

Supplementary Materials for

Transition from global stability to multiple attractors in microcosms

This PDF file includes:

Methods

Supplementary Figs. 1 to 38

11 **Methods**

12

13 Bacterial isolates, media and culturing conditions

14 We constructed the library of 54 bacterial species using isolates from soil samples. This library is
15 phylogenetically diverse, with isolates coming from 4 different phyla: Proteobacteria, Firmicutes,
16 Bacteroidota and Actinobacteriota.

17

18 In the case of low interaction strength (low nutrients concentration) conditions, experimental
19 communities were cultured in Base Medium (BM): 1gL⁻¹ yeast extract and 1 gL⁻¹ soytone from
20 Becton Dickinson, 10 mM sodium phosphate, 0.1 mM CaCl₂, 2 mM MgCl₂, 4mgL⁻¹ NiSO₄ and 50
21 mgL⁻¹ MnCl₂, pH adjusted to 6.5. For the high interaction strength (high nutrients concentration)
22 condition, we used BM supplemented with 20 gL⁻¹ glucose and 16 gL⁻¹ urea. The strong pH buffer
23 media is the high nutrient media (normal buffer) with extra added sodium phosphate (pH buffer):
24 100 mM sodium phosphate, 20 gL⁻¹ glucose, 16 gL⁻¹ urea, 1gL⁻¹ yeast extract, 1 gL⁻¹ soytone, 0.1
25 mM CaCl₂, 2 mM MgCl₂, 4mgL⁻¹ NiSO₄, 50 mgL⁻¹ MnCl₂, pH adjusted to 6.5.

26

27 All media were filter sterilized using Bottle Top Filtration Units (VWR). All of the chemicals were
28 purchased from Sigma–Aldrich unless otherwise stated. Both monocultures and communities of the
29 bacterial isolates were grown in 96-deepwell plates (Deepwell plate 96/1000µL; Eppendorf) covered
30 with AeraSeal adhesive sealing films (Excel Scientific). The incubation temperature was 30 °C for
31 all communities. The deepwell plates were shaken at 900 r.p.m. on Titramax shakers (Heidolph).

32

33 Community assembly experiment protocol

34 Prior to the community assembly experiments, each of the 54 isolated bacterial strains was first
35 cultured individually in 300 µL of Base Medium and allowed to grow under stable conditions for
36 approximately 24 hours. To construct the initial communities composed of *S* species (*S* =
37 6,12,24), we systematically prepared many (usually 8, at least 6, at most 32) distinct initial species
38 compositions through a multi-step dilution and mixing process. Specifically, equal volumes of the
39 pre-grown monocultures were thoroughly mixed, and this homogenized mixture was diluted in
40 sterile phosphate-buffered saline (PBS) to achieve a 100-fold dilution. Subsequently, 10 µL of this
41 diluted suspension were separately combined with 10 µL of each of the eight dominant species'
42 undiluted cultures to get widely different initial species abundances, each with 1:99 species ratio.
43 These preparations were then subjected to an additional 100-fold dilution in sterile PBS, after which
44 30 µL of the diluted suspensions were inoculated into 300 µL of fresh culture medium. This
45 procedure generated 8 replicate communities with precisely controlled initial species abundance
46 profiles, which were subsequently incubated at 30°C for 24 hours to initiate growth.

47

48 Daily dilutions with controlled dispersal

49 For each microbial community, we performed seven 24-hour transfer cycles combining dilution and
50 dispersal. For most of our assembled communities with dilution rate 1000, each cycle began with a
51 1000-fold dilution of the community, followed by addition of a dispersal inoculum (a 200,000-fold
52 diluted, uniformly mixed suspension of all species). For the communities with dilution rate 100,000,
53 each cycle began with a 100,000-fold dilution of the community, with similar following protocols.
54 All liquid handling was automated using a 96-channel electronic pipette (Viaflo 96, Integra

55 Biosciences). Each mixing process in 200 μ L medium is operated by Viaflo 96 with five 100 μ L
56 pipette/mix cycles), and in 300 μ L medium is operated by Viaflo 96 with 150 μ L pipette/mix cycles.

57

58 Biomass and pH measurements

59 The total biomass of the microbial communities was measured using a Tecan microplate reader. At
60 each growth cycle, 100 μ L of homogenized culture was transferred to a flat bottom Falcon® 96-well
61 Clear Microplate, and the optical density (OD 600nm) was measured to assess culture turbidity,
62 which correlates linearly with total biomass within a specific range. Blank controls containing an
63 equal volume of sterile PBS were included for baseline calibration. For pH measurement, the
64 community pH was determined using a Thermo Scientific Orion Star A211 benchtop pH meter. At
65 the end of the seventh transfer cycle, 100 μ L of homogenized culture was aliquoted into a 96-well
66 PCR plate, and the pH of each community was measured sequentially.

67

68 DNA extraction and 16S rRNA sequencing and data analysis

69 To monitor the dynamics of the microbial communities, we measured community composition via
70 16S ribosomal RNA (rRNA) amplicon sequencing. For community time series profiling,
71 representative communities were sampled across seven daily cycles, while the remaining
72 communities were sampled at the seventh cycle for steady-state characterization. The DNA extraction
73 was performed with the Zymo Research Quick-DNA Fungal/Bacterial 96 Kit following the protocol
74 provided by the manufacturer. The extracted DNA was used for 16S rRNA gene amplicon
75 sequencing targeting the V4–V5 region. Library preparation and Illumina sequencing (NovaSeq
76 Reagent Kit, 500 cycles) were performed by Novogene. Sequencing covered the V4–V5 region,
77 generating 250 bp reads in both the forward and reverse directions. We used the R package DADA2
78 to obtain the amplicon sequence variants (ASVs) as described by Callahan et al. Taxonomic
79 identities were assigned to the ASVs by using SILVA (version 138) as a reference database. To
80 address intragenomic 16S rRNA variation, we merged correlated ASVs ($r > 0.99$, co-occurring in all
81 cultures with identical ratio) into combined ASVs representing single species.

82

83 Based on the ASV reads number for each bacterial isolate culture, we classified the 54 bacterial
84 isolates into distinct species based on the similarity of their genomic abundance profiles. Isolate
85 pairs showing near-identical abundance patterns (Pearson correlation > 0.95) were considered to
86 belong to the same species. This approach identified 33 distinct species among the isolates, with
87 their genus-level distribution shown in Fig. S3. Phylogenetic tree analysis was performed using
88 MAFFT for sequence alignment, IQ-TREE for maximum-likelihood tree construction, and iTOL
89 for visualization.

90

91 Based on the ASV-isolate mapping, we analyzed species abundance profiles across all assembled
92 communities. To minimize noise from non-target taxa, we focused on abundances of ASVs
93 corresponding exclusively to each community's predefined species pool, which aligned closely with
94 raw compositional data in most cases. Discrepant communities showing large differences between
95 raw and ideal abundances were retained in raw data. The species relative abundance is calculated
96 by the ASV reads number normalized to sum to 1 per sample. The absolute abundance is normalized
97 by the total community biomass (OD).

98

99 Numerical methods100 We modeled the long-term dynamics of ecological communities using the well-known generalized
101 Lotka-Volterra (gLV) model, modified to include dispersal from a species pool:

102
$$\frac{dN_i}{dt} = r_i N_i \cdot \left(1 - \sum_{j=1}^S \alpha_{ij} N_j \right) + D \quad i = 1, 2, \dots, S$$

103 where N_i is the abundance of species i (normalized to its carrying capacity), α_{ij} is the interaction
104 strength that captures how strongly species j inhibits species i (with self-regulation $\alpha_{ii} = 1$), and
105 D is the dispersal rate of each of the S species. For simplicity and without qualitatively changing
106 our results, we considered the same growth rate $r_i = 1$ and the same carrying capacity $K_i = 1$ for
107 all species. All simulations used the 4th-order Runge-Kutta (RK4) method on Matlab to numerically
108 solve the gLV equations (with an integration step of 0.1). The total simulation time is set to be 1500
109 to guarantee that the stable community have reached steady states.111 Definition of stable and fluctuating dynamics *in silico*112 To differentiate between stable and fluctuating communities, we computed the maximum coefficient
113 of variation of N_i between $t=1400$ and $t=1500$, corresponding to species abundances during the
114 final 1000 steps. We define communities with this average coefficient of variation higher (lower)
115 than 10^{-3} as fluctuating (stable) communities.117 Definition of multistability *in silico*118 For each community, we simulated many different initial species abundances until they reached
119 steady state. Since the simulation time is long enough for most of the communities to be steady, we
120 took the endpoint representing the potential stable states. For all the stable replicates in a single
121 community, we classified replicate communities as belonging to the same stable state when the
122 maximum absolute difference in all species abundances was below a strict threshold. The threshold
123 is set to be 0.05, and it is robustly effective in the range $[10^{-3}, 10^{-1}]$. Specifically, two replicates
124 1 and 2 were considered compositionally identical if:

125
$$\max_i |N_{i,1} - N_{i,2}| < \text{threshold}$$

126 where $N_{i,1}$ and $N_{i,2}$ represent the abundance of species i for replicates 1 and 2, $i = 1, 2, \dots, S$.
127 This criterion was applied iteratively to establish new state profiles from unclassified replicates and
128 assign subsequent replicates to existing states when all species-wise differences satisfied the
129 threshold condition. If the community's stable replicates exhibit more than one stable state, the
130 community is classified as having multiple stable states. If the community exhibit only one stable
131 state and without fluctuating dynamics in every replicate, it is classified as globally stable
132 community.

133

134 Definition of multiple attractors *in silico*135 Communities can reach different dynamical attractors if given different initial species abundances.
136 A community is classified as having multiple attractors, if different species abundances can lead to
137 at least two different stable or fluctuating attractors—identified by the criteria of stability and
138 multistability. Here, all fluctuating states in a fixed community were treated collectively as one
139 fluctuating state in our analysis. Notably, it is possible to distinguish between distinct fluctuating

140 attractors by comparing species composition and abundances during a period of time (such as during
141 the final 1000 steps), since the time variance has been diminished. However, since it is inherently
142 challenging to rigorously distinguish between fluctuating dynamics and is also hard to correlate with
143 the experiment, we did not attempt to further subclassify these dynamic regimes.

144

145 Theoretical prediction for the stability phase diagram

146 The analytical boundary between the stable phase (II) and unstable phase (III) was derived in Bunin
147 2017. For equal carrying capacities, it is shown that the boundary lies at the average standing species
148 richness $S^* = S/2$, when $\sigma \equiv \sqrt{S} \text{ std}(\alpha_{ij})/(1 - \langle \alpha_{ij} \rangle) = \sqrt{2}$.

149

150 Simulation of phase diagram

151 To test the transition from stable phase to multiple attractors, we employed numerical simulations
152 to systematically examine how two key ecological parameters shape the dynamic stability of
153 microbial communities: (1) the average species interaction strength ($\langle \alpha_{ij} \rangle$) and (2) the size of
154 the species pool (S). A definition of 20×20 or 30×30 pixels was used for each phase diagram,
155 linearly segmenting the parameter space in the ranges $\langle \alpha_{ij} \rangle \in [0, 1]$ and $S \in [1, 60]$ or even
156 larger. In each phase diagram, each pixel shows the average result for 256 different communities
157 with randomly sampled interaction matrix. For each community with species pool size S and
158 interaction strength $\langle \alpha_{ij} \rangle$, we tested 100 initial species abundances, including conditions where
159 one species dominated ($N_i = 0.1$) while the others had small initial abundances ($N_j = 10^{-4}$), as
160 well as conditions where the initial abundances of each species were randomly drawn from a
161 uniform distribution spanning $[0, 1]$. These different initial abundances led to different outcomes of
162 community assembly: some community converged to a globally stable equilibrium where all initial
163 abundances reached the same final state, while others produced persistent fluctuations or alternative
164 states. Communities with alternative states could exhibit multistability or multiple dynamical
165 attractors that include both stable and fluctuating dynamics (Figure S1).

166

167 In these simulations, globally stable communities refer to the communities that all our tested initial
168 abundances converge to a single stable state. Multi-stable communities refer to the communities
169 with multiple stable states, regardless of whether it could fluctuate under some initial species
170 abundances. Pure multi-stable communities refer to the communities exhibiting multiple stable
171 states and without persistent fluctuating dynamics in all our tested initial conditions. Fluctuation
172 communities refer to the communities that could go to fluctuation under certain initial species
173 abundances. Pure fluctuation communities refer to the communities that fluctuate in all our tested
174 initial species abundances and showing no stable states. Fluc-stable communities refer to the
175 communities that could either converge to stable state or fluctuate depending on initial species
176 abundances. Multi-attractor communities refer to the communities with multiple dynamical
177 attractors, such as multiple stable states or having both stable and fluctuating states.

178

179 Definition of stable and fluctuating experimental communities

180 We classified communities as either stable or fluctuating based on temporal biomass variability
181 during the final experimental period (days 5–7). For each replicate community, we calculated the
182 standard deviation (σ) of its optical density (OD) measurements across this 3-day window.
183 Communities were designated as either stable ($\sigma \leq 0.15$) or fluctuating ($\sigma > 0.15$). For the

184 communities with all the replicate being stable, we further analyzed the stable states number and
185 whether it exhibits global stability, functional bistability, compositional multistability or hybrid
186 multistability.

187

188 Quantification of stable states number in experiment

189 To determine the number of stable states for each community, we performed hierarchical clustering
190 (average linkage method) on the absolute abundance profiles of eight replicate samples at steady
191 state, using Bray-Curtis dissimilarity as the distance metric. A conservative clustering threshold was
192 applied to account for technical variations (e.g., sequencing errors and replicate variability). The
193 number of clusters identified at this threshold represented the observed multiplicity of stable states
194 for a given community. In the main text, we set the threshold to be 0.45. We also tested higher or
195 lower threshold in supplementary figures.

196

197 The Bray-Curtis dissimilarity—a widely adopted β -diversity measure in microbial ecology—
198 quantifies compositional differences between samples while being independent of total abundance.
199 It is defined as:

200

$$BC\ distance = 1 - \frac{\sum_i \min(N_{i1}, N_{i2})}{(\sum_i N_{i1} + \sum_i N_{i2})/2}$$

201 where N_{i1} and N_{i2} represent the abundance of species i in Sample 1 and Sample 2, respectively.
202 The index ranges from 0 to 1, where 0 represents complete compositional overlap and identical
203 species abundances, 1 represents no shared species and completely distinct communities.

204

205 Classification of four community types in experiment

206 To quantitatively classify the four stability types, we established a two-step classification system
207 based on biomass variation and compositional dissimilarity. First, communities were categorized as
208 functionally bistable if their maximum biomass difference (OD) among replicates exceeded 0.5,
209 otherwise they were classified as having a single functional state. Second, compositional
210 multistability was determined by calculating the maximum Bray-Curtis dissimilarity of species
211 absolute abundances (derived from sequencing data and biomass measurements) within one
212 functional regime: for functionally uniform communities, we used all pairwise comparisons
213 between replicates, while for functionally bistable communities we separately analyzed high- and
214 low-biomass groups and then selected the larger maximum dissimilarity value. Applying a universal
215 compositional threshold of 0.45, communities were further classified as compositionally multistable
216 or hybrid multistable if dissimilarity ≥ 0.45 , and globally stable or functionally bistable if
217 dissimilarity < 0.45 .

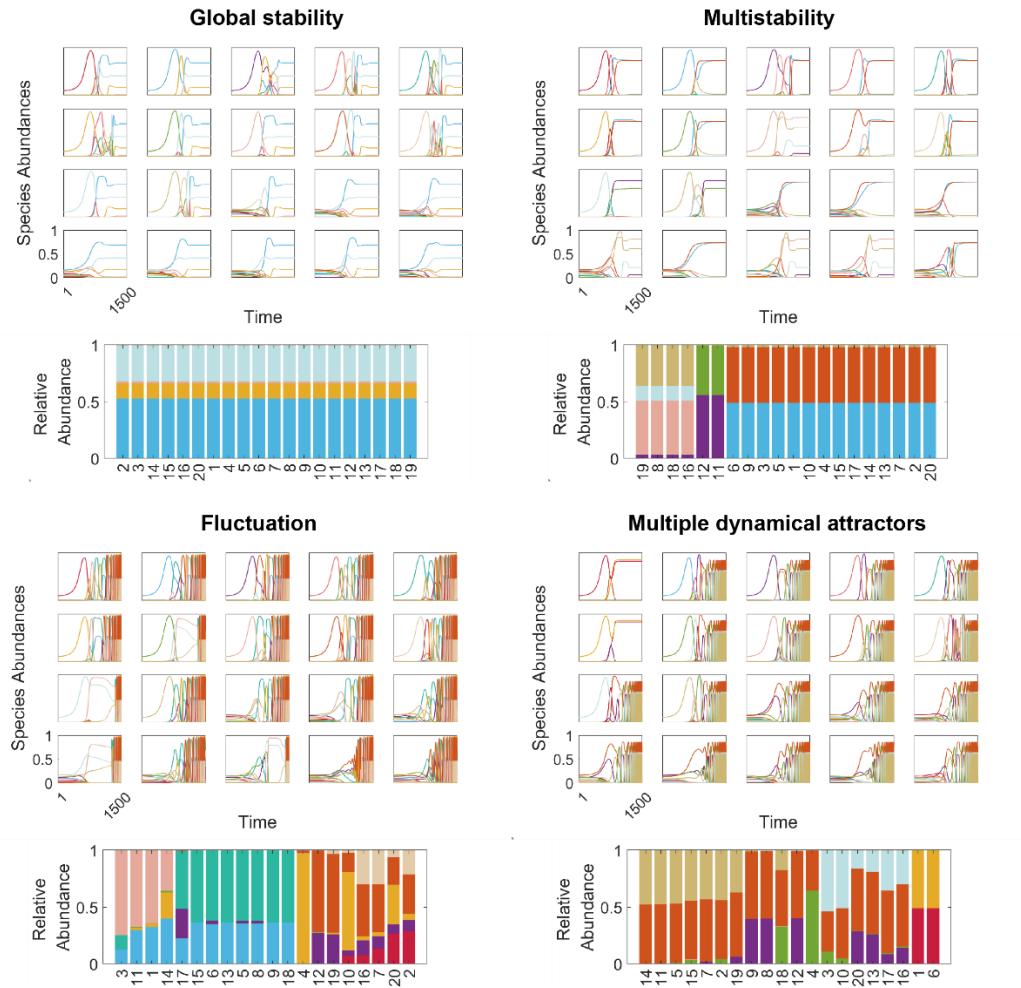
218

219 We also tested Bray-Curtis dissimilarity of species relative abundances (threshold 0.4) and other
220 normalized dissimilarity metrics, such as correlation distance of absolute abundances (threshold
221 0.25), the classification remains robust. Moreover, the classification scheme proved robust across
222 different dilution factors, demonstrating its reliability for characterizing microbial community
223 stability patterns.

224

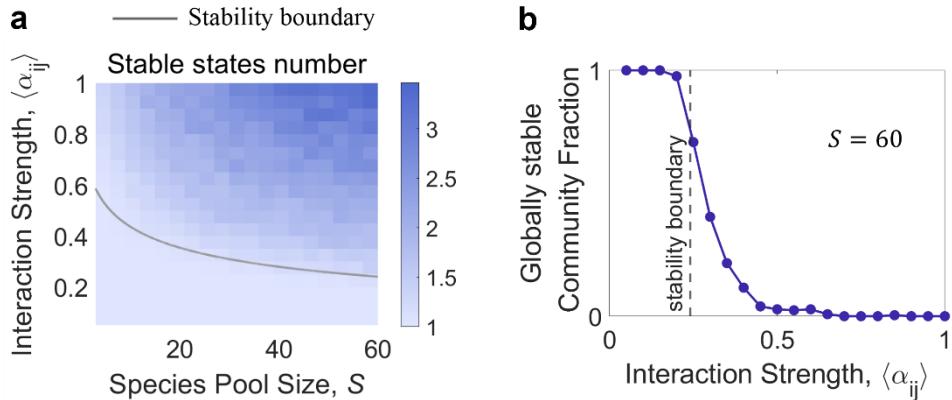
225 The introduction of eLV (environment-coupled Lotka-Volterra) model

226 To explicitly integrate low-dimensional global environmental coupling together with the


intrinsically high-dimensional interspecies interaction network, we developed an environment-coupled Lotka-Volterra (eLV) model (Figure S29). This model incorporates a global environmental variable and associated dynamical equation the classical gLV model that has one equation for each of the S species. The global environmental variable is meant to capture the dominant way in which species interact through their shared environment (in this case the pH, although other environmental variables such as oxygen availability may have similar dynamics). We assume that the global environmental variable e can be modified by species in the community and modifies the growth rate of each species. Finally, the global environmental variable exhibits self-regulation, relaxing toward equilibrium at a rate δ , with typical variation set by linear and cubic restoring terms. The self-regulation corresponds to the tendency of the communities to return to a pH of 6.5 during daily dilution in the experiment. The eLV model is therefore a minimal modification of the gLV model that incorporates a single global environmental variable where each community is defined by both the species interaction matrix and the species-environment interactions.

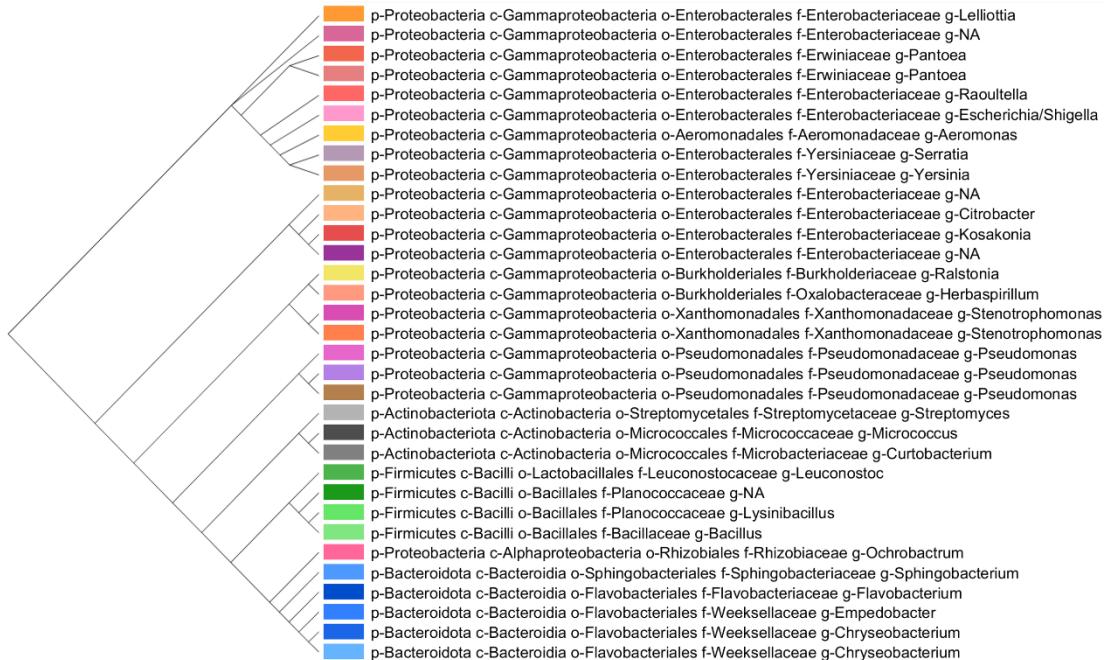
241 Characterization of multistability and community type in the eLV model

To characterize the eLV model, we first partitioned the environmental variable e into three zones: acidic zone: $e < -0.2$; alkaline zone: $e > 0.2$; neutral zone: $|e| \leq 0.2$, which is based on our simulation result. The environmental self-regulation factor δ is set to be 0.1. The environmental feedback on species growth g is sampled from uniform distribution [-1,1]. By increasing the environment modification strength $\langle |k| \rangle$, we found that the bimodal distribution of single species e value emerged when $\langle |k| \rangle$ is around $0.3 * \delta$ and the range of e value is around [-0.2, 0.2] (Figure S30). Therefore, we set -0.2 and 0.2 as separating points for the zones of environmental variable.

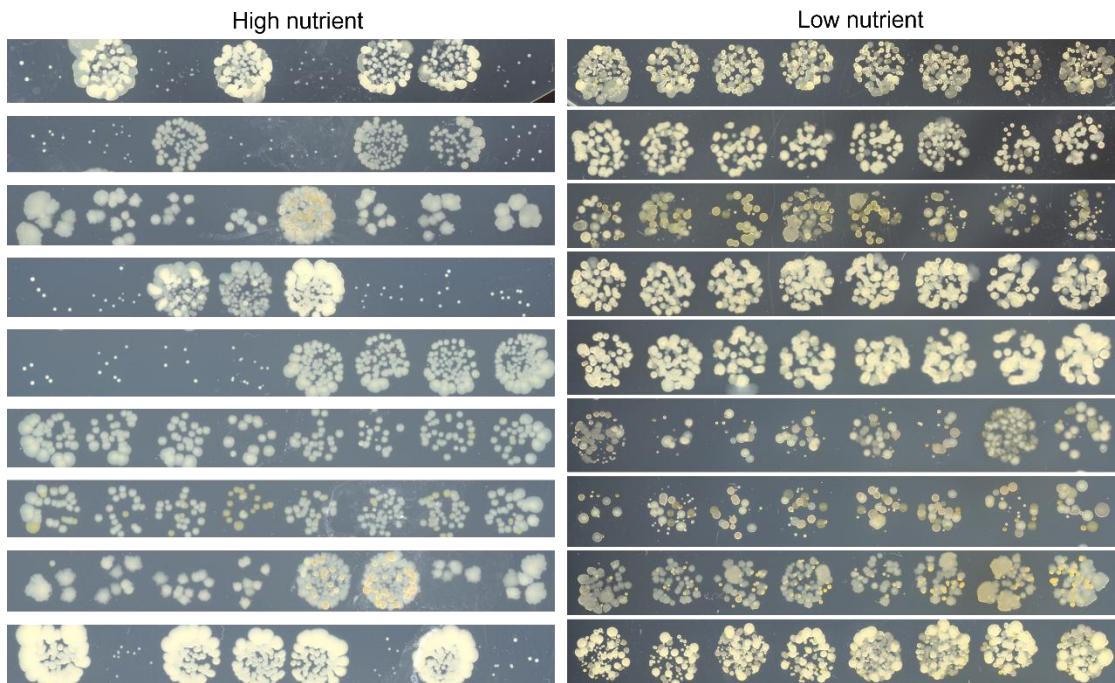

To further study the multistability in eLV model, we generated multiple time series from various initial conditions for randomly sampled communities and analyzed the differences in species abundances and environmental variables across all final stable states. To compare with the experiment, the species pool size in simulation is set to be 12. The environment feedback on species growth g_i is randomly sampled from uniform distribution $[-1, 1]$, which simulate how strong the environment affects the species growth rate. The environmental modification by species k_i is randomly sampled from uniform distribution $[-\beta, \beta]$, where β can be varied to investigate the role of environmental modification strength, where $\beta = 2 <|k_i|>$. Similar with the gLV model, we varied species interaction strength $<\alpha_{ij}>$ and the environment modification strength $<|k_i|>$, across 11 values each. The interaction strength $<\alpha_{ij}>$ was sampled linearly in $[0,1]$ (i.e., 0, 0.1, 0.2, ..., 1), while $<|k_i|>$ took logarithmically spaced values: 0, $0.1 * 2^{-6}$, $0.1 * 2^{-5}$, ..., $0.1 * 2^3$. For each parameter set, we sampled 500 different communities and simulated their dynamics using the eLV model. The eLV model was solved using the fourth-order Runge-Kutta algorithm, simulating 1500 time units (step size = 0.1) to ensure the system reached a steady state. Similar with the gLV simulation, the community in eLV model is classified to be stable if the standard deviation of species abundance $<0.001>$ in the last 100 time units, and vice versa. Based on the environmental variable partition(acidic zone: $e < -0.2$; alkaline zone: $e > 0.2$; neutral zone: $|e| \leq 0.2$), species abundance clustering analysis was used to identify compositional steady states within each zone, ultimately classifying the communities into four types: global stability (single zone, single steady state), functional bistability (two zones, single steady state each zone), compositional multistability (single zone, multiple steady states), hybrid multistability (multiple zones, multiple

271 steady states). Simulation results demonstrated that the eLV model could reproduce the four types
272 observed in experiment. Our simulations revealed that functional bistability arises under strong
273 environmental modification and intermediate species interaction strengths, compositional
274 multistability occurs under weak environmental modification and strong species interaction, and
275 hybrid multistability emerges under high species interaction combined with strong environmental
276 modification (Figure S32).

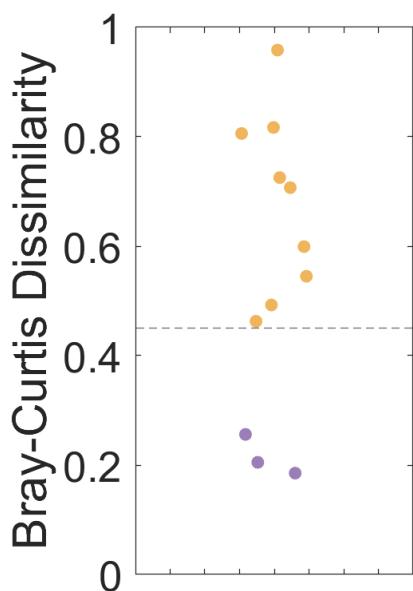
277


278 **Figure S1. Global stability, multistability, fluctuation and multi-attractors in gLV**
 279 **communities.** These four communities represent four types of outcomes: global stability,
 280 multistability, fluctuation and multiple dynamical attractors (fluctuation-stable). For each
 281 community, we plotted the abundances dynamics starting from 20 different initial species
 282 abundances, and clustered the final relative species abundances to compare different final dynamical
 283 states. In these figures, we tested 20 initial species abundances for each community which are all
 284 generated with species pool size 12 and mean interaction strength 1.

285


286

287 **Figure S2. gLV prediction of the stability transition.** (a) When the interaction strength and species
 288 pool size exceed a critical threshold, the system behavior undergoes a shift from global stability to
 289 the emergence of multiple stable states. The average states number can reach over three. (b) The
 290 communities with species pool size 60 exhibit a significant transition from global stability to
 291 multiple stable states. Compared to smaller species pool size (eg. $S=12$ in Fig. 1a and b), the
 292 interaction strength threshold for the transition ($\langle \alpha_{ij} \rangle = 0.24$) is smaller and the transition is
 sharper.



293

294 **Figure S3. The phylogenetic tree and taxonomy identity of 33 distinct species.** The identities
 295 have been inferred from the ASV of 16S rRNA sequencing samples taken from monocultures, which
 296 allow the classification of the 54 isolates (33 distinct species) down to the genus level. Colors are
 297 consistent with those in the main text and other supplementary figures. The phylogenetic tree
 298 analysis was performed using MAFFT for sequence alignment, IQ-TREE for maximum-likelihood
 299 tree construction, and iTOL for visualization. It shows relative phylogenetic distance between the
 300 33 distinct species. The library spans 4 different phyla, 12 different orders and 18 different
 301 families. Colors are assigned by phylum: Bacteroidota in blue, Firmicutes in green, Actinobacteriota
 302 in grey, and Proteobacteria in a range of warm tones (red, orange, brown, pink).

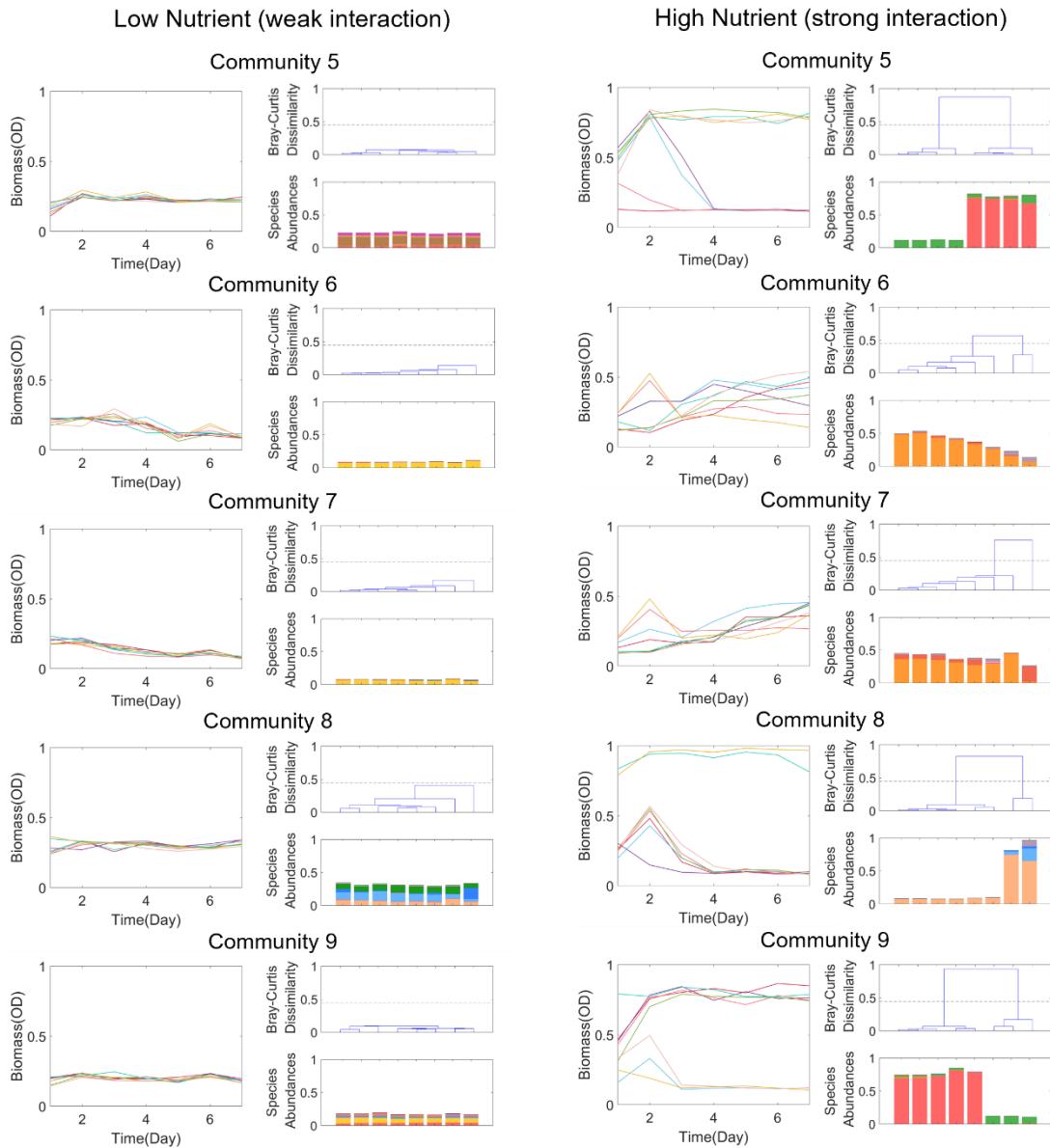
303
304 **Figure S4. The colony morphology of eight replicates in each of the nine communities in both**
305 **low and high nutrient conditions.** Each row shows the plating result of eight replicates of a single
306 community in either high or low nutrient conditions. The selected communities display obvious
307 multistability, with further species abundances information inferred by sequencing result shown in
308 Figure S6-S7. Here, each colony shows the species composition of 1 μ L diluted ($10^5 \times$) community
309 on the last day.

310

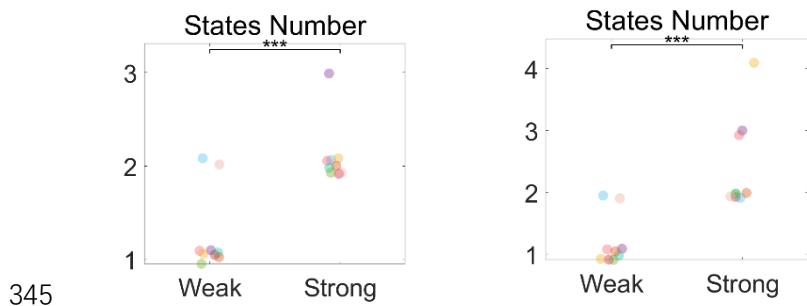
311 **Figure S5. Bray-Curtis dissimilarity of time series during last 3 days from 12 stable or**
 312 **fluctuating communities.** We chose 12 communities with same species pool but starting from
 313 different initial abundances, where three communities are stable and nine are fluctuating (Figure
 314 2). We calculated the maximum Bray-Curtis dissimilarity between species abundances of day5,
 315 day6, and day7, which shows clear distinction between stable and fluctuating communities. Based
 316 on this metric, we set the multistable threshold to be 0.45 to distinguish whether the final states of
 317 a single community shows global stability or multistability.

318

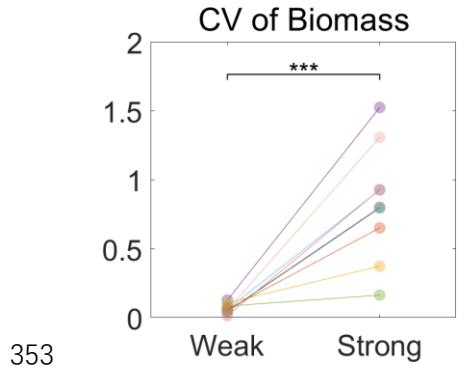
319


320

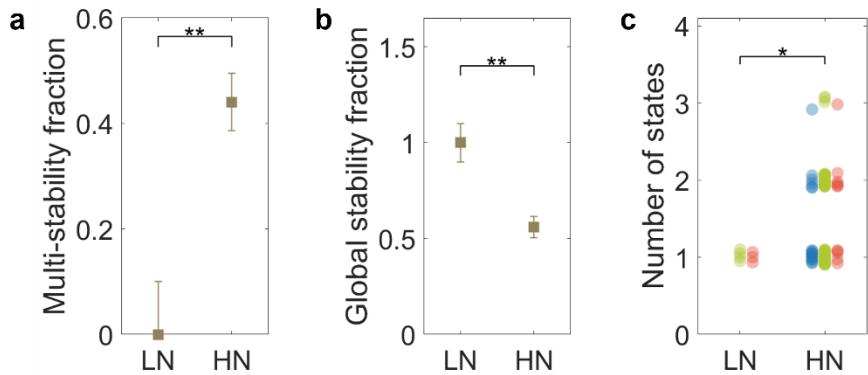
$$S = 24$$


322 **Figure S6. The transition from global stability to multistability in the nine experimental**
323 **communities ($S = 24$).** Four communities with species pool size 24 are shown here. Each row
324 represents one community with same species pool, cultured in both low and high nutrient
325 communities. As the biomass (OD) time series show, all communities have reached stable states on
326 day 7. The species abundances are calculated based on the community total biomass and 16S
327 sequencing result, where different colors represent different species (Figure S3). Based on Bray-
328 Curtis dissimilarity between each pair of replicates, we performed hierarchical clustering to
329 calculate the states number (cutoff threshold is 0.45, consistent with main text). All four
330 communities in low-nutrient (weak interaction) conditions reached a single stable state regardless
331 of their initial species abundances, whereas in high-nutrient conditions all the four communities
332 exhibited multiple stable states on the final day.

$$S = 12$$

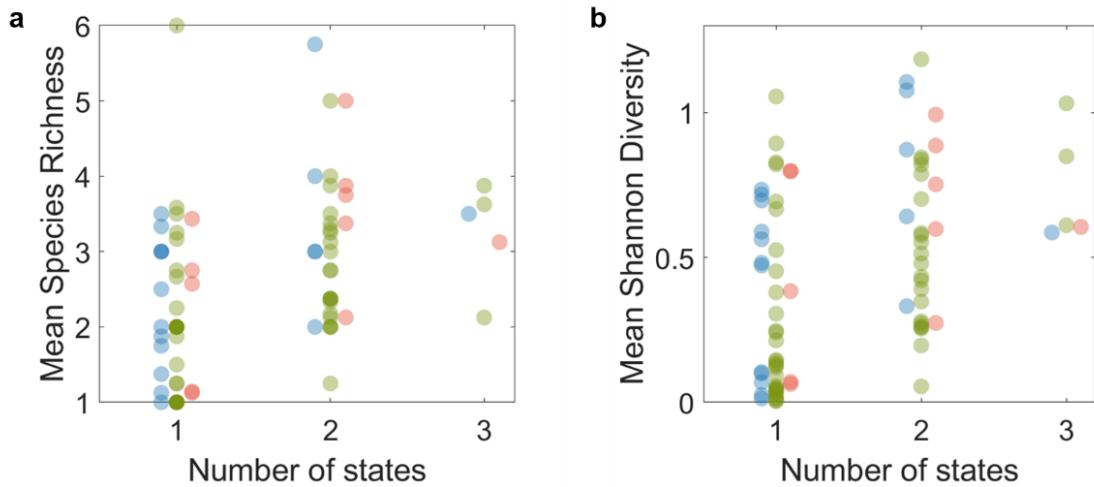

333

334 **Figure S7. The transition from global stability to multistability in the nine experimental**
 335 **communities ($S = 12$).** Five communities with species pool size 12 are shown here. Each row
 336 represents one community with same species pool, cultured in both low and high nutrient
 337 conditions. As the biomass (OD) time series show, all communities have reached stable states on
 338 day 7. The species abundances are calculated based on the community total biomass and 16S
 339 sequencing result, where different colors represent different species (Figure S3). Based on Bray-
 340 Curtis dissimilarity between each pair of replicates, we performed hierarchical clustering to
 341 calculate the states number (cutoff threshold is 0.45, consistent with main text). All five
 342 communities in low-nutrient (weak interaction) conditions reached a single stable state regardless
 343 of their initial species abundances, whereas in high-nutrient conditions all the five communities
 344 exhibited multiple stable states on the final day.

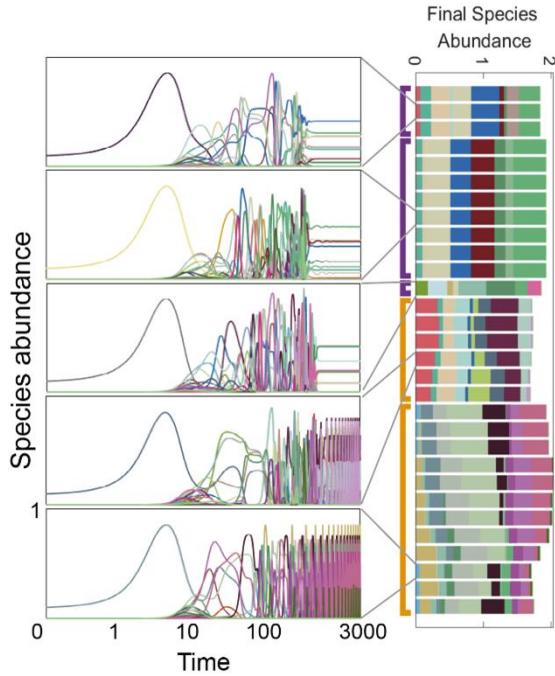


345

346 **Figure S8. States number of the nine communities under different threshold.** The states number
 347 is calculated based on the hierarchical clustering in species absolute abundances (normalized by
 348 biomass (OD)). In the main text, the cutoff threshold in the hierarchical clustering for different stable
 349 states is 0.45. If we lower the threshold to 0.3(left panel), two communities in low nutrient condition
 350 start to exhibit bi-stability, but the difference between weak and strong interaction remain significant.
 351 If we further lower the threshold to 0.25(right panel), communities in high nutrient conditions start
 352 to exhibit more stable states.


Figure S9. The variation in total biomass increased in the high-nutrient condition. The coefficient of variation (CV) of community biomass was calculated as the ratio of the standard deviation (σ) to the mean (μ) across all eight replicates with different initial species abundances. This metric quantifies the relative variability in biomass measurements, enabling comparison across samples with differing total biomass. The result shows that the CV in total biomass increased substantially across all nine communities as species interaction strength increases.

360


361 **Figure S10. Comparison of all communities in low and high nutrient.** Apart from the nine
 362 communities tested in both low and high nutrient conditions, we also have another 70 communities
 363 cultured in high nutrient conditions with sequencing results. Using the clustering methods and
 364 threshold in main text, we compared the 9 communities in low nutrient(LN) conditions and 79
 365 communities in high nutrient(HN) conditions. (a, b) We found that $0\pm10\%$ communities in low
 366 nutrient (weak interaction) exhibit multistability, while $44.0\pm5.4\%$ communities in high nutrient
 367 (strong interaction) exhibit multistability ($p = 0.0099$). (c) The states number in high nutrient ranges
 368 from one to three, which is a significant increase from only one state in weak species interaction (p
 369 = 0.0165).

370

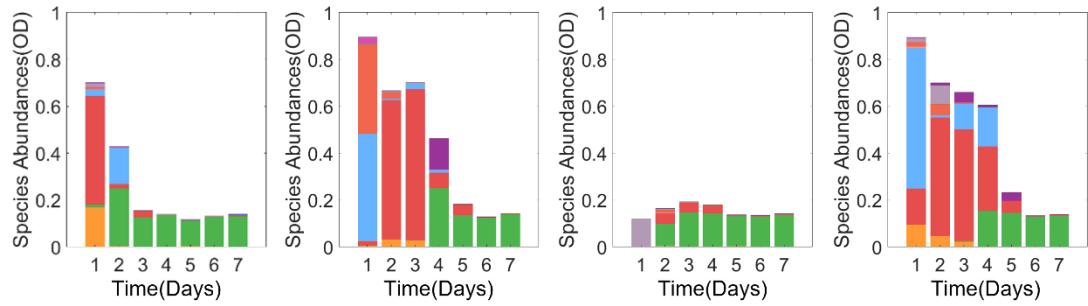
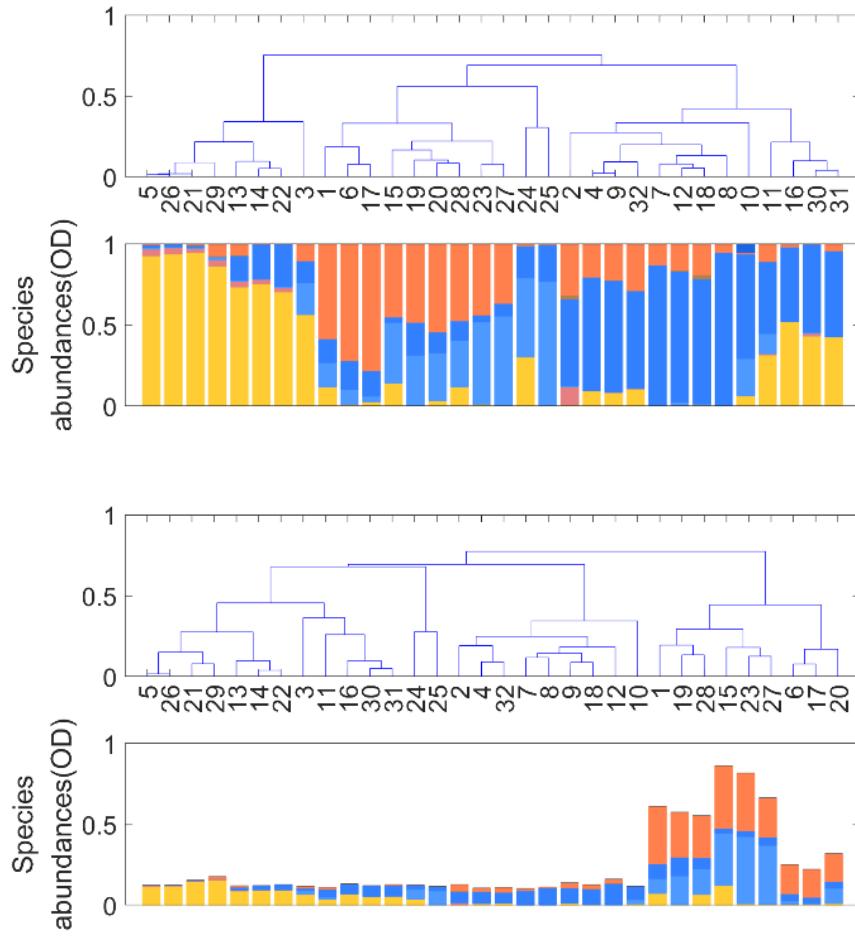

371

Figure S11. Positive correlation between the number of states and species richness. (a) The number of states is positively correlated with mean species richness under high nutrient (strong interaction) condition ($\text{corrcoef} = 0.4217$, $p = 6.4762\text{e-}05$). Here, the species richness is calculated by surviving species number (the number of species whose relative abundance is above survival threshold 0.01). The mean species richness for a community is the average species richness over all replicates for a single community. (b) We also calculated the Shannon diversity of species abundances, and the positive correlation is robust. The number of states is positively correlated with mean Shannon Diversity under high nutrient (strong interaction) condition ($\text{corrcoef} = 0.4328$, $p = 3.9331\text{e-}05$).

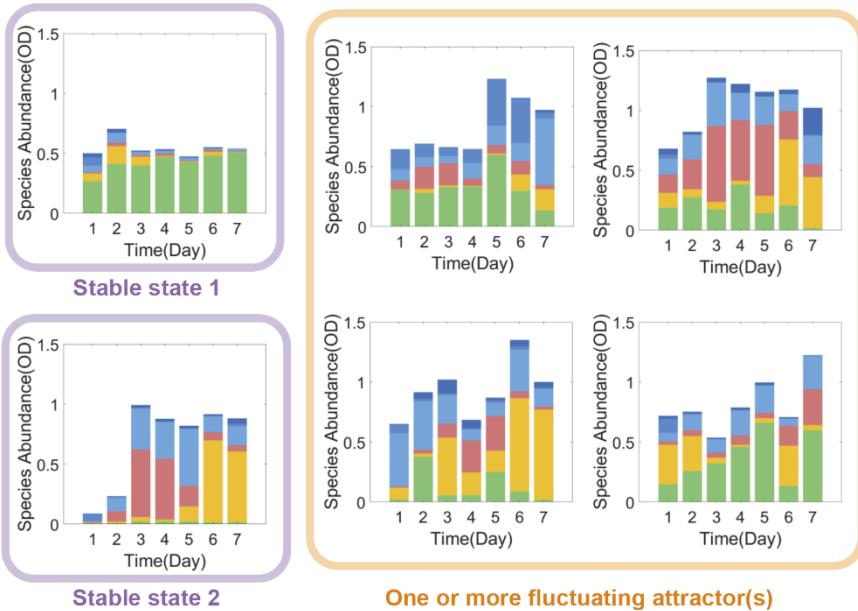
380


381 **Figure S12. Multiple dynamical attractors with large species pool size predicted by the gLV**
 382 **model.** When the species pool size is large, complex dynamical behaviors can be observed. For
 383 instance, in a gLV model with species pool size $S = 60$ and interaction strength $\alpha_{ij} = 0.8$,
 384 simulations were conducted with 30 different initial species abundances. By calculating the average
 385 species abundances over the last period of time series (1400–1500 time units), the mean final species
 386 abundances were obtained, as shown in the right panel histogram. Based on these results, the
 387 community attractors can be classified into three stable states and two fluctuating attractors. Since
 388 averaging reduces the large fluctuations caused by the temporal variations of the fluctuating
 389 attractors, the differences in species composition and abundances between the two types of
 390 fluctuating attractors become more obvious.

391

392

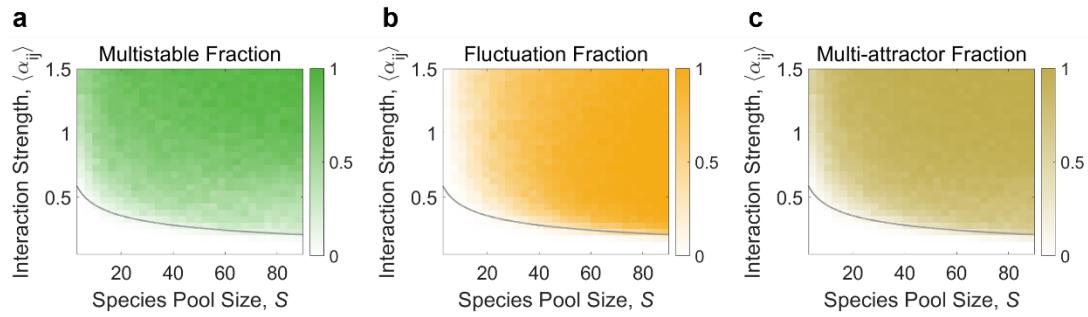
393 **Figure S13. Experimental communities showing time series of stable states.** This figure shows
 394 an example community exhibiting global stability. Four time series show the assembly dynamics of
 395 the same community from four different initial species abundances. In this community, many
 396 different initial abundances all converge to same biomass, species composition and abundance on
 the final day, showing global stability.



397

398

Figure S14. The final species abundances (day 7) of single community with multiple attractors.
 Community IV can either converge to multiple different stable states or fluctuate depending on initial species abundances (Figure 2a). Here we show the final day species abundances for all the 32 replicates in community IV that we tested in our experiments. The clustering clearly shows that there are at least four different clusters of attractors, among which some are stable, some are fluctuating (Figure 2a).


Community V ($S = 6$)

405

406

407 **Figure S15. Other example experimental communities for multiple attractors.** Community V
 408 with species pool size 6 is another experimental community showing multiple dynamical attractors.
 409 This community can either converge to stable states or fluctuate depending on initial species
 410 abundances. Among the six initial species abundances we tested in our experiment, two converge
 411 to stable states and four initial species abundances lead to fluctuating dynamics.

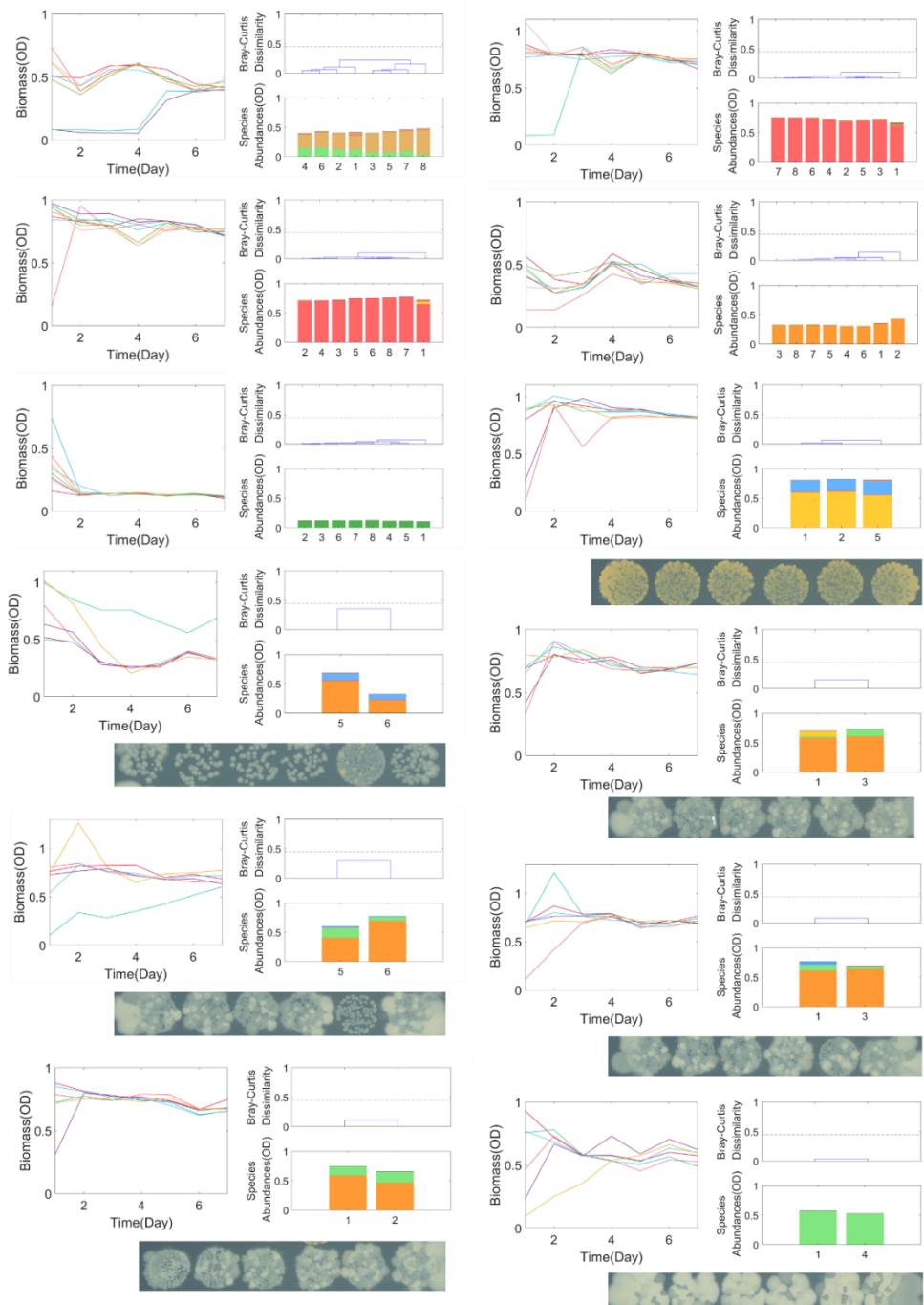
411

412 **Figure S16. Phase diagrams for the communities in gLV model.** (a) In our simulations, multi-
 413 stable communities refer to the communities with multiple stable states, regardless of whether it
 414 could fluctuate under some initial species abundances. Communities with multiple stable states
 415 increases as either species pool size or interaction strength increases. (b) Fluctuation communities
 416 refer to the communities that could go to fluctuation under certain initial species abundances.
 417 Communities with fluctuating attractors increases as either species pool size or interaction strength
 418 increases. (c) Multi-attractor communities refer to the communities with multiple dynamical
 419 attractors, such as multiple stable states or having both stable and fluctuating states.

420

421

422


423

424

425

Figure S17. Comparison between phase diagrams of gLV communities with different α_{ij} distributions. (a) The phase diagrams for gLV model, with α_{ij} randomly sampled from uniform distribution. (b) The phase diagrams with α_{ij} randomly sampled from Gaussian distribution ($std(\alpha_{ij}) = \langle \alpha_{ij} \rangle / \sqrt{3}$). (c) The difference between the fractions of two distributions, indicating that the results are similar across different distributions.

$S = 6$

426

427

428

429

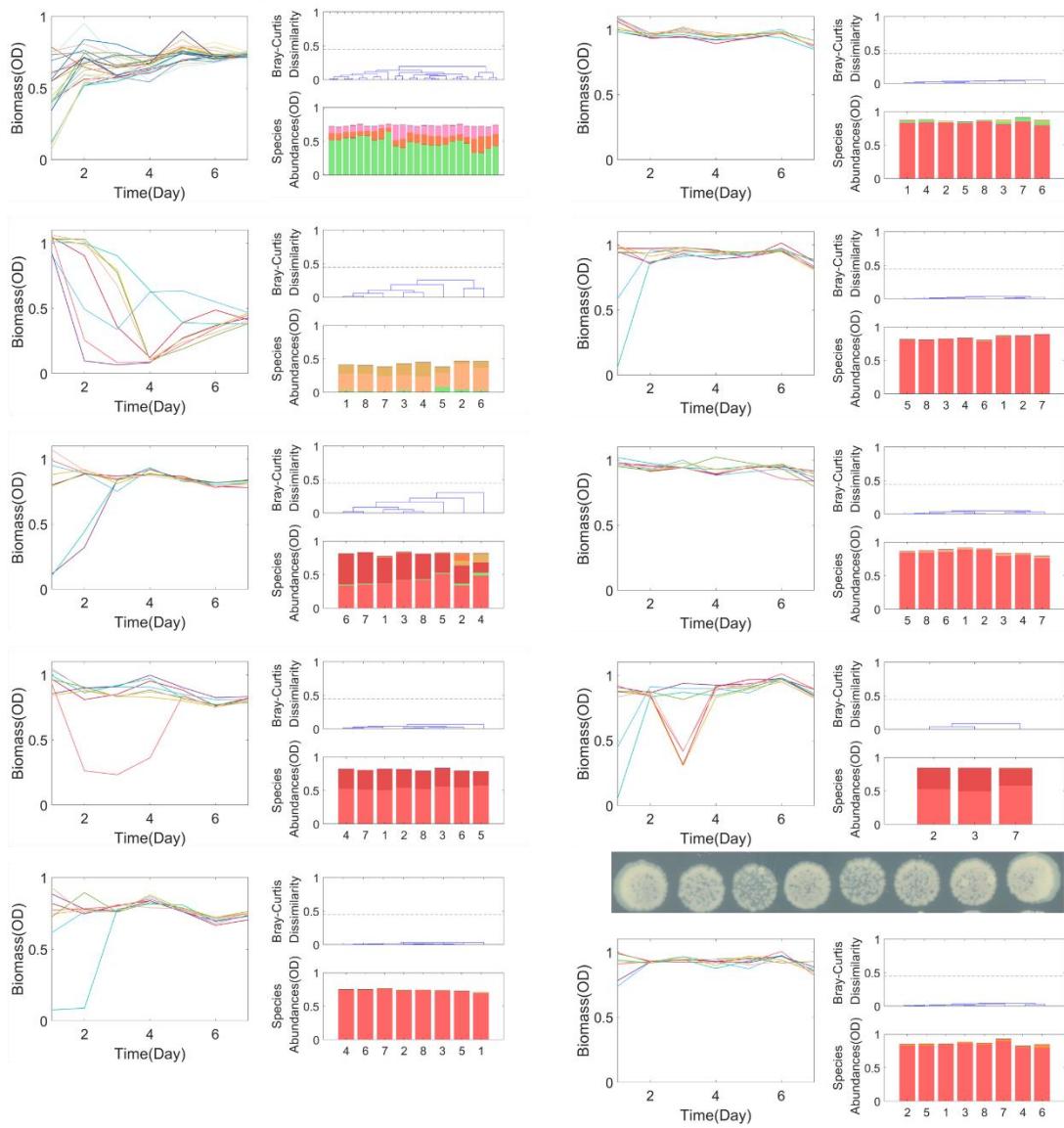
430

431

432

433

434

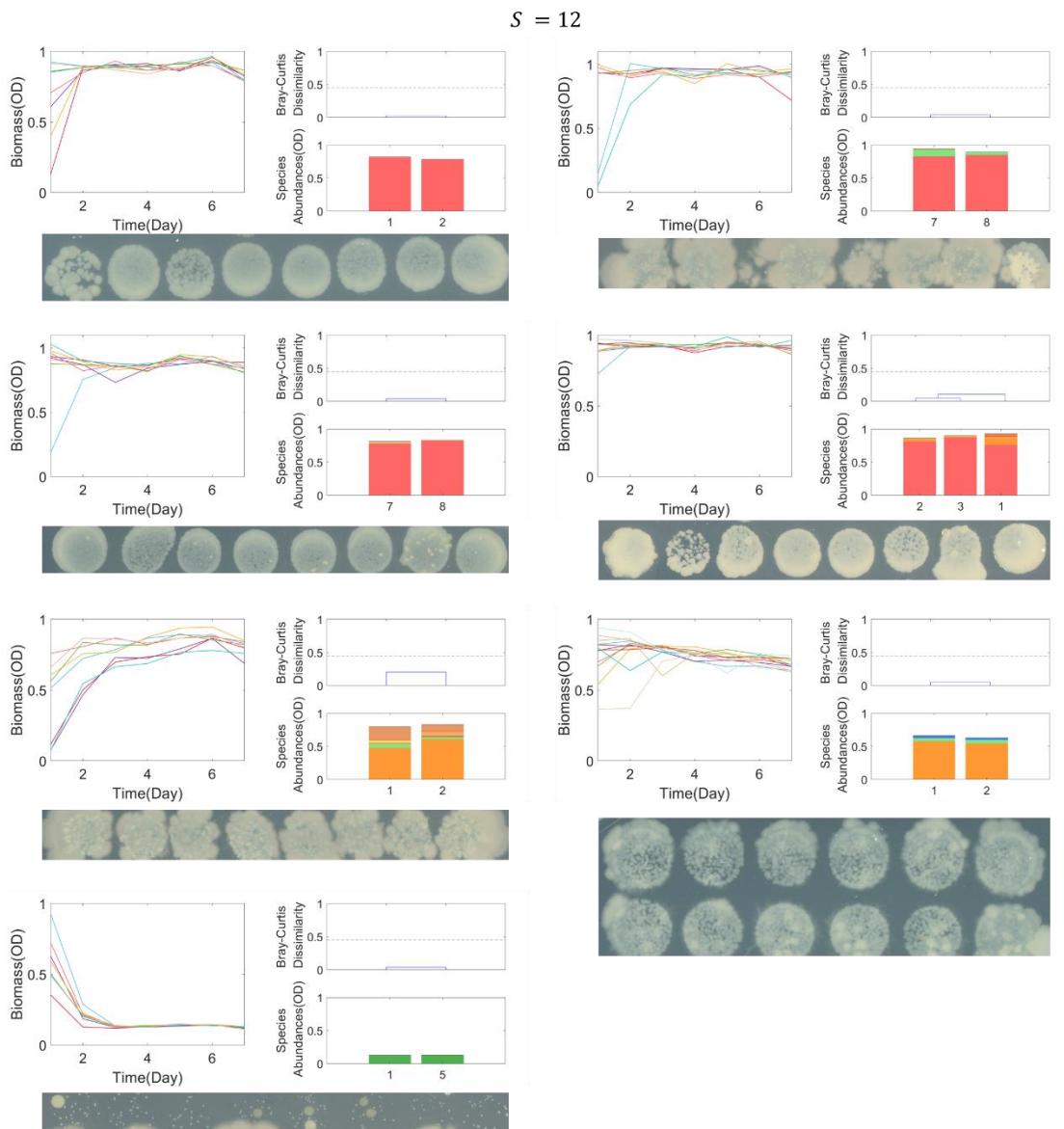

435

436

Figure S18. Biomass time series and final species abundances of global-stable communities

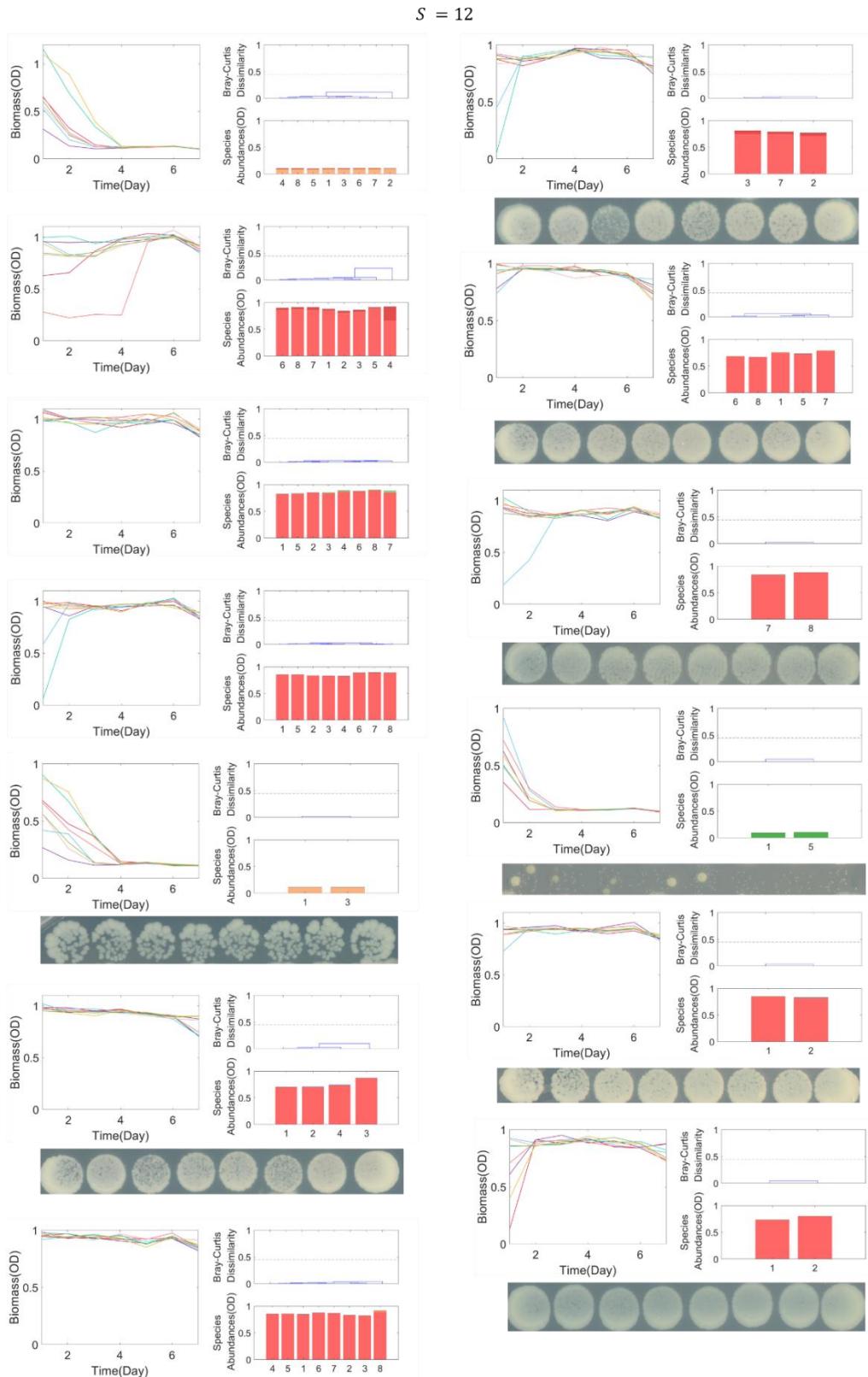
($S = 6$). All global-stable communities with species pool size 6, dilution factor 10^3 are shown here (12 communities). As the biomass (OD) time series show, all communities have reached stable states on day 7. The species abundances are calculated based on the community total biomass and 16S sequencing result, where different colors represent different species (Figure S3). Based on Bray-Curtis dissimilarity between each pair of replicates, we performed hierarchical clustering to calculate the states number (cutoff threshold is 0.45, consistent with main text). Each community shown here has a single stable state. Some communities had sequencing data for only two or three replicates, but we classified them as globally stable by incorporating both plating and sequencing results.

$S = 12$


437

438

Figure S19. Biomass time series and final species abundances of globally stable communities


($S = 12$). Ten global-stable communities with species pool size 12, dilution factor 10^3 are shown here (out of 17 communities). As the biomass (OD) time series show, all communities have reached stable states on day 7. The species abundances are calculated based on the community total biomass and 16S sequencing result, where different colors represent different species (Figure S3). Based on Bray-Curtis dissimilarity between each pair of replicates, we performed hierarchical clustering to calculate the states number (cutoff threshold is 0.45, consistent with main text). Each community shown here has a single stable state. Some communities had sequencing data for only two or three replicates, but we classified them as globally stable by incorporating both plating and sequencing results.

447

448

449 **Figure S20. Biomass time series and final species abundances of globally stable communities**
450 ($S = 12$). Seven global-stable communities with species pool size 12, dilution factor 10^3 are shown
451 here (out of 17 communities). As the biomass (OD) time series show, all communities have reached
452 stable states on day 7. The species abundances are calculated based on the community total biomass
453 and 16S sequencing result, where different colors represent different species (Figure S3). Based on
454 Bray-Curtis dissimilarity between each pair of replicates, we performed hierarchical clustering to
455 calculate the states number (cutoff threshold is 0.45, consistent with main text). Each community
456 shown here has a single stable state. Some communities had sequencing data for only two or three
457 replicates, but we classified them as globally stable by incorporating both plating and sequencing
458 results.

459

460

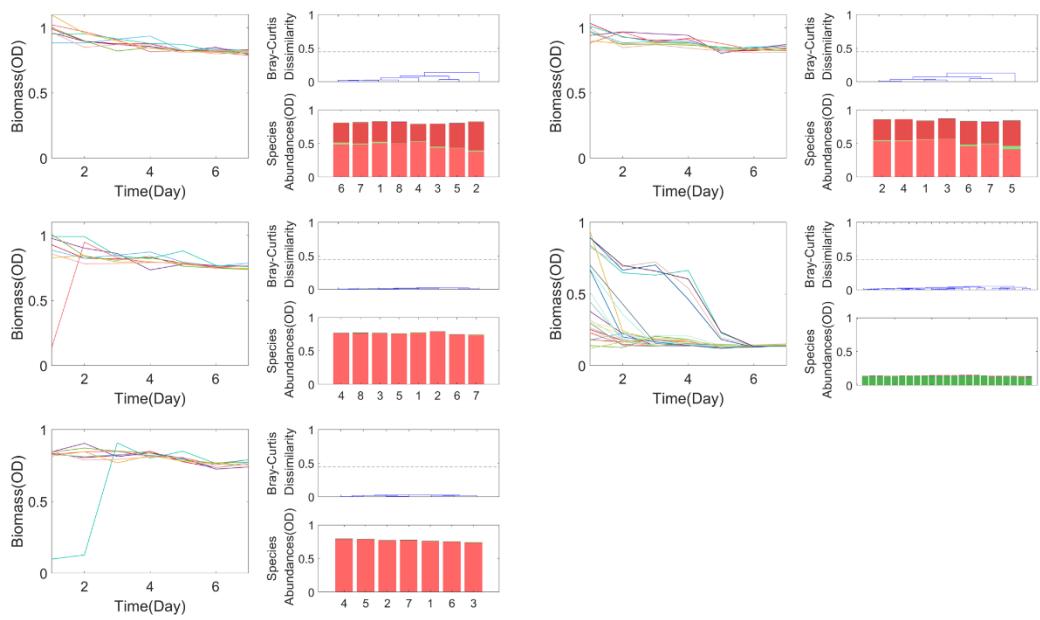
461

462

463

464

Figure S21. Biomass time series and final species abundances of globally stable communities


($S = 12$, **Dilution** = 10^5). All global-stable communities with species pool size 12, dilution factor 10^5 are shown here (13 communities). As the biomass (OD) time series show, all communities

have reached stable states on day 7. The species abundances are calculated based on the community

total biomass and 16S sequencing result, where different colors represent different species (Figure

465 S3). Based on Bray-Curtis dissimilarity between each pair of replicates, we performed hierarchical
466 clustering to calculate the states number (cutoff threshold is 0.45, consistent with main text). Each
467 community shown here has a single stable state. Some communities had sequencing data for only
468 two or three replicates, but we classified them as globally stable by incorporating both plating and
469 sequencing results.

$S = 24$

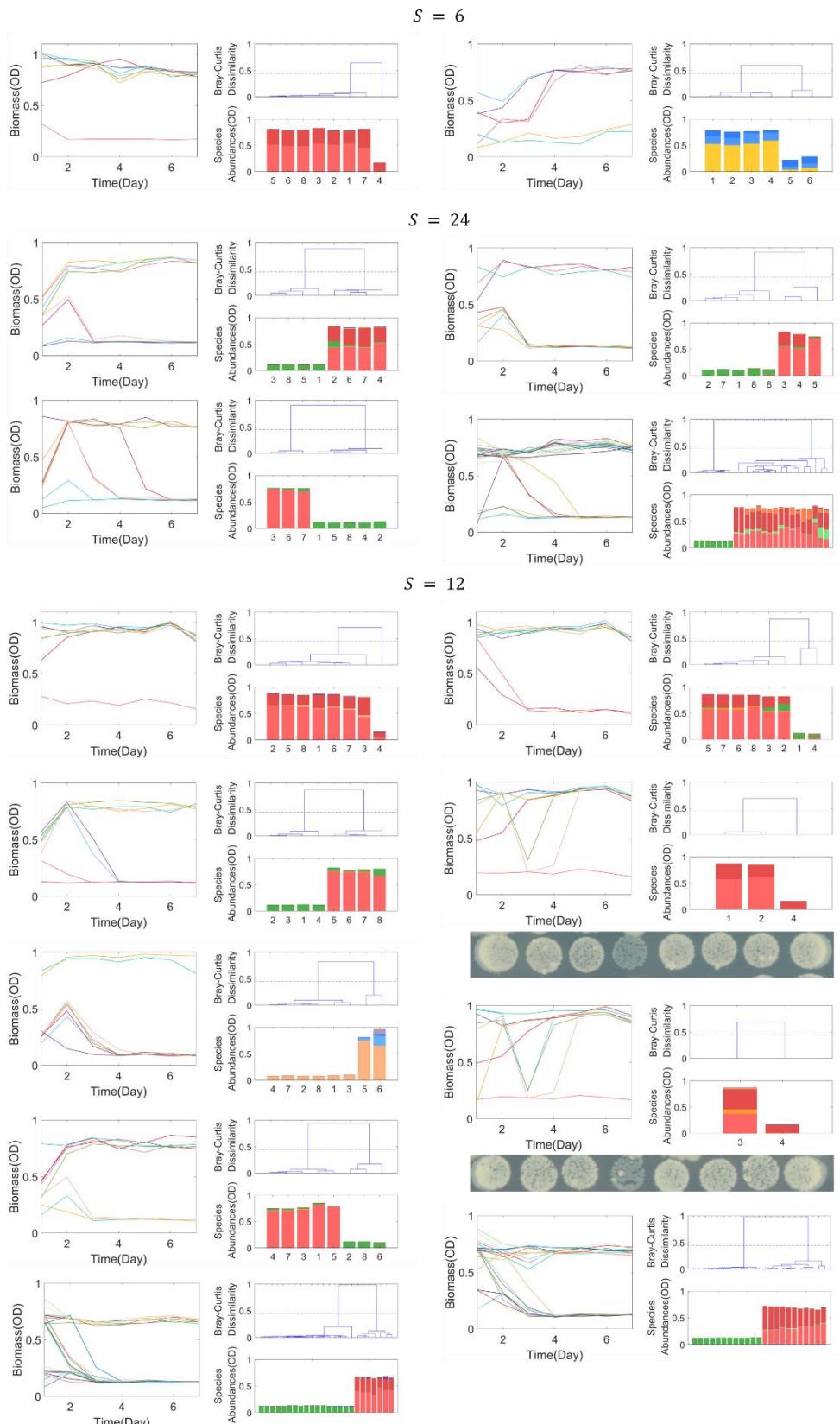
470

471

Figure S22. Biomass time series and final species abundances of globally stable communities ($S = 24$, $Dilution = 10^3$). All global-stable communities with species pool size 24, dilution factor 10^3 are shown here (5 communities). As the biomass (OD) time series show, all communities have reached stable states on day 7. The species abundances are calculated based on the community total biomass and 16S sequencing result, where different colors represent different species (Figure S3). Based on Bray-Curtis dissimilarity between each pair of replicates, we performed hierarchical clustering to calculated the states number (cutoff threshold is 0.45, consistent with main text). Each community shown here has a single stable state.

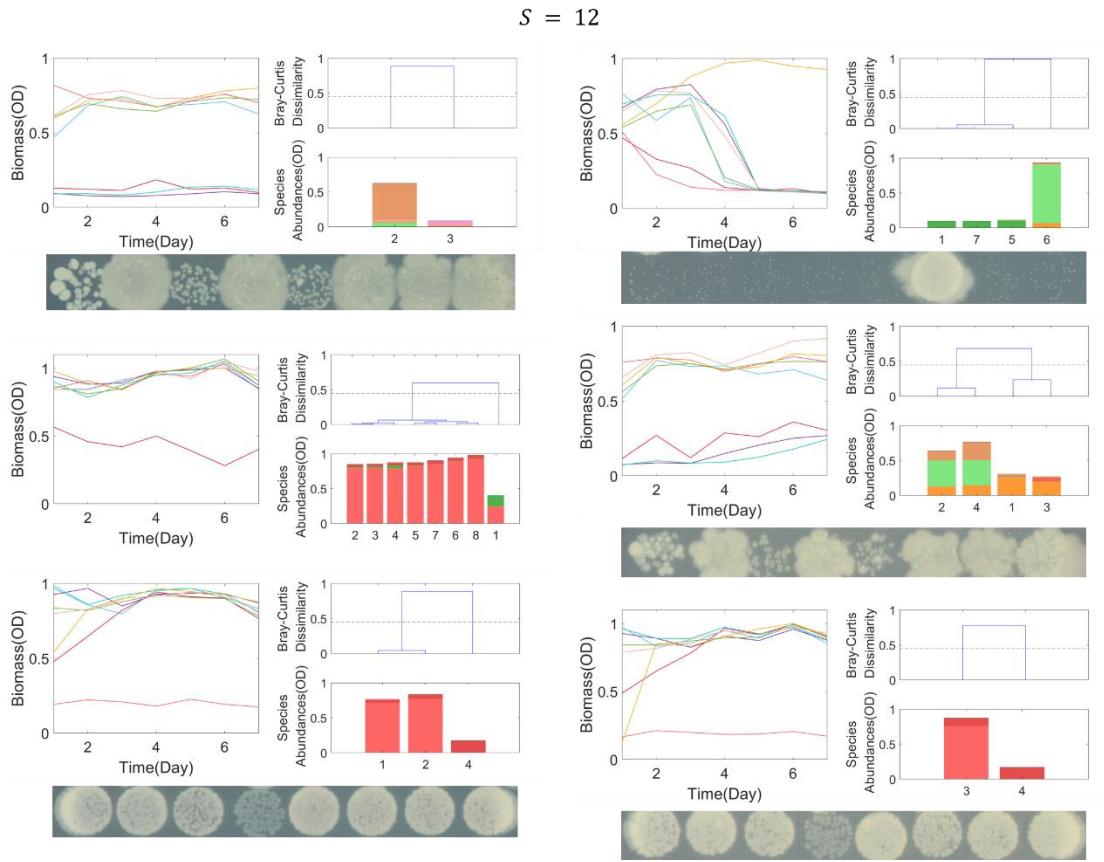
472

473


474

475

476


477

478

Figure S23. Biomass time series and final species abundances of functional bistable communities ($Dilution = 10^3$). All functional bistable communities with dilution factor 10^3 are shown here (13 communities). As the biomass (OD) time series show, all communities have reached stable states on day 7. The species abundances are calculated based on the community total biomass

484 and 16S sequencing result, where different colors represent different species (Figure S3). Based on
485 Bray-Curtis dissimilarity between each pair of replicates, we performed hierarchical clustering to
486 calculated the states number (cutoff threshold is 0.45, consistent with main text). Each community
487 shown here has two distinct stable states. Some communities had sequencing data for only two or
488 three replicates, but we classified them as functional bistable by incorporating both plating and
489 sequencing results.

490

491

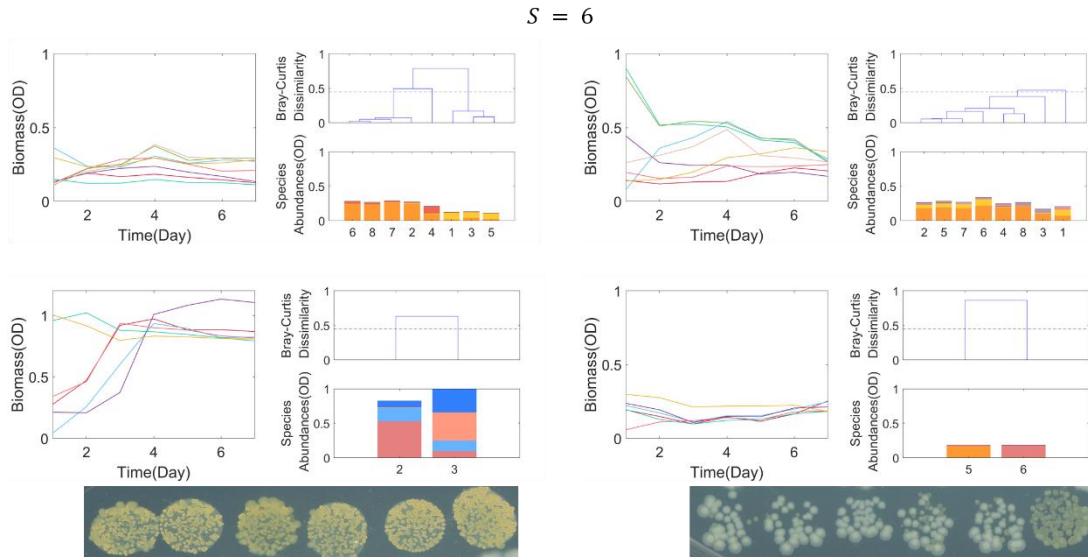
492

493

494

495

496


497

498

499

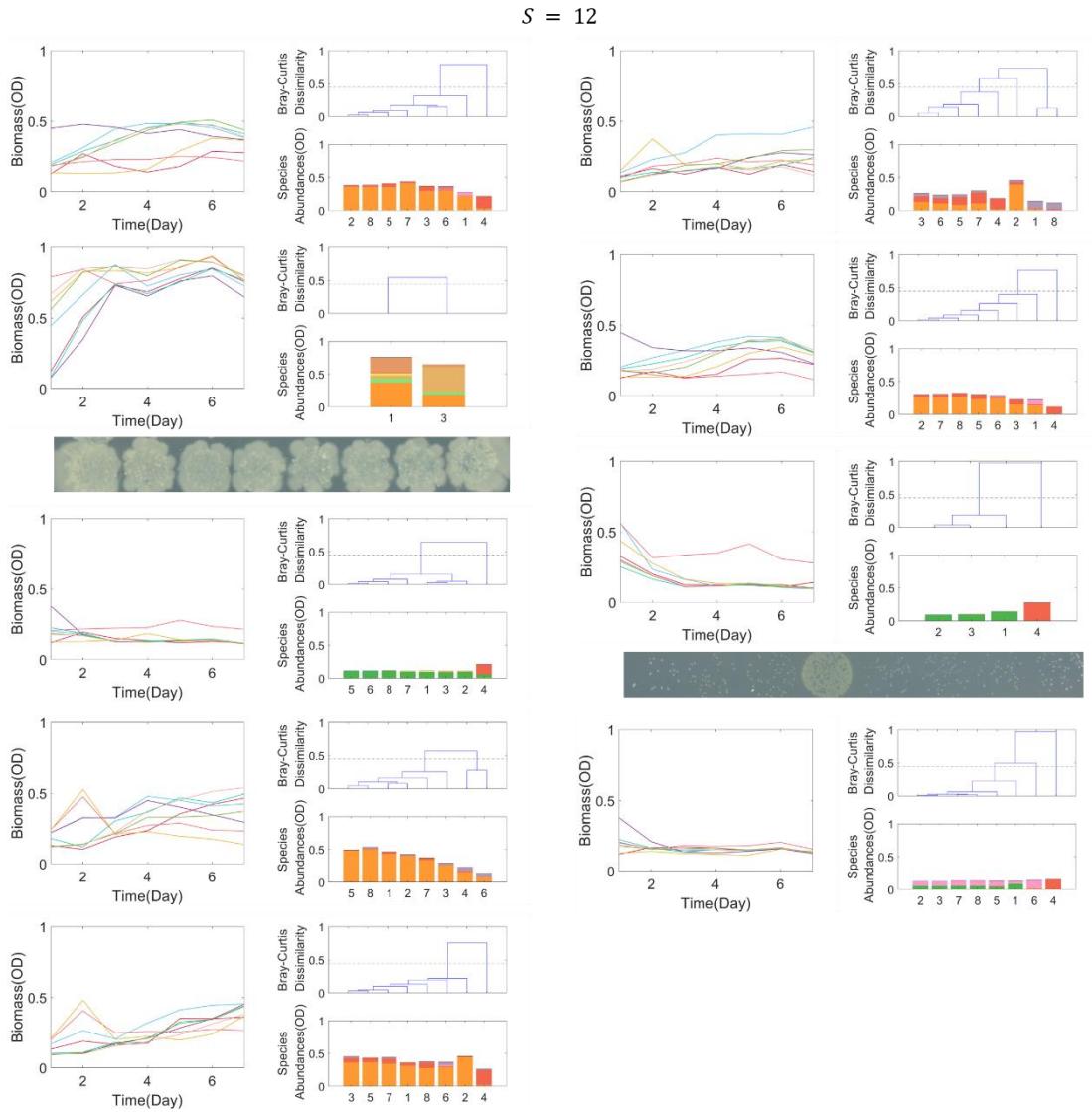
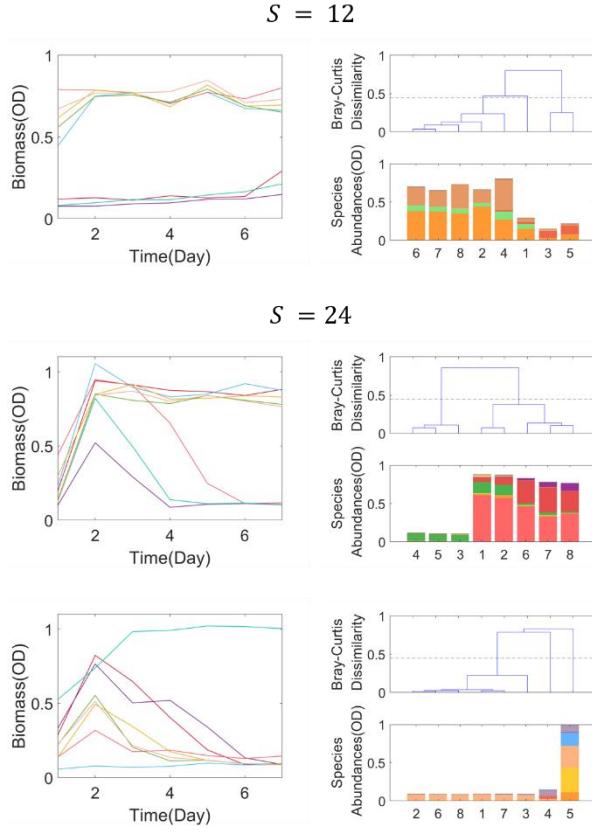
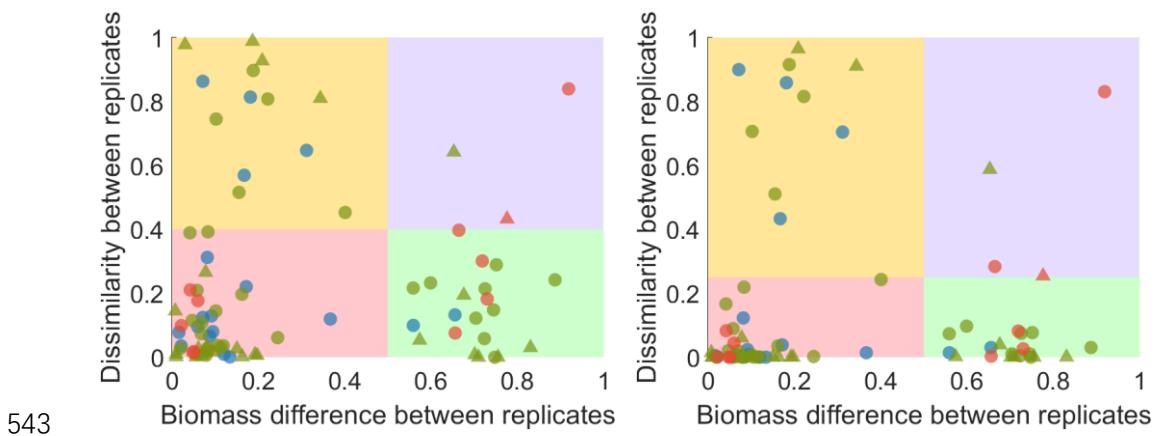
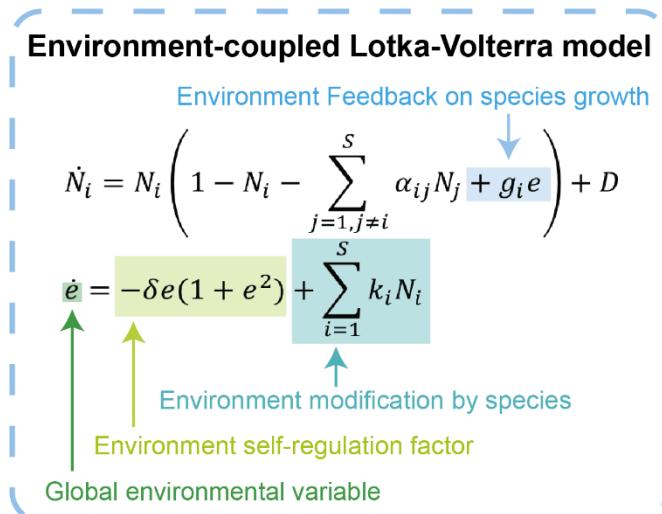

500

Figure S24 Biomass time series and final species abundances of functional bistable communities ($Dilution = 10^5$). All functional bistable communities with dilution factor 10^5 are shown here (6 communities). As the biomass (OD) time series show, all communities have reached stable states on day 7. The species abundances are calculated based on the community total biomass and 16S sequencing result, where different colors represent different species (Figure S3). Based on Bray-Curtis dissimilarity between each pair of replicates, we performed hierarchical clustering to calculate the states number (cutoff threshold is 0.45, consistent with main text). Each community shown here has two distinct stable states. Some communities had sequencing data for only two to four replicates, but we classified them as functional bistable by incorporating both plating and sequencing results.

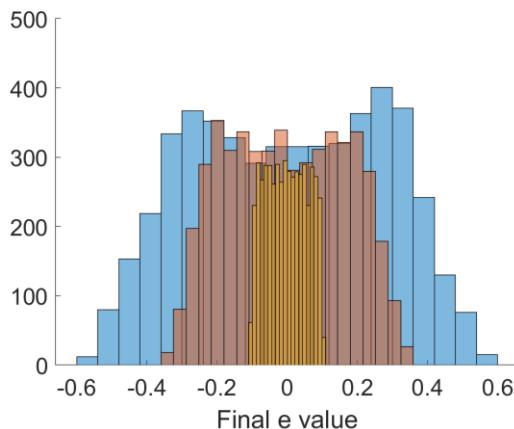
501

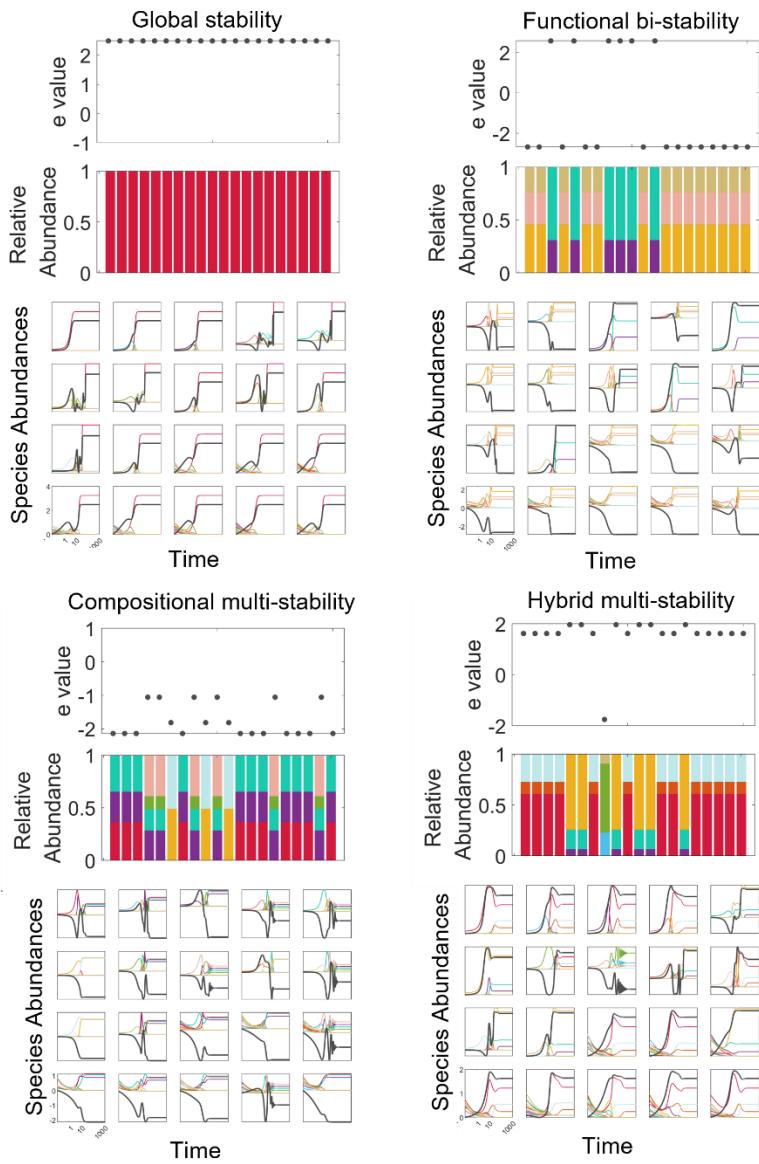

502 **Figure S25. Biomass time series and final species abundances of compositional multistable**
 503 **communities ($S = 6$).** All compositional multistable communities with species pool size 6, dilution
 504 factor 10^5 are shown here (4 communities). As the biomass (OD) time series show, all communities
 505 have reached stable states on day 7. The species abundances are calculated based on the community
 506 total biomass and 16S sequencing result, where different colors represent different species (Figure
 507 S3). Based on Bray-Curtis dissimilarity between each pair of replicates, we performed hierarchical
 508 clustering to calculate the states number (cutoff threshold is 0.45, consistent with main text). Each
 509 community shown here has two to three distinct stable states. Some communities had sequencing
 510 data for only two to four replicates, but we classified them as compositional multistable by
 511 incorporating both plating and sequencing results.


512

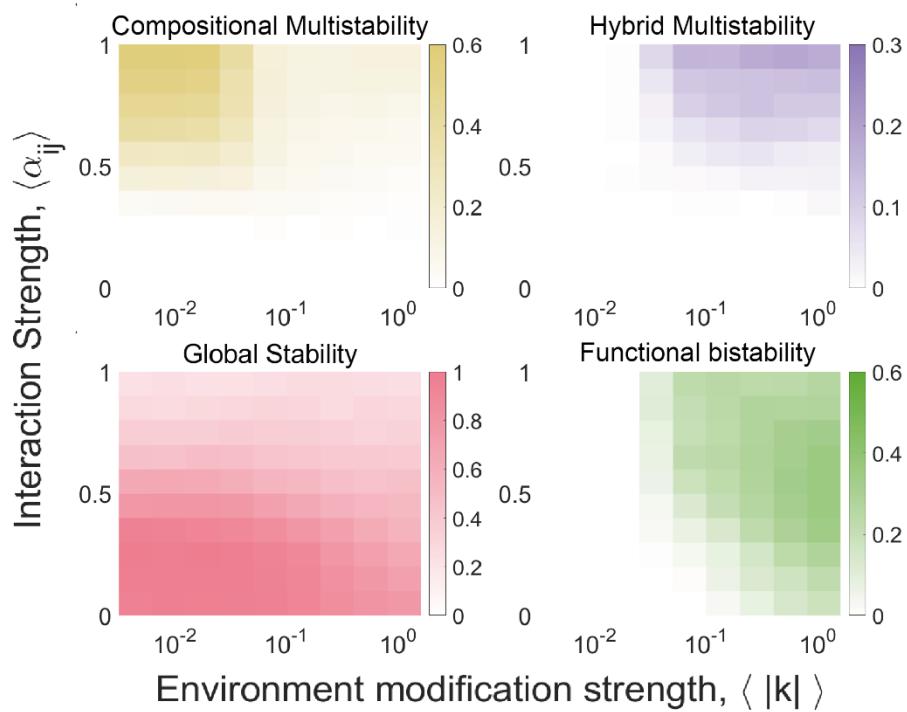

513

514 **Figure S26. Biomass time series and final species abundances of compositional multistable**
 515 **communities ($S = 12$).** All compositional multistable communities with species pool size 12 are
 516 shown here (9 communities). The first column shows five communities with dilution factor 10^3 , and
 517 the second column shows four communities with dilution factor 10^5 . As the biomass (OD) time
 518 series show, all communities have reached stable states on day 7. The species abundances are
 519 calculated based on the community total biomass and 16S sequencing result, where different colors
 520 represent different species (Figure S3). Based on Bray-Curtis dissimilarity between each pair of
 521 replicates, we performed hierarchical clustering to calculated the states number (cutoff threshold is
 522 0.45, consistent with main text). Each community shown here has two to three distinct stable states.
 523 Some communities had sequencing data for only two to four replicates, but we classified them as
 compositional multistable by incorporating both plating and sequencing results.


525 **Figure S27. Biomass time series and final species abundances of hybrid multistable**
 526 **communities.** All hybrid multistable communities are shown here (3 communities). As the biomass
 527 (OD) time series show, all communities have reached stable states on day 7. The species abundances
 528 are calculated based on the community total biomass and 16S sequencing result, where different
 529 colors represent different species (Figure S3). Based on Bray-Curtis dissimilarity between each pair
 530 of replicates, we performed hierarchical clustering to calculated the states number (cutoff threshold
 531 is 0.45, consistent with main text). The first community ($S = 12, D = 10^5$) is classified as
 532 hybrid multistability using the quantification for the maximum difference between biomass and
 533 species abundances shown in main text (Figure 4g). Based on the hierarchical clustering, the eight
 534 stable replicates are classified as 3 different states. The second community ($S = 24, D = 10^5$) is
 535 a community in between functional bistability and hybrid multistability. In our quantification for
 536 the maximum difference between biomass and species abundances, it is classified as hybrid
 537 multistability but on the boundary. Using the states number threshold in the main text, this
 538 community has only two states, but if the states number threshold is lowered to 0.4, it can be
 539 identified as 3 states. Therefore, together with the recurrence of each state in this community, we
 540 classified this community as hybrid multistability. The third community ($S = 24, D = 10^3$) is the
 541 example community in the main text (Figure 4f), showing obvious three different states with hybrid
 542 multistability, supported by both states clustering and dissimilarity quantification.

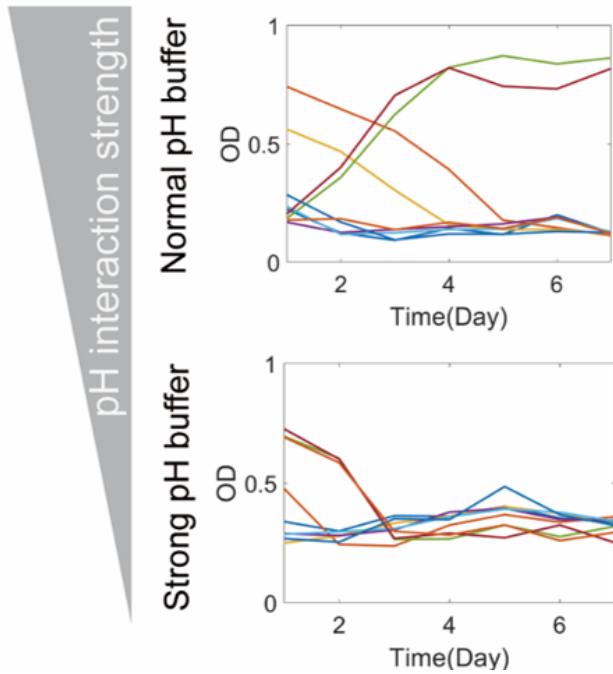

549

550 **Figure S29. The environment-coupled Lotka-Volterra(eLV) model.** We developed the
 551 environment-coupled Lotka-Volterra (eLV) model, which extends the generalized Lotka-Volterra
 552 (gLV) model by incorporating a global environmental variable e and its associated dynamical
 553 equation. The environmental variable, which represents shared environmental factors such as pH,
 554 is influenced by species in the community and, in turn, modifies species growth rates. Additionally,
 555 the global environmental variable has self-regulation, where the linear term leads to relaxation to an
 556 equilibrium at rate δ and the cubic restoring term sets a scale for typical variation.

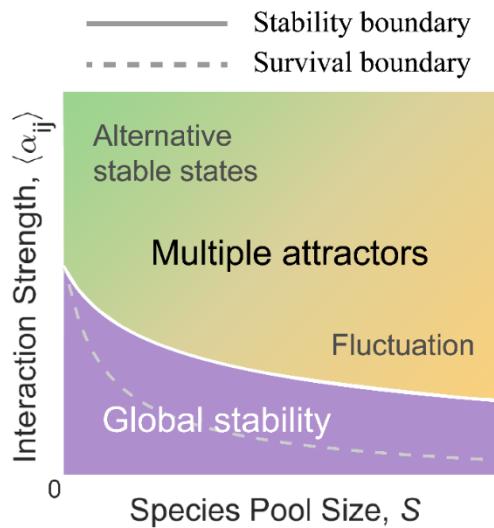

557

558 **Figure S30. The bimodal distribution of environmental variable and the zone partition in the**
 559 **eLV model.** When $<|k|> = 0.1 * \delta$, the environmental variable (e value) exhibits no obvious
 560 bimodal distribution as the environmental variable is weakly affected by the species (orange). When
 561 $<|k|> = 0.5 * \delta$, the e value shows significant bimodal distribution as it is strongly modified by
 562 the species(blue). By increasing the environment modification strength $<|k|>$ from $0.1 * \delta$ to
 563 $0.5 * \delta$, we found that the bimodal distribution of environmental variable (e value) emerged when
 564 $<|k|>$ is around 0.3 (red) and the range of e value is around [-0.2, 0.2]. Here, $\delta = 0.1$. Based on
 565 this, we partitioned the e value into three zones: acidic (e value<-0.2), neutral (-0.2<e value<0.2),
 566 alkaline (e value>0.2).

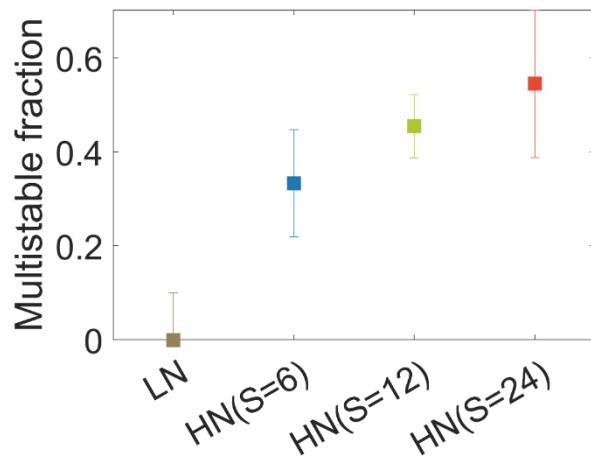
567


568 **Figure S31. The eLV model recapitulated the typical outcomes in experiment.** Four examples
 569 in eLV model, each representing a type of community. For each community, we tested 20 different
 570 initial species abundances, with the simulated time series shown in the bottom. The final stable
 571 states of the community can be globally stable in species abundances and e value. They can also
 572 vary significantly in e value, showing functional bistability. The community can also multiple
 573 different stable species compositions but exhibit similar e value, exhibiting compositional
 574 multistability. They can also hybridize the two mechanisms, representing hybrid multistability.

575


576 **Figure S32. The eLV model predicted frequency of community types in different conditions.**

577 We varied both the species interaction strength and the environmental modification strength in the
 578 eLV model, sampling 500 communities for each parameter set. We then calculated the fraction of
 579 communities exhibiting global stability, functional bi-stability, compositional multistability, and
 580 hybrid multistability. The result shows that functional bistability arises under strong environmental
 581 modification and medium species interaction strengths, compositional multistability occurs under
 582 weak environmental modification and strong species interaction, and hybrid multistability emerges
 583 under high species interaction combined with strong environmental modification.


584

585 **Figure S33. The experiment validated the eLV prediction.** By adding a strong pH buffer, we
 586 reduced the environmental modification strength (in this case, pH) and transitioned the community
 587 from two functional regimes to a single regime. This observation further supports the eLV model's
 588 prediction that hybrid multistability emerges under high environmental modification.

589

590 **Figure S34. Cartoon phase diagram of ecological communities.** Based on the gLV model and
 591 experiments, the cartoon phase diagram shows several dynamical outcomes of ecological
 592 communities. Increasing interaction strength leads to a transition from global stability to multiple
 593 attractors, which can include both alternative stable states and fluctuating attractors, depending on
 594 initial species abundances. The model predicted that, in multi-attractor phase, small species pool
 595 sizes and large interaction strengths primarily give rise to multistability with no fluctuation, while
 596 large pool sizes and medium interaction strengths tend to result in fluctuation with no stable states.
 597 Together, increasing either of the two parameters increases the fraction of communities with
 598 multiple stable and fluctuating attractors, especially at large species pool size and strong species
 599 interaction. The stability boundary and survival boundary are based on analytical results. Survival
 600 boundary separates phase I (globally stable full coexistence) and phase II (globally stable partial
 601 coexistence). Stability boundary separates phase I, II (global stability) and phase III (multiple
 602 attractors).

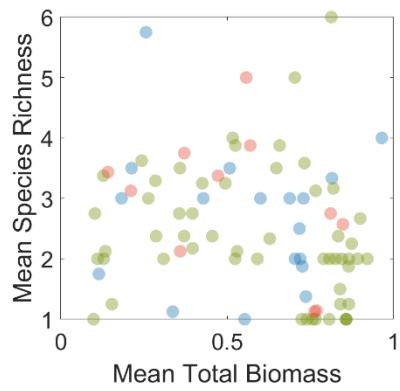
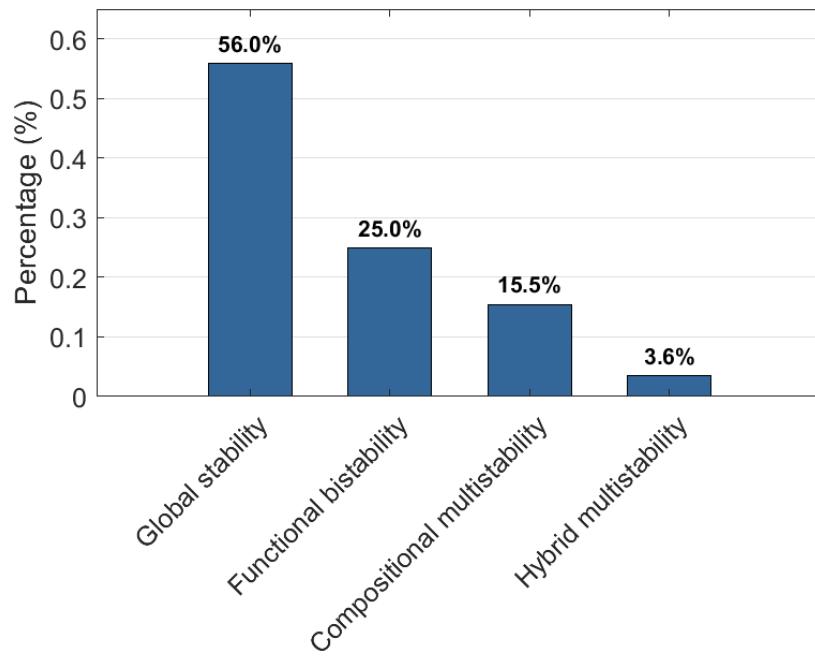

603
604
605
606
607
608
609
610
611

Figure S35. The relation between multistability fraction and species pool size. By calculating the multistable community fraction across different species pool sizes ($S = 6, 12$, and 24), we found no evidence of significant variation in multistability with increasing species richness. Pairwise two-sample t-tests revealed no statistically significant differences between groups ($S=6$ vs $S=12$: $p = 0.3735$; $S=6$ vs $S=24$: $p = 0.2766$; $S=12$ vs $S=24$: $p = 0.5881$), with all comparisons failing to reject the null hypothesis. These consistent results suggest that, within the tested range, the multistable fraction of communities remains unaffected by the size of the species pool, implying that other ecological factors may play more dominant roles in determining system multistability.


612

613 **Figure S36. The relation between the number of stable states and the species pool size.** We did
614 not observe a significant increase in the number of stable states with the size of the species pool in
615 our experiments. The correlation coefficient is 0.1142 ($p = 0.3009$).

616

617 **Figure S37. The correlation between diversity and total biomass in stable communities.** The
 618 mean total biomass is the average community total biomass over all the replicates for a single
 619 community. The mean species richness is consistent with previous definition. We didn't observe
 620 significant correlation between diversity and biomass within the identified stable states in our
 621 experiments (corrcoef = -0.1966, p = 0.0731).

622

623 **Figure S38. Fraction of four types of stable communities.** Based on the classification in the main
624 text (Figure 4), the fractions of four types of communities are calculated. In particular, the fraction
625 of hybrid multi-stable communities is relatively low (3.6%), approximately equal to and slightly
626 lower than the probability if the two mechanism (pH-driven functional bistability and complex
627 network driven compositional multistability) work independently ($25.0\% * 15.5\% = 3.9\%$).