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1. Dataset visualization

Sine wave waveform
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Fig. S1 Different sine waves.
Triangle waveform
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Fig. S2 Different triangle waves.



Trapezoidal waveform
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Fig. S3 Different trapezoidal waves.
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Fig. S4 Pie charts on temperature, material, and waveform (In the second pie chart, 1 represents

3C94, 2 represents 77, 3 represents N27, and 4 represents N87; In the third pie chart, 1 represents

sine wave, 2 represents triangle wave, and 3 represents trapezoidal wave).
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Fig. S5 Distribution diagram of different frequencies.



2. Steinmetz Equation fitting results

166 Regression Fitting (3C94)
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Fig. S6 Comparison between the fitting results of the SE and the actual values for 3C94.
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Fig. S7 Comparison between the fitting results of the SE and the actual values for 77.
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Fig. S8 Comparison between the fitting results of the SE and the actual values for N27.

Regression Fitting (N87)
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Fig. S9 Comparison between the fitting results of the SE and the actual values for N§7.




3. Improved Generalized Steinmetz Equation fitting results

Tab. S1 IGSE training set fitting results

MAPE(
Material [k1.01,81] MSE MAE R?
%)
3C9%4 [0.024, 1.590, 2.204] 4602463142 34581.125 43.800 0.958
77 [0.042, 1.570, 2.224] 6269844974 41509.107 44.166 0.964
N27 [0.138, 1.430, 2.265] 6209107898 40541.740 38.024 0.972
N87 [0.306, 1.450, 2.266] 1920803175 22464.036 46.484 0.963
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Fig. S10 Comparison between the fitting results of the iGSE and the actual values for 3C94.
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Fig. S11 Comparison between the fitting results of the iGSE and the actual values for 77.
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Fig. S12 Comparison between the fitting results of the iGSE and the actual values for N27.
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Regression Fitting (N87)
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Fig. S13 Comparison between the fitting results of the iGSE and the actual values for N§7.




Histogram of Absolute Errors (3C94)
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Fig. S14 Error histogram of iGSE fitting results for 3C94.
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Fig. S15 Error histogram of iGSE fitting results for 77.



Histogram of Absolute Errors (N27)
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Fig. S16 Error histogram of iGSE fitting results for N27.
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Fig. S17 Error histogram of iGSE fitting results for N87.



4. Feature extraction

The following 33 features were extracted from the magnetic flux density
sequence:

1.Mean

2.Standard Deviation

3.Variance

4.Skewness

5.Kurtosis

6.Maximum Value

7.Minimum Value

8.Root Mean Square (RMS) Value

9.Peak-to-Peak Value

10.Zero-Crossing Rate

11.Spectral Centroid

12.Spectral Energy

13.Spectral Entropy

14.Spectral Peak at 1 Hz

15.Spectral Peak at 2 Hz

16.Spectral Peak at 3 Hz

17.Spectral Peak at 4 Hz

18.Spectral Peak at 5 Hz

19.Dominant Frequency

20.Spectral Bandwidth

21.Spectral Slope

22.Signal Power

23.Signal Smoothness

24 Low-Frequency Energy Ratio

25.Mid-Frequency Energy Ratio

26.High-Frequency Energy Ratio

27.Sum of Signal Values

28.Position of Maximum Flux Density Sequence

29.Position of Minimum Flux Density Sequence

30.First Quartile

31.Second Quartile (Median)

32.Third Quartile

33.Spectral Flatness



Wave Spectrum
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Fig. S18 Comparison of Time Domain and Frequency Domain Characteristics.



5. Prediction results of machine learning models

le6

Random Forest Predicted Values

3.5 1

3.0 1

2.5

2.0+

1.5 A

Core Loss

1.0 A

0.5 1

0.0 4

—&— True Values
=¥~ Predicted Values

o 4

250 500 750 1000 1250 1500 1750
Sample Index

Fig. S19 Comparison between the predicted results of the Random Forest and the actual values.
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Fig. S20 Distribution of Random Forest prediction values.




XGBoost Predicted Values
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Fig. S21 Comparison between the predicted results of the XGBoost and the actual values.

Prediction Values

Distribution of XGBoost Prediction Values
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Fig. S22 Distribution of XGBoost prediction values.




6. Prediction results of deep learning models

Loss
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Fig. S23 MLP-LSTM training and validation loss.
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Fig. S24 Comparison between the predicted results of the MLP-LSTM and the actual values.




166 Distribution of MLP-LSTM Prediction Values
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Fig. S25 Distribution of MLP-LSTM prediction values.
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Fig. S26 MNN training and validation loss.



MNN Predicted Values
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Fig. S27 Comparison between the predicted results of the MNN and the actual values.
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Fig. S28 Distribution of MNN prediction values.




7. Prediction results of all models

166 Comparison of Different Prediction Models
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Fig. S29 Residual between predicted and actual values of all models.
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Fig. S30 Percentage of residual between predicted and actual values of all models.




