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Supplemental Methods

At the core of AiPP is a pLLM representation-based clustering and label propagation

framework that integrates heterogeneous experimental datasets into coherent ML train-

ing sets. This approach enables principled consensus labeling across noisy sources

while preserving residue-level biochemical context. Critically, clustering also prevents

representation-level data leakage during model evaluation—avoiding performance infla-

tion from latent similarity in embedding space. Below we first describe the curation and

formatting of all datasets used to train, validate, and benchmark AiPP.

1. Building LigCysABPP, LC3D, and LigBind3D databases

To train and evaluate the AiPP platform, we curated three orthogonal databases en-

compassing both covalent and reversible ligandability signals. These include LigCys-

ABPP: cysteine ligandability dataset derived from the peptide-level cysteine reactivity pro-

files from 15 activity-based protein profiling (ABPP) studies published between 2016 and

2025;S1–S15 LigCys3D*: a set of proteins with covalently liganded cysteines as captured

by co-crystal structures derived from our previous larger database LigCys3D;S16 and (iii)

LigBind3D: ligand-binding residue annotations derived from the published database Bi-

oLip2.S17

Definition of records in the databases. All databases curated in this work were ulti-

mately converted into a unified set of structured, site-level records, facilitating consistent

downstream processing across modules. Each record captures residue-level biochemi-

cal annotations and includes the following fields: (1) a protein-specific unique identifier

(UID), (2) a residue-of-interest (ROI) corresponding to a 1-based sequence position, (3)

a binary label indicating ligandability (EXP BIN), (4) source-specific quantitative metadata

such as the raw competition ratio (R) in the ABPP experiment and the threshold (EXP THR)
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defined in the source study, (5) a source identifier (SOURCE), and (6) an optional NOTE field

containing free-text metadata (e.g., ligand identity, molecular weight, probe identity). All

records conform to this schema regardless of their original source— whether proteomic

(LigCysABPP) or structural (LigCys3D and LigBind3D). Certain fields not applicable to all

datasets—such as R and EXP THR—were populated with pre-set values to preserve format

consistency. For structure-derived records (LigCys3D and LigBind3D), R was set to 999

and EXP THR to 0 to indicate direct structural evidence. For UNQUANTIFIED records, R was

set to −1 and EXP THR to 0 to denote inferred but unlabeled entries.

1.1 The LigCysABPP database

Curation of an ABPP dataset. We manually curated raw experimental data from 15

cysteine-directed activity-based protein profiling (ABPP) studies published between 2016

and 2025.S1–S15 ABPP data reflect indirect chemoproteomic measurements of cysteine

ligandability at scale.

For each ABPP study, we extracted the peptide-level entries and converted them into

the structured, site-level records described above. Entries referencing multiple cysteine

positions (ambiguous entries) or multiple UIDs (partially resolved, multi-value entries)

were expanded into site-level (UID, ROI) records. Ambiguous entries were split into one

record per ROI. In the case of multiple UIDs associated with a single ROI, multiple records

were created, with the same ROI assigned to each UID. In the case of multiple UIDs asso-

ciated with multiple ROIs, each entry was split into multiple records, each containing one

UID and one ROI. Each derived record retained all original metadata and was annotated

accordingly. Following the above treatment of the ambiguous and unresolved entries, we

obtained a total of 683,192 records, spanning 58,704 unique cysteine sites (UID, ROI

pairs) across 14,417 distinct proteins (UIDs).
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Protein sequence reconstruction and record validation. To ensure consistency be-

tween input sequences and experimental annotations, all site-level records were subject

to source-specific sequence reconstruction and cysteine identity validation. Each UID

was mapped to its full-length canonical sequence using a local UniProt FASTA cache or

the UniProt REST API (https://rest.uniprot.org). Records were excluded if the reported

ROI did not correspond to a cysteine residue in the retrieved sequence, if the sequence

contained non-canonical characters (e.g., ’X’), or if the accession was unavailable. In

UniProt, the presence of “X” can indicate an unresolved internal region or, when present

at the termini, that the entry is a fragment lacking part of the canonical sequence; both

cases led to removal of the full record to ensure that only complete, biologically coherent

proteins were used for modeling. The above protocol yield 671,515 validated records (out

of 683,192 initial records), covering 53,867 unique cysteine sites across 12,745 proteins.

Consolidation of UIDs and filtering of derived records. To eliminate redundancy, we

first collapsed UIDs referring to identical or subsequence protein entries, selecting a sin-

gle representative UID per group. This reduced 650 UID groups in total (89 identical se-

quences and 561 subsequences), most of which corresponded to isoforms or redundant

database entries. All records were then updated to reference the selected representative

UID as the canonical identifier.

Next, we filtered multi-value–derived records: any record whose canonical UID did

not appear in at least one unambiguous record (single UID, single ROI) was discarded,

removing 1,607 records corresponding to 1,078 UIDs. All consolidation and filtering steps

were logged to ensure reproducibility.

Treatment of unquantified cysteine sites in quantified proteins. We added 114,568

UNQUANTIFIED records, representing cysteine residues that were undetected by the ABPP

probes but belonging to quantified proteins, i.e., those with at least one experimentally

quantified cysteine site. These were added as negative records with EXP BIN = NEG and
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SOURCE = UNQUANTIFIED. These negative records are weakly labeled: they reflect the ab-

sence of observed reactivity rather than definitive evidence of non-ligandability, and were

retained for provisional downstream consensus labeling (see section Representation-

Based Clustering and Label Derivation).

Final records in the LigCysABPP database. Finally, we filter out records correspond-

ing to proteins comprising fewer than 30 residues or more than 2046 residues (max-

imum ESM input size). This removed 81,341 records describing 25,485 unique cys-

teines across 1 small protein and 367 large proteins. The final ABPP database contained

703,135 records: 608,898 validated peptide-derived records and 94,237 UNQUANTIFIED

records. Together, they span 140,459 unique cysteine sites (UID, ROI pairs), includ-

ing 46,222 ABPP quantified and 94,237 unquantified (provisionally negative) cysteines

across 10,649 proteins.

1.2 The LC3D database

LC3D dataset. LC3D was constructed as a LigCys3D-derived subset,S16 providing a

direct structural complement to the ABPP data. LigCys3D compiles cysteines observed

to form covalent bonds in experimentally resolved structures from the RCSB Protein Data

Bank (PDB). For LC3D, we retained only structures with covalent ligands of molecular

weight ≥ 200 Da. Each structure was manually inspected, and entries deemed incor-

rect (e.g., wrong residue ID, no ligand, terminal cysteines) or unsuitable (e.g., cysteines

forming disulfide bonds or helical staples, cysteines linked to peptides or proteins) were

removed or corrected.

Sequence reconstruction and cysteine validation. Rather than relying on LigCys3D-

provided annotations, we extracted the referenced PDB identifiers, downloaded the cor-

responding coordinate files, and independently derived the cysteine annotations. Se-
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quences were reconstructed directly from atomic coordinates using our in-house tool

(pdb-doctor ), which integrates SEQRES records and REMARK 465 annotations to recover

unresolved residues and ensure sequence–structure completeness. Site-level annota-

tions were validated against these reconstructed sequences to confirm residue identity

and positional accuracy. No remapping to UniProt was performed—in contrast to the

LigCys3D database entriesS16—as this could discard experimental details such as engi-

neered mutations or truncations. Our aim was to preserve the exact protein sequence

used in the structural experiment, rather than revert to a potentially mismatched canoni-

cal reference. After deduplication and validation, the LC3D database contained 316 POS

LigCys3D-derived cysteine records across 275 unique proteins.

Provisional labeling of unliganded cysteines in co-crystal structures. To achieve

complete cysteine coverage, we added the unlabeled cysteine residues present in the

validated sequences as provisional negatives (EXP BIN = NEG). As in LigCysABPP, these

provisional negatives reflect the absence of observed covalent modification rather than

definitive evidence, and were retained pending downstream consensus labeling (see

Representation-Based Clustering and Label Derivation). After addition of these nega-

tives, LC3D comprised 1,643 site-level cysteine records across 275 proteins. To ensure

each protein contained both positive and negative sites, we filtered the set to retain only

proteins with at least one negative cysteine. This removed 41 proteins, leaving LC3D

with 234 proteins and 1,601 unique UID–ROI pairs: 274 positives (17.1%) and 1,327

negatives, with no masked sites.

Records in LC3D database. All entries were converted into the structured record for-

mat used for the LigCysABPP database. Each record used a UID in the format PDBID-CHAINID,

with ROI values referencing sequence positions from the corresponding PDB structure.

Ligand-specific metadata (e.g., molecular weight, three-letter PDB ligand code) were

stored in the NOTE field. ABPP-specific fields such as EXP THR and R were assigned preset
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values (EXP THR = 0, R = 999) to denote direct structural evidence.

1.3 The LigBind3D database

LigBind3D dataset. For developing models to predict reversible ligand-binding pockets,

we independently curated an orthogonal structural dataset capturing non-covalent ligand-

residue interactions from BioLiP2,S17 a manually curated resource of biologically relevant

protein-ligand complexes derived from the RCSB Protein Data Bank (PDB). We selected

entries of monomer proteins containing small molecules with molecular weights between

150–600 Da, excluding those associated with nucleic acids, peptides, ions, crystallization

agents, or cofactors.

For each selected PDB entry, we applied a custom structural annotation pipeline

(PickPocket) to validate biologically relevant protein-ligand interactions. PickPocket re-

solves LINK records, merges “multi-residue” ligands, detects missing atoms, renumbers

residues, and filters out artifacts. Ligands inferred by the RCSB but missing from coor-

dinate files (e.g., covalently attached fragments) were reconciled when appropriate. Lig-

ands were retained only if they (i) remained within the target molecular weight range after

reconstruction, (ii) were not covalently linked to protein atoms—except in cases where

the covalent bond involved a cysteine residue—and (iii) formed coherent binding pockets

involving at least three spatially proximal residues.

Records in LigBind3D database. For each structure that passed all filtering steps, we

reconstructed the full protein sequence directly from the atomic coordinate file, as in build-

ing the LC3D database. Next, ligand-contacting residues were labeled based on a 4.5 Å

heavy-atom distance threshold. These residues were converted into structured, site-level

records with EXP BIN = positive. Each record uses a UID in the format PDBID-CHAINID,

with ROI values referencing sequence positions from the corresponding PDB structure.

Ligand-specific metadata (e.g., 3-letter ligand code, molecular weight) were stored in the
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NOTE field. As with the LC3D database, pre-set values (EXP THR = 0, R = 999) were used

to denote direct structural evidence. Residues not in contact with any ligand were added

as negative records with EXP BIN = NEG and are distinguishable via the SOURCE field. As

in other datasets, these negative records are weakly labeled, reflecting the absence of

observed interaction rather than confirmed non-binding, and were retained as provisional

pending downstream consensus labeling (see Representation-Based Clustering and La-

bel Derivation).

Overall, the final LigBind3D database comprised 686,255 site-level records across

1,998 unique proteins. This database offers a direct structural perspective on non-covalent

ligand recognition, complementing the chemoproteomic data in ABPP and the covalent

structural data in LC3D. However, unlike LigCys3D, which restricts ROIs to cysteines, Lig-

Bind3D treats every residue in each protein as a potential ROI, reflecting the broader

diversity of reversible ligand interactions.

2. pLLM-based data clustering, label assignment and reconciliation

Per-token embeddings were extracted from layer 76 of ESM Cambrian (ESMC),S18 a dis-

tinct 6-billion parameter protein language model. These 2,560-dimensional embeddings

are derived directly from sequence and encode contextual, structural, and evolutionary

features without requiring structural input. ESMC embeddings served as the unified

representation for downstream clustering, label propagation, and supervised learning

across both LigCys and LigBind modules. These unified embeddings provided a high-

dimensional, functionally rich representation space from which we performed unsuper-

vised clustering and downstream consensus-based label assignment.

Representation-based clustering. To group biochemically similar cysteine sites and

prevent representation-level data leakage (see Representation-Based Data Leakage Pre-

vention), we clustered validated site-level records using their ESMC-derived embeddings.
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Each unique cysteine site—defined by a (UID, ROI) pair—was represented as a single

node in embedding space, encoded by a 2,560-dimensional vector. All records corre-

sponding to the same site were collapsed into a single node for clustering, ensuring that

redundant evidence did not influence cluster formation or representative selection.

We computed a composite similarity score S between embedding vectors, defined as

S = 1
3

(
C+D1+D2

)
, where C is the cosine similarity between vectors, and D1 and D2 are

the inverse L1 and inverse L2 distances: D1 = 1/(1 +L1), D2 = 1/(1 +L2). Unlike cosine

similarity alone, which captures only angular alignment and ignores vector magnitude, this

composite score attains a maximum of 1 only when two embeddings are identical in both

direction and length. This ensures that sites must be highly similar in full representation

space to exceed the clustering threshold of S > 0.3, which approximately corresponds

to a cosine similarity of 0.9. Empirically, we observed that this threshold effectively sep-

arates known functional neighbors while avoiding over-clustering of unrelated residues,

and corresponds well to manually validated clusters in embedding space.

An undirected edge was drawn between two nodes if S ≥ 0.3, and clusters were

formed as connected components using a union–find algorithm. Within each cluster, a

representative site was selected as the node with the highest average similarity S to all

other members. Any node with S < 0.3 relative to the representative was pruned. Pruned

nodes were iteratively re-clustered using the same procedure until convergence. Any

remaining unclustered nodes were assigned as singleton clusters.

After clustering, all original records associated with each node were fully re-expanded

so that each cluster included the complete set of source-level records corresponding

to its constituent sites. This ensured that downstream consensus-based label assign-

ment could integrate all available evidence during cluster-level label derivation. The fi-

nal result was a set of compact, non-overlapping clusters of cysteine sites sharing high

representation-level similarity, each anchored by a representative node used for consen-

sus labeling and model training.
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Label assignment for cysteine clusters. To denoise the cysteine ligandability labels

from ABPP and LC3D databases, we performed cluster-level label assignment on the full

set of representation-based clusters. To avoid data leakage, clustering was performed

jointly on all validated ABPP and LC3D site-level records (N = 704,730), yielding 95,877

initial clusters (include 52,010 singletons) encompassing 141,898 unique cysteine sites.

LC3D records were treated as ground truth. Any cluster containing at least one LC3D

record labeled positive was assigned a positive group label, irrespective of the number

or source of other supporting records. Conversely, if a cluster contained LC3D records but

none labeled positive, the group was assigned a negative label. In these cases, ABPP

records were disregarded to preserve the orthogonality of LC3D labels. This scheme

allowed direct structural evidence of covalent modification to propagate to biochemically

similar cysteine sites not directly observed in structure but linked through high similarity

in the representation space.

Clusters that did not contain any LC3D records were evaluated using a consensus vot-

ing scheme, in which positive or negative labels were assigned only if they met predefined

thresholds across both record counts and sources (e.g., 1S–1R, 1S–2R, . . . , 4S–4R, 4S–

5R, . . . ; see main text Table 1). For positives, a cluster was labeled positive once the

required threshold was met (e.g., at the 1S–2R level, at least two POS records from one

source; at the 4S–4R level, at least four POS records from different sources). Negatives

followed the same thresholds but required the stricter condition that all records in the clus-

ter were labeled NEG (i.e., no positive votes). Clusters that did not meet these criteria—or

exhibited conflicting or insufficient evidence—were masked and excluded from training.

Applying this rule, for example, at the 4S–4R level, 940 clusters were labeled POS and

5,170 clusters labeled NEG, covering 162,809 site-level records describing 11,473 distinct

cysteines across 11,118 unique proteins. The remaining clusters, including 52,010 sin-

gletons, were masked.
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Pruning LC3D-containing clusters to prevent data leakage. Following cluster-label

assignment, we applied a conservative pruning step to eliminate potential data leakage.

Specifically, all clusters containing any LC3D records were removed from the training pool

after label assignment. Additionally, we identified all UIDs represented in these clusters

and removed any remaining clusters that shared a UID with them—even if those clusters

did not contain LC3D records themselves. This strict pruning ensured that no ABPP-

derived cluster contained cysteine sites from proteins already seen in the LC3D-resolved

set, eliminating indirect leakage via shared sequence context. Importantly, LC3D was

withheld as an orthogonal benchmark set due to its high-confidence structural origin and

minimal redundancy with ABPP-derived data. Excluding all LC3D-associated proteins

from training ensures that subsequent model evaluation on this dataset reflects true gen-

eralization to unseen, structurally validated ligandable sites.

The remaining labeled clusters comprised a distilled, non-redundant training set de-

rived exclusively from ABPP records. This set preserved biochemical and experimental

diversity while enforcing rigorous separation between structurally derived and sequence-

derived labels. All records within each retained cluster inherited the resolved cluster label,

providing consistent and leakage-free supervision for model training.

Pruning an ABPP hold-out set. We created an ABPP hold-out set to provide a second,

independent check during dataset expansion. As defined in the main text, it contains 23

proteins that were each measured by at least 10 independent ABPP sources and that

have at least one positive and one negative cysteine. All site-level records for these

proteins were flagged as hold-out and never used for model training or validation. In all

steps (clustering, label assignment, and expansion), any cluster that contained a record

from a hold-out protein—and any other cluster sharing that protein identifier (UID)—was

placed entirely in the hold-out partition.

We used this hold-out set in two ways: (i) to monitor the LC3D-guided expansion for
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signs of overfitting to LC3D, and (ii) to evaluate how the ABPP-guided cross-validation

performs on unseen, well-measured proteins. Because cysteines within these proteins

have different numbers of supporting measurements, we further stratified the hold-out

cysteines into nine nS–nR subsets (n = 1, . . . , 9) to examine how heterogeneous labeling

affects fair performance assessment and error analysis. These diagnostics were purely

observational and did not influence batch acceptance, hyperparameter choices, or model

selection. A complete list of hold-out UIDs and cysteine records is provided in Supple-

mental Data (SD18–SD19).

Label assignment for LigBind clusters. LigBind3D data were processed indepen-

dently from ABPP and LC3D datasets to derive cluster-level labels for residues involved in

non-covalent ligand recognition. All LigBind3D records (686,255 site-level records across

1,998 unique proteins) were clustered using the same embedding-based similarity metric

and threshold as in the LigCysABPP workflow.

Clusters were resolved using a permissive propagation rule: if any record in a cluster

was labeled POS (i.e., within 4.5 Å of a ligand in a resolved structure), the entire cluster was

assigned a positive label. Otherwise—if no records were labeled POS—the cluster was

labeled NEG. No vote thresholds, source requirements, or masking logic were applied. This

approach treats ligand proximity as direct structural evidence and enables propagation of

contact labels to structurally or biochemically similar residues across isoforms, homologs,

or convergent domains.

From the clustering step, we obtained 581,493 clusters (515,751 singletons; 65,742

multi-member) spanning 1,998 proteins and 687,712 LigBind3D records. Of these, 29,158

clusters were uniformly positive and 549,028 uniformly negative, while 3,307 contained

mixed labels. Uniform clusters were defined as those in which all records shared the

same label. At the record level, labels totaled 39,044 positive and 648,668 negative

prior to reconciliation (5.7% positive; N:P = 16.6:1). To enforce within-cluster consis-
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tency, we performed a single-pass reconciliation that converted 6,573 False→True as-

signments, yielding 45,617 positive and 642,095 negative records overall (6.6% positive;

N:P = 14.1:1). These cluster-level labels constitute the high-confidence structural anno-

tations used for LigBind model training and benchmarking.

Representation-based data leakage prevention. To ensure that model evaluation re-

flects true generalization, we used the representation-based clustering framework to con-

trol for data leakage. While conventional sequence identity filtering (e.g., via CD-HITS19)

can eliminate global sequence similarity, it fails to account for functionally convergent

and/or structurally similar ligandable sites embedded within otherwise dissimilar proteins.

Our clustering operates on contextual ESMC embeddings, which capture local bio-

chemical, structural, and evolutionary information. As a result, residues with similar lig-

andability profiles tend to cluster together—even across proteins lacking detectable se-

quence homology, yielding a higher-resolution view than traditional methods based on

sequence alignment.

To prevent data leakage, we applied two complementary safeguards during dataset

partitioning. First, each cluster was treated as an indivisible unit: no cluster was split

across training, validation, or test sets. Second, we enforced protein-level (UID) ex-

clusivity: all clusters containing records from the same protein (identified by UID) were

assigned to the identical partition. This constraint was applied transitively—if any two

clusters shared a UID (even through different residues), both were placed in the same

partition. As a result, no protein appears in more than one dataset partition, and no

structurally or biochemically similar residues are shared between training and evaluation

sets. Together, these safeguards prevent both representation-level and protein-level leak-

age, ensuring that reported performance metrics reflect true predictive power on unseen

proteins and local contexts.
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3. LigCys and LigBind model architecture, training and validation

3.1 Sequence-Only models

LigCys-seq models. LigCys-seq models were trained to perform per-residue inference

given the input sequence. The input protein sequence was tokenized and passed through

ESMC,S18 and per-token embeddings were extracted from layer 76, yielding a 2,560-

dimensional vector for each cysteine. As the pretrained ESMC weights are not publicly

available and the model cannot be fine-tuned, these embeddings were used in frozen form

as input to a three-layer feedforward neural network with hidden dimensions of 1,024, 516,

and 256, each followed by GELU activation. A layer normalization was applied to the input

embeddings prior to the hidden stack, and a dropout layer (p = 0.5) was inserted before

the final projection to a scalar logit representing the probability of cysteine ligandability.

Training is formulated as a binary classification task, with ground-truth labels of 1 (lig-

andable), 0 (non-ligandable), and 2 (masked). Masked residues are ignored during train-

ing and relabeled as 0 during evaluation. The AdamW optimizer is used with an initial

learning rate of 1 × 10−5 and weight decay of 1 × 10−5. Learning rate decay is applied

multiplicatively at epochs 1, 2, and 4–9 by factors of 0.9, 0.7, and 0.5, respectively. Each

model was trained for 10 epochs without early stopping. Twenty independent replicates

were trained to support ensemble evaluation and assess variance.

Mini-batches were constructed per protein, initially containing all residues from a single

input sequence. To address class imbalance, a 10:1 sampling ratio of negative to posi-

tive residues was enforced using a custom sampler. If a given protein contained too few

residues to populate a full batch, additional residues were randomly sampled from other

proteins in the training set to meet the batch size requirement. The loss function combined

binary cross-entropy with focal modulation (α = 0.66, γ = 1.0) and a positive-class weight

of 0.1. Model checkpoints were selected based on maximum validation AUPRC and sub-

sequently evaluated on held-out LC3D data using ensemble inference (see Section 3.3
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Model evaluations based on ensemble inference).

LigBind-seq models. LigBind-seq models share the same backbone embedding pro-

cedure as LigCys-seq models, using fixed 2,560-dimensional per-token representations

from ESMC layer 76. A simpler single-layer feedforward network was applied, consisting

of a layer normalization, a GELU-activated linear transformation (2,560→2,560), dropout

(p = 0.1), and a final projection to a scalar logit. This architecture was chosen based on

empirical performance during preliminary screening and was sufficient to capture ligand-

binding patterns from sequence alone.

Classification is binary, with residue-level labels of 1 (binding) or 0 (non-binding). No

masked residues were present in the LigBind3D database. The loss function was adap-

tive focal loss with 20 confidence bins, initial γ = 1.0, bin updates every 5 epochs, a

calibration-penalty term λ = 0.1, and γ clamped to [0.5, 5.0]. As with LigCys-seq mod-

els, all ESMC embeddings were frozen. Models were trained for up to 100 epochs using

AdamW (learning rate 1 × 10−5, weight decay 1 × 10−5), with early stopping triggered af-

ter 20 epochs of no improvement in validation loss. For each of 10 train/validation splits,

20 models with different random seeds were trained, yielding a total of 200 LigBind-seq

models.

Training batches were constructed per protein, enforcing a 15:1 ratio of negative to

positive residues using the same sampling strategy as for LigCys-seq models. If a single

protein did not contain enough residues to meet the minimum batch size of 256, additional

samples were drawn randomly from other proteins. Evaluation metrics were computed on

ensemble predictions (see Ensemble Inference and Model Selection) and included per-

protein AUROC, AUPRC, F1 score, and top-K recovery.
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3.2 Structure-Aware (SA) Models

Sequence-only models rely on contextual embeddings from ESMC. To incorporate explicit

structural information, we developed structure-aware (SA) extensions. For LigCys, we

introduced a disjoint adaptive gating unit (DAGU) to balance sequence embeddings with

engineered structural features. For LigBind, we concatenated geometric embeddings with

ESMC vectors without gating in this submission.

LigCys-SA models. LigCys-SA extends LigCys-seq by adding residue-level structural

features computed from ESM3-predicted tertiary coordinates. Predicted PDBs were con-

verted to solvent-excluded surface meshes with MSMSS20 (probe radius 1.4 Å). For each

residue we computed:

• Solvent accessibility and topology: per-atom SASA (freesasaS21) normalized by

maximal residue SASA; centroid–surface distance; mesh curvature; surface patch

area and concavity over a 5 Å geodesic neighborhood.

• Binding-site proximity: Euclidean and geodesic distances to ligand-binding residues

predicted by LigBind-seq (encoded in B-factors), summarized within 3 Å and 6 Å

(minimum, mean, median, standard deviation, counts).

• Structural confidence: per-residue pLDDT from the structure predictor.

• Local chemical environment: KaML-predicted absolute pKa shifts; normalized

SASA within 3 Å and 6 Å; ANCHOR2, VSL2B, and MDP disorder propensities from

RIDA, each with radial statistics and counts.

Features were clipped to finite bounds, log1p-transformed where appropriate, and miss-

ing values were imputed to zero, yielding ∼70 raw features. To reduce redundancy,

we removed near-zero-variance features and pruned one of each highly correlated pair
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(|r| > 0.9) after z-score normalization. The final non-redundant set comprised 45 features,

concatenated with frozen 2,560-dimensional ESMC embeddings for training.

To integrate modalities, LigCys-SA used the DAGU block. At each residue, the input

was split into an ESM block and a feature block. Each block was independently layer-

normalized and gated by per-sample, channel-wise masks derived from mean-pooled

block summaries passed through a linear layer with sigmoid activation. The gated blocks

were concatenated, jointly layer-normalized, and passed through an N -layer MLP with

GELU activations and dropout to produce a scalar logit. Optionally, the gating networks

and block-wise normalization parameters were frozen after a user-defined epoch to sta-

bilize blending.

Structural feature selection. The 45 selected features span six categories. Definitions

and units are provided in Table S1:

• Sequence–structure alignment: pKa shift, norm posn, plddt.

• Surface topology: surf patch area, surf patch concave frac.

• Cysteine exposome: d sg exposure depth, dir sg dist, mean hydrophobicity 8A,

density net charge 8A, and class densities over 0–3 Å, 3–6 Å, and 6–9 Å shells.

• Binding proximity: bind euc std, bind geo mean, bind count 6A.

• KaML summary: rad abs shift mean 3A, radial avg norm sasa 3A,

rad abs shift mean 6A.

• RIDA summary: anchor geo min, anchor geo mean, vsl2b label, vsl2b euc min,

vsl2b geo min, vsl2b count 6A, mdp label, mdp euc min, mdp euc med, mdp euc std,

mdp geo min, mdp count 3A.
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Table S1: Non-redundant set of 45 residue-level structural features used in LigCys–SA.

Feature name Definition

Sequence–structure alignment

pKa shift KaML residue pKa deviation

norm posn Normalized sequence position along chain (0–1)

plddt Per-residue confidence score (0–100)

Surface topology

surf patch area Mesh area in 5 Å geodesic patch

surf patch concave frac Fraction of patch vertices with negative curvature

Cysteine exposome

d sg exposure depth Offset of SG atom to nearest surface vertex

dir sg dist Ray-traced outward SG distance

mean hydrophobicity 8A Mean Kyte–Doolittle scale within 8 Å

density net charge 8A Net formal charge per residue within 8 Å

bin1.density.class Fraction of residues by class, 0–3 Å shell

bin2.density.class Fraction of residues by class, 3–6 Å shell

bin3.density.class Fraction of residues by class, 6–9 Å shell

Binding proximity

bind euc std Std. of Euclidean distances to binding residues

bind geo mean Mean geodesic distance to binding residues

bind count 6A Number of binding residues within 6 Å

KaML summaries

rad abs shift mean 3A Neighbor average |pKa shift|, 3 Å

radial avg norm sasa 3A Neighbor average normalized SASA, 3 Å

Continued on next page

S-19



Feature name Definition

rad abs shift mean 6A Neighbor average |pKa shift|, 6 Å

RIDA summaries

anchor geo min Minimum geodesic distance to ANCHOR2 residues

anchor geo mean Mean geodesic distance to ANCHOR2 residues

vsl2b label Binary indicator of VSL2B disorder region

vsl2b euc min Minimum Euclidean distance to VSL2B residues

vsl2b geo min Minimum geodesic distance to VSL2B residues

vsl2b count 6A Number of VSL2B residues within 6 Å

mdp label Binary indicator of MDP disorder region

mdp euc min Minimum Euclidean distance to MDP residues

mdp euc med Median Euclidean distance to MDP residues

mdp euc std Std. of Euclidean distances to MDP residues

mdp geo min Minimum geodesic distance to MDP residues

mdp count 3A Number of MDP residues within 3 Å

Features were computed from ESM3-predicted structures (MSMS surfaces; freesasa SASA), prepro-

cessed by clipping to finite bounds, log1p transforms where appropriate, zero-imputation for missing

values, and z-score normalization for correlation screening. Redundancy was reduced by removing

near-zero-variance features and pruning one of each pair with |r| > 0.9. Class “density” features de-

note fractions of residue classes within 0–3 Å, 3–6 Å, and 6–9 Å shells. Units: distances in Å, pLDDT

on 0–100, charge unitless, counts as integers, pKa shifts in standard chemical units.

LigBind-SA models. LigBind-SA extends LigBind-seq by concatenating residue-level

structural embeddings with ESMC representations. Structural embeddings were pro-

duced by an ensemble of eight pretrained geometric transformers (PeSTo architecture)

applied to ESM3-predicted coordinates. Each transformer encoded one-hot atom types

and 3D coordinates using a k-nearest-neighbor graph (up to 64 neighbors), updated rep-
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resentations with attention layers that integrate distance and orientation features, and

pooled atom-level vectors to residue-level embeddings via learned gating. Concatenated

ensemble outputs were combined with frozen 2,560-dimensional ESMC vectors and fed

to the same three-layer feedforward network as LigBind-seq (GELU activations, dropout

p = 0.1). Unlike LigCys-SA, the DAGU block was not applied here. Training followed

the LigBind-seq regimen (AdamW, learning rate 1 × 10−5, weight decay 1 × 10−5, batch

size 256, up to 100 epochs with early stopping after 20 epochs without validation-loss

improvement), with 20 replicates per split ensembled for final inference.

3.3 Ensemble inference

To enhance prediction stability and generalization performance, all models were evaluated

using ensemble inference. For each task (LigCys and LigBind) and model variant (seq and

SA), we constructed 10 non-overlapping data splits and trained 20 independent models

per split, yielding 200 trained models per setting. All replicas used identical configurations

but distinct random seeds and training shuffles.

To form an ensemble, we selected a single checkpoint from each replica corresponding

to the epoch with highest validation AUPRC. These 200 best-performing models—one per

replica—were then used to generate per-residue predictions for evaluation and ranked

recovery (see Model Evaluation and Ranked Recovery). For LigCys models, we applied

a top-k voting strategy with k = 1, whereas for LigBind models we employed probability

averaging. Ensemble predictions were thus aggregated using either (i) average probability

across models or (ii) per-protein top-k voting, in which each model contributed votes for

its k highest-confidence residues within a given protein.

Unless otherwise stated, top-1 voting was used for all ensemble evaluations. In this

setting, each model identifies the single residue in a protein with the highest predicted

ligandability probability. A residue is labeled positive if it receives a majority of votes (i.e.,

from at least 101 of 200 models). This aggregation strategy reflects practical constraints
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in experimental validation, where only a small number of high-confidence sites can be

tested.

All metrics—including AUROC, AUPRC, F1 score, and top-k recovery—were com-

puted on held-out test folds using ensemble outputs. Notably, the top-1 voting scheme

induces a natural binary decision threshold of 0.5: residues that receive majority support

(i.e., predicted as top-1 by at least 101 of 200 models) are labeled positive, while all oth-

ers are labeled negative. This provides a consistent framework for computing both ranked

recovery and threshold-based classification metrics from the same ensemble predictions.

The overall strategy consistently outperformed individual replicas and reduced variance

across splits, yielding robust, reproducible performance estimates.

Model evaluation and ranked recovery. All models were evaluated on held-out bench-

mark sets using standard classification metrics, including the threshold-independent met-

rics, area under the receiver operating characteristic curve (AUROC) and area under

the precision–recall curve (AUPRC). To provide an interpretable breakdown of predic-

tion behavior, we also computed confusion matrices at a fixed decision threshold of 0.5,

reporting the number of true positives (TP), false positives (FP), true negatives (TN),

and false negatives (FN). From these, accuracy was computed as (TP + TN)/(TP +

FP + TN+ FN), precision as TP/(TP + FP), recall (sensitivity) as TP/(TP + FN), speci-

ficity as TN/(TN + FP), and F1 score as the harmonic mean of precision and recall:

2 · (Precision · Recall)/(Precision + Recall).

We also evaluated ranked retrieval performance using top-k recovery. For each test

protein, residues were ranked by predicted ligandability probability. Given a set of N

known proteins and ligandable residues Li for protein i, 1 ≤ i ≤ N , and the set of residues

with top-k predictions Rk,i, 1 ≤ i ≤ N , top-k recovery was defined as the fraction of true

positive predictions in all Rk,i and the maximum number of true positives that could be

recovered at the given k threshold.
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Top-k Recovery =
1

Mk

N∑
i=1

|Li ∩Rk,i| ,

where

Mk =
N∑
i=1

min{k, |Li|}

is above mentioned maximum of recoverable positives.

We emphasize Top-1 recovery (i.e., k = 1) the primary evaluation metric, reflecting the

practical constraint in experimental screening where only a single site can be tested. This

metric directly addresses the critical question: when limited to testing one predicted site,

how accurate is the model’s top recommendation?

Because negative labels in LC3D testset are provisional – reflecting the absence of ob-

served interaction rather than confirmed inactivity – ranked recovery provides a more ro-

bust and biologically grounded assessment of model performance. This strategy accounts

for the uncertainty inherent in weakly supervised data and aligns with the platform’s goal

of guiding residue prioritization for experimental validation. Accordingly, top-1 recovery is

reported as the primary evaluation criterion across all benchmark comparisons.

All evaluation metrics were computed at the per-protein level, i.e., calculated sepa-

rately for each protein and then averaged. This formulation is more stringent than global

aggregation, as it mitigates bias from protein length or site count and emphasizes consis-

tency across targets. Reporting exclusively per-protein metrics therefore provides a more

realistic estimate of the performance an end user can expect when applying the model to

individual proteins in proteome-wide screens.

3.4 Auxiliary Modules

RIDA module. The Rapid Intrinsic Disorder Analysis (RIDA) module provides per-residue

annotations of intrinsic disorder and molecular recognition features (MoRFs) using the RI-

DAO engine,S22 which integrates widely used disorder predictors into a unified interface.
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For each input sequence, RIDAO reports per-residue predictions from all constituent tools

and aggregates them into a mean disorder profile that includes ANCHOR2S23 predictions

of molecular recognition feature (MoRF) propensity. MoRFs are short disordered seg-

ments that undergo binding-induced folding.

Within AiPP, RIDA outputs are incorporated as hand-engineered structural features for

the LigCys-SA model. These disorder-derived annotations provide local context relevant

to residue accessibility and conformational flexibility, especially in partially structured or

cryptically disordered regions. RIDA is not used in supervision, representation learning,

or label derivation, and is applied uniformly to all sequences post hoc. By integrating

disorder metrics directly into the LigCys-SA input feature set, AiPP leverages structural

plasticity signals to aid ligandability predictions in dynamic or non-globular regions.

KaML-ESM. KaML-ESMS24 is a sequence-based model for residue-level pKa predic-

tion, built from ESM embeddings and trained on curated experimental and synthetic

datasets. It achieves highly accurate pKa prediction across five types of ionizable residues

(Asp, Glu, His, Cys, Lys). A particular strength of KaML-ESM is the superior performance

in predicting cysteines that are deprotonated or titrating at physiological pH.

Within AiPP, KaML-ESM is used without modification to generate residue-level pKa

values, which are incorporated as electrostatic features in the structure-aware LigCys-SA

model. These values reflect local chemical environments and support identification of

reactive cysteines. KaML-ESM is not used in supervision, label derivation, or clustering;

its outputs are used solely as auxiliary inputs to enhance ligandability predictions without

requiring physics-based modeling.
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4. LigCys training data expansion

4.1 LC3D-guided data expansion

To increase the training data size and coverage while preserving high-confidence super-

vision, we applied an iterative data expansion procedure guided by model performance

on the Top-1 recovery of LC3D cysteines. The protocol started from the 4S–4R dataset

containing cluster representatives from proteins with both positive and negative cysteines.

The candidate pool. The candidate pool included cysteines meeting the same 4S–4R

consensus threshold, but from proteins containing exclusively positive cysteines, exclu-

sively negative cysteines, and non-representative cysteines of the cluster.

Expansion protocol. In each iteration, 100 batches, each with 175 cysteines (except

for 80 cysteines in iteration 1, 100 in iteration 2, 150 in iteration 3) are randomly sampled

from the candidate pool. Each batch was randomly assigned to the training or validation

set, while maintaining the same training/validation data ratio of 9:1. For each batch, 24

models, generated from 6 random splits and each with 4 models (different random seeds),

were trained and selected based on AUPRC on the validation set. The 24 models were

used to generate ensemble predictions (see section 3.3 Ensemble inference) for the LC3D

test set, and the batch that produced the model with the highest Top-1 recovery on the

LC3D cysteines was accepted. All cysteines from the accepted batch, along with their

labels, were then transferred from the candidate pool to the training pool. The iteration

continues until Top-1 recovery no longer increases. The final expanded set (4S–4R-e)

and the S10 hold-out test set were combined to train a production model, which was then

evaluated on the LC3D dataset. The performance metrics of the production and models

at each iteration are given in Table 2.
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4.2 LigCysABPP-guided data expansion

An alternative to LC3D-guided data expansion is to systematically expand data based on

cross validation AUPRC on the ABPP data. The baseline dataset from the LC3D-guided

expansion (4S–4R, proteins with both positive and negative Cys, cluster representatives

only) was used as the starting point for this alternative approach.

Batch construction. Candidate batches were assembled with a fixed composition of

exactly 25 positives and the remainder negatives per batch. During the early iterations,

when the training pool was relatively small, the batch size was set to 100 residues (25

positives and 75 negatives). As the pool expanded, the batch size was increased to

175 residues (25 positives and 150 negatives). Residues were drawn from the candidate

set in order of highest ensemble uncertainty—i.e., increasing | p − 0.5 | across baseline

checkpoints—so that the most uncertain residues were evaluated earliest.

Cross-validation. We used group-aware 10-fold cross-validation, with three replicate

models trained per fold using different random seeds, yielding a total of K×R = 30 models

for each baseline and candidate evaluation. The UID→fold assignment was generated

once at the start of the tournament, holding out 20% of UIDs for validation and requiring

each validation subset to match the global positive fraction within 1%. This mapping was

cached and reused throughout the tournament to minimize variance from resampling. At

the beginning of each iteration, a baseline ensemble was trained on the current training

pool using these cached folds, and the resulting checkpoints provided (i) a direct reference

for scoring candidate batches and (ii) per-residue ensemble uncertainty scores used to

prioritize residues during batch construction.

Controlling variance. Several safeguards ensured that observed performance changes

reflected the added residues rather than randomness. A single UID→fold mapping was

S-26



generated at the start of each tournament and cached for all evaluations within that tour-

nament; validation subsets were constrained to match the global positive fraction within

1%. After each acceptance step, any newly added UIDs were deterministically assigned

to folds to maintain balance while preserving existing assignments. To reduce long-term

partitioning bias, the tournament was periodically restarted with freshly generated folds

(after iterations 4, 8, and 12). All models within a given iteration (baseline and candidates)

were initialized from the same saved weight snapshot and trained with identical architec-

tures, losses, and optimization schedules (see “Model Architectures, Training, and Opti-

mization”). Finally, three random-seed replicas were trained per fold, and performance

was summarized as the mean across all K × R fold–replicate scores, with a 95% con-

fidence interval computed over those K × R values. Together, these design choices

minimized variance from partitioning and training stochasticity, isolating true performance

gains attributable to the added residues.

Tournament evaluation. For each candidate batch, a provisional augmented training

pool was formed by unmasking the corresponding residues in the candidate pool, and its

performance was evaluated on the same cached folds used for the iteration’s baseline

ensemble. This ensured that differences in outcome reflected the added residues rather

than variability in data partitioning. Performance was measured as AUPRC enrichment,

defined as ∆ = AUPRC − prevalence, which quantifies improvement over the random

baseline expected at the observed class balance. This normalization prevented shifts in

prevalence across iterations from spuriously inflating or deflating apparent performance.

Each batch was scored by the mean across all K × R fold–replicate scores, with a 95%

confidence interval computed over those values; batches were ranked by the lower CI

bound, emphasizing statistical robustness rather than raw average performance.

Recombination and selection. Each tournament iteration comprised up to four rounds.

In the first round, all candidate batches were scored directly against the baseline en-
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semble. In subsequent rounds, a hybrid genetic algorithm plus successive halving strat-

egy was applied: the top fraction of batches (20% in early iterations, 50% in later ones)

was retained, while the remainder were discarded. Retained batches were then recom-

bined through one-point crossover (swapping segments of residues between two parent

batches) and mutation (randomly altering a small fraction of residues to maintain diver-

sity), with an exploration fraction ϵ = 0.1 controlling the mutation rate, to generate new

candidates for the next round. The best-performing batch from the previous round was

always preserved.

Acceptance criteria and pool updates. At the end of each tournament iteration, the

overall best-performing batch was accepted if its lower CI bound or its mean enrich-

ment exceeded the baseline ensemble. Accepted residues were simultaneously merged

into the training pool—updating existing UIDs or creating new records as needed—and

masked in the candidate pool to prevent reselection. For each iteration, a detailed ac-

ceptance log was recorded and both check-pointed and augmented training pools were

saved; the process terminated when no candidate batch met the acceptance threshold.
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Supplemental Figures
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Figure S1: Analysis of cysteine ligandability across ABPP sources and records.
Each pie chart displays the number of liganded cysteines quantified by n sources. A
liganded cysteine is defined as one that has at least one pos ABPP record. Each pie
segment represents the number of cysteines labeled pos in 1, 2,.. m sources. This
visualization illustrates the level of consensus across different sources.
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Figure S2: Evaluation of LigCys-S and LigCys-A models on the ABPP hold-out set
at different source consensus thresholds. From the set of held-out proteins 9 test
sets are derived based on nS-nR consensus thresholds (n=1,...,9). The LC3D-expanded
(LigCys-S) and ABPP-expanded (LigCys-A) models are evaluated using these 9 test sets.
a. Number of labeled cysteines in the nS-nR test sets. b-d. AUPRC, Top-1, and recall
of LigCys-S and LigCys-A models in predicting liganded cysteines in the nS-nR test sets.
e-h. Outcomes of the predictions by the LigCys-S (open bars) and LigCys-A (filled bars)
models. Confusion matrix components, true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN), are shown as proportions of the total labeled
cysteines.
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Figure S3: Functional family classification and LigCys Top-1 prediction scores for the
ABPP unliganded or unseen proteins in the human proteome. This figure is to accompany
Figure 7.
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Gene: MC3R

UniProtID: P41968
Melanocortin receptor 3

Gene: GLP1R

UniProtID: P43220
Glucagon-like peptide 1 receptor
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Figure S4: Reversible binding propensity scores for MC3R and GLP-1R mapped onto the
ESM3 predicted (inactive) structures. The LigCys-predicted ligandable cysteine (C2376.30)
in MC3R and the analogous C3476.31) in GLP-1R are colored yellow and blue, respec-
tively. There nearby residues display low propensities (light pink color) for reversible bind-
ing.
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