Supplementary Information
High-entropy driven electronic and microstructural synergy for superior capacitive energy storage in lead-free ceramics
Yunting Li1, Peng Li1*, Haihua Huang1, Hairui Bai2, Fei Xu1, Jigong Hao1, Peng Fu1, Juan Du1, Zhongbin Pan3, Wangfeng Bai4, Wei Li1*, Jiwei Zhai5*, Zhenxiang Cheng6* 
1School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
2Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, China
3School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
4College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
5School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
6Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong 2500, Australia























[image: ]
Fig. S1 a Schematic illustration of a unipolar P-E hysteresis loop, defining key parameters for energy storage performance: recoverable energy density (Wrec), total energy density (Wtotal), efficiency (η), maximum polarization (Pmax), and remnant polarization (Pr). b Configuration entropy (Sconfig) values for BNT and BNSLT-xBMT ceramics with x = 0, 0.06, 0.08, 0.10, and 0.15. 
The Sconfig values are determined to be 0.69R, 1.21R, 1.63R, 1.72R, 1.80R, and 1.97R for BNT and x = 0 - 0.15 ceramics, respectively. When Sconfig < 1R, the material is classified as low-entropy. When 1R ≤ Sconfig < 1.5R, it is considered a medium-entropy material. When Sconfig ≥ 1.5R, the material is defined as high-entropy. 
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[bookmark: OLE_LINK3]Fig. S2 Additional TEM characterization of the core-shell structure (x = 0.10). a Bright-field STEM image of a core-shell grain. b EDS line scan profile (along the green arrow in a) across a core-shell interface. c Corresponding EDS elemental mapping. d HRTEM lattice fringe image.
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Fig. S3 Additional TEM and EDS analysis of the core-shell structure (x = 0.10).   a Bright-field and b HAADF-STEM images of multinuclear-type core-shell grain. c EDS elemental mapping. d EDS line scan profile (along the green arrow in a) across the core-shell interface. e HRTEM lattice fringe image of a series of well-defined core-shell interfaces. f Corresponding IFFT image.
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Fig. S4 HRTEM and IFFT analysis of core and shell regions (x = 0.10). HRTEM lattice fringe images of the core a and shell d regions. b, c, e, f Corresponding IFFT images for the areas marked in a and d.
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Fig. S5 SEM images and corresponding grain size distribution histograms for a BNT and BNSLT-xBMT ceramics with b x = 0, c x = 0.06, d x = 0.08, e x = 0.10, and f x = 0.15. Average grain size (AG) generally decreases with increasing entropy.
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[bookmark: _Hlk207735337]Fig. S6 Structural characterization by XRD. a XRD patterns of BNSLT-xBMT ceramics in the 2θ range of 20-80o. b Enlarged view of the (200)pc diffraction peak region.
[bookmark: OLE_LINK4]Diffraction peaks correspond to a perovskite structure. Asterisks (★) indicate minor secondary phase identified as Bi2Ti2O7 (PDF#-97-018-0395). In addition, it can be seen that the (200) diffraction peaks gradually shift to lower angles with increasing entropy, indicating lattice expansion due to heterovalent ion substitution.
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Fig. S7 Temperature-dependent dielectric properties. Relative dielectric constant (εr) as a function of temperature (εr - T) at various frequencies (1 kHz-1000 kHz) for a BNT, and BNSLT-xBMT ceramics with b x = 0, c x = 0.06, d x = 0.08, e x = 0.10 and f x = 0.15. g Modified Curie-Weiss law fitting for the diffuseness coefficient (γ).   
The dielectric anomaly peak Ts may be associated with the thermal relaxation of tetragonal and rhombohedral PNRs1. The dielectric anomaly peak Tm arises from the transition from the ferroelectric to paraelectric phase, which is commonly defined as Curie temperature (Tc). To quantitatively evaluate the relaxor behavior, the diffuseness coefficient (γ) was determined using the modified Curie-Weiss law as expressed in Eq. 12: 
                           (1)                             
[bookmark: OLE_LINK8]where ε is the dielectric constant, εm is the maximum value of ε at Tm, and C presents the Curie constant. Fig. S7g shows that as entropy increases, the γ values increase from 1.76 to 1.96, indicating significantly enhanced relaxor behavior, since a larger γ corresponds to a higher degree of relaxor characteristic. The enhanced relaxor level with increasing entropy arises from cation disorder and domain evolution, which is beneficial to improve Wrec and η.
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Fig. S8 Selected area electron diffraction (SAED) analysis. a Bright-field STEM image showing the location for SAED. b SAED pattern from the shell region, consistent with an average pseudocubic structure. c SAED pattern acquired across a core-shell interface. d Enlarged view of the boxed area in c, showing slight splitting of diffraction spots, indicative of lattice strain/distortion due to compositional heterogeneity.
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Fig. S9 Atomic-resolution polarization vector mapping along [001]c. HAADF-STEM images with overlaid polarization vector for the core a and shell b regions viewed along [001]c. This projection allows identification of T, R/O, and C phases.
[image: ]
Fig. S10 Polarization vector maps without atomic overlays. Polarization vector maps derived from HAADF-STEM data for the core a, c and shell b, d regions along both [001]c and [011]c zone axes, providing a clear view of the polarization direction distribution. 
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Fig. S11 Piezoresponse force microscopy (PFM ) analysis of domain dynamics. a Out-of-plane PFM phase image of the x = 0.10 ceramic. Out-of-plane PFM phase images after poling with voltages of b ±5 V, c ±20 V, and d ±30 V. Out-of-plane PFM phase images after subsequent relaxation for e 5 and f 15 minutes. Obviously, the written domains are metastable and revert to their initial state, confirming the high dynamics and low energy barrier for reorientation of the polar nanoregions (PNRs).  
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[bookmark: OLE_LINK1]Fig. S12 Optical band gap determination. UV-Vis absorption spectra and corresponding (αhν)2 vs hν plots (inset) for BNT and BNSLT-xBMT ceramics.
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Fig. S13 Finite element simulations of polarization distribution. Simulated polarization distribution under an electric field of 680 kV/cm for: a Model A (BNT, low entropy, large grains); b Model B (x = 0.10, high entropy, fine grains, no core-shell); c Model C (x = 0.10, high entropy, fine grains, with core-shell). The combination of fine grains and core-shell structure leads to a more uniform polarization distribution. 
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[bookmark: OLE_LINK6]Fig. S14 Thermal stability of energy storage and discharge properties (x = 0.10). a Unipolar P - E loops measured at 400 kV/cm across a temperature range of 25-125 oC. b Corresponding Wrec and η as a function of temperature. c Discharged energy density (Wd) versus time at 220 kV/cm under different temperatures. d Wd and discharge time (t0.9) at 220 kV/cm as a function of temperature, demonstrating excellent thermal stability.  
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Fig. S15 In-situ temperature-dependent XRD analysis (x = 0.10). a In-situ XRD patterns collected from 25 oC to 125 oC. b Thermal evolution of the (111) and (200) diffraction peaks, showing stable peak positions and shapes, indicating robust structural stability over the measured temperature range. 
Table S1 Relevant references for the Fig. 2h.
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