic model. The key equations leading to the results discussed in Section 4.4.2 Linear & Logarithmic Model, offering further insight into the analytical approach adopted in this work.
The first step is to derive the model with respect to n to determine the optimal number of sub-pulses. To simplify this differentiation, each term will first be derived separately, and an alternative notation will also be introduced.
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For the sigmoid function, we will also introduce a variable change to simplify calculations.
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In this way, and using the derivative of the sigmoid function:
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If we now differentiate the function term by term, and using the notation where  denotes the derivative of C respect to n:
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If we substitute the derivatives with their values and group in terms of  and the term independent of the sigmoid function:
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If we now also express  in terms of :
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Here, the key observation is that, in the derivative , the variables  and  always appear as the ratio , which we denoted as . This indicates that the condition for an optimal depth is governed solely by  rather than by the individual values of  and . Therefore, the equation can be rewritten in terms of 
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Furthermore, we can see that the optimal point will depend on the value  which is responsible for smoothing the transition between the linear and logarithmic functions. The adjustment made to obtain the value of  was based on minimizing the mean squared error between the experimental depth values and those predicted by the model for different values of :
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In the following figure, we can observe how the MSE varies with , as well as the location of the minimum:
[image: ]
Fig. 1 Evolution of the Mean Squared Error (MSE) as a function of the value of k, showing the optimal value that minimizes the error.
Here, we can see that for low values of , where the transition is very abrupt, the error is higher. However, as the function is gradually smoothed, the error stabilizes, with the minimum occurring at . For our model, we have used a value of . However, the MSE is difficult to interpret, so we have used the MAPE (Mean Absolute Percentage Error) metric. This metric measures the average relative error between the model’s predictions and the actual values, and is expressed as a percentage:
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Using this metric, we obtain a MAPE value of . It is important to note that this error is relatively low, specially considering that this is the first time a model of this kind has been proposed and the values where the depth is zero were excluded due to the issues they introduce in the denominator.
Finally, using the value of  and the transcendental equation, we can numerically solve the derivative to obtain the optimal sub-pulse fluence value. To solve this, we have used centered finite differences with a step size of .
The obtained value for the optimal sub-pulse fluence is . This value can be expressed as a function of the threshold fluence to obtain a value: . Therefore, for this model, we have obtained an optimal sub-pulse fluence value that lies between the value recovered in the simulation and the logarithmic model.
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