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1 Overview

This supplementary information document provides comprehensive mathematical foundations and methodological details for
the spectral graph theory approach to analyzing brain connectivity in menstruation-related migraine. The document begins
with detailed mathematical descriptions of spectral mapping (Section 2), including adjacency matrices and structural walks
(Section 2.1), polynomial structure-function mapping (Section 2.2), eigen-decomposition theory (Section 2.3), and rotation
matrix formulations (Section 2.4) that enable proper alignment between structural and functional eigenspaces. Two main
methodological approaches are presented: the cumulative-contributions method (Section 3) which examines walks up to length
k with warm-start optimization (Section 3.1), Riemannian optimization processes (Section 3.2), MANOPT implementation
details (Section 3.3), and convexity analysis proving the non-convex nature of the optimization landscape (Section 3.4);
and the individual-contributions method (Section 4) that isolates single walk lengths through spectral least-squares fitting
(Section 4.1) and independent rotation optimization (Section 4.2- 4.4). The document includes validation frameworks such as
spatial alignment using the Network Correspondence Toolbox for quantifying overlap with canonical brain atlases (Section 5).
Comprehensive results are provided including three correlation metrics for performance evaluation (Section 6), and perturbation
analysis demonstrating robustness under multiplicative noise (Section 7). Extensive bootstrap validation using one-sided,
two-sided, and block bootstrap procedures (Section 8), and complete Network Correspondence Toolbox results tables (Section
9) showing spatial overlap statistics. Supporting materials include detailed anatomical parcellation information for the 130-ROI
atlas combining Schaefer-100 and AAL-30 regions, with the methodology demonstrating that structural walks of length 2-3
capture over 95% of structure-function relationships while showing robust performance under realistic data perturbations and
revealing consistent group differences between migraine patients and controls.

2 Spectral mapping: Mathematical Description

To predict the functional connectivity matrix £ € R130*130 from the structural connectivity matrix S € R139*130 we propose
a model that defines F'(S) as a polynomial transformation of S, aligned through an orthogonal rotation, such that F(S)
approximates the empirical functional matrix F € R!30%130 a5 closely as possible under a similarity metric.

2.1 Adjacency matrix and structural walks

In graph theory terms, the adjacency matrix S of the brain’s structural connectome naturally gives rise to the notion of a walk: a
sequence of regions (io7 iy ..., ik) in which each consecutive pair (ix_1, i) is connected. This definition permits repeated visits
to the same region. Each region is represented as a node in the structural graph encoded by the matrix S. By contrast, a path is a
walk in which each node appears at most once. These two concepts are illustrated in Figure 1.

Figure 1. Examples of paths and walks in the human connectome illustrate the numerous communication channels between
two arbitrary regions i and j, reflecting core concepts in brain network communication models as discussed by Seguin ez al.!.
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To explore the structural walks, we consider the graph’s adjacency matrix S, an N x N representation (N = 130) in which
each off-diagonal entry S;; € [0, 1] denotes the normalized strength of the undirected connection between regions i and j. By
construction, § is symmetric (S;; = §;) and has zero diagonal entries (S; = 0), since no region connects to itself. Crucially,
successive powers of this matrix S, $?, S3, ... encode walks of increasing length: the entry [S¥]; ; aggregates the number and
strength of all length-k walks from node i to node j. Analyses of these matrix powers provide direct insight into the brain’s
polysynaptic structural pathways.

To illustrate this, let the vertex set be

V={ai,a,a3,..,an} ey

and define the weighted-adjacency matrix

0 Sajay  Sajas -+ Sajay
Sajay 0 Sayay -+ Sayap
S = | Sajazs  Saras 0 ... Sua, , Sy = Sy € [0,1], 550 = 0. 2)
Sayan  Sayay  Sazan - - 0

For any vertices x,y,w € V the (x,y) entry of the square S is

(Sz)xy = Z Sxw Swya 3

wev

which equals the total weight of all walks length size 2 from node x to node y that pass through node w. w. If we expand
this to S instead of S2, we get the following:

Claim 1. For every integer n > 1 and all vertices x,y,v; €V,

(Sn)xy = Z Z Z (SXVI Svivy "'sVn—l)’>' @

vieVeV Vp_1€V
The nested sums run over all length-n walks x to v to v,_1 toy, and the product multiplies the n corresponding edge-weights.

Proof. Base case n = 1. Since S' =S, we have (8)xy = Sxy, the weight of the single edge x to y (or O if the edge is absent).

Induction step. Assume the formula holds for some n > 1. Then

(SnJrl)xy = Z (Sn)xw Swy~ (5)

wevV

By the induction hypothesis, (S"),, already represents the total weight of all walks of length n from node x to node w.
Multiplying by S,y corresponds to adding the final edge from node w to node y, so each product accounts for the weight of a
walk from x to y of length n 4 1, passing through w as the penultimate node. Summing over all possible intermediate nodes w
thus gives the total weight of all walks of length n+ 1 from x to y.

O

2.2 Polynomial structure—function mapping

The Cayley-Hamilton Theorem states that if A € R"*" is a real symmetric matrix, and f(A4) denotes its characteristic polynomial,
then the matrix A satisfies its own characteristic equation. Which means, f(A) = 0, where,

Sf(A) =det(AI—-A). (6)
Writing the characteristic polynomial explicitly as
FA) = A"+ A" 4+ eid +co, ©)
the Cayley—Hamilton theorem asserts that

f(A):An_’_cn_lAnfl+...+C1A+CO]:0. 8)
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As a consequence, for any integer k > n, the power A* can be expressed as a linear combination of the elements in
{I,A,A?,... ,A""'}. That is, higher powers of A are redundant and lie in the span of the first n powers.

We have now a polynominal function, f(A), that reconstructs a symetric matrix n X n, in terms (powers) of the A matrix
which is exactly what we want. Let S € R"*" denote the structural connectivity matrix of a brain network (symmetric, real),
and let F € R™" be the empirical functional connectivity matrix observed. The goal is to approximate F by a function of S.
We can therefore consider an estimated functional connectivity matrix £ that approximates the empirical matrix F as a linear
combination of powers of the structural connectivity matrix S, allowing us to write

n—1
F =Y as 9)
=0

Although an "infinite" power series of S is needed to predict the original F' matrix from the S matrix, the Cayley-Hamilton
Theorem ensures that for an # x n matrix, all powers S with k > 130 can be exactly expressed in a linear combination of
elements {I,S,...,5'?°}. Hence, no further degrees of freedom arise beyond these n coefficients. By Cayley-Hamilton, the
empirical functional connectivity matrix F' admits an exact (in principle) or low-dimensional (in practice) approximation as a
polynomial in the structural matrix S, providing a principled bridge between anatomy and function in brain networks. As we
will later see, and in line with previous findings, high-order terms beyond S” contribute negligibly to the prediction?, making
such high-degree expansions unnecessary in practice.

2.3 Eigen—decomposition
Eigen-decomposition is a technique that allows to represent a squared matrix in simpler terms.

In our problem, we are dealing with n X n matrices (squared matrices), in this case, if we consider a non null vector v and
a generic symmetric matrix A, if we multiply Av, we are just escalating the vector v, by a constant factor A. This important
relation, can be expressed as:

Av = Av. (10)

If we try to isolate A, solving (10), we obtain the following:

A=VAV l=vAVT, (11)
where
A, 0 0
0 M 0
A = _ , (12)
0 0 y

collects the eigenvalues in descending order, and

Vit V12 -t Vin
var V22 ot V2

v=1|. . . | (13)
LVnl  Vn2 = Vin

contains the corresponding orthonormal eigenvectors.

The decomposition expressed in (11) is significant because it transforms matrix operations into simpler, scalar operations
involving eigenvalues, making computations easier.

Because in our problem the structural connectivity S matrix is symmetric, it admits the eigen-decomposition, given by

S=VAV I =vVAVT, (14)
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with

A =diag(Ai,...,Ay), V=][v]eR™" (15)

If we consider the spectral mapping analysis done in Section 2.2 we can reformulate f(S) with more simple element-wise
polynomial terms:

k k k
f8) =Y alvAVT) =V (;aiA’)VT - V(;)aidiag(li))VT. (16)

i=0

2.4 Rotation Matrix

We cannot simply set ' = f(S), as this would produce a matrix whose eigenvectors align with those of S. However, the
eigenvectors of § and F generally span different eigenspaces. As a result, such a mapping would fail to capture the actual
structure of F.

To illustrate this, we consider a toy example. In the figures 2 and 3 , we visualize the eigenspaces of toy S and F matrices to
highlight their differences.

Lo Ellipse from f(S) (structural coordinates)

v2
0.75

0.50
vl
0.25
0.00
-0.25

—0.50

-0.75

-1.00

—]‘..5 —1‘.0 —6.5 OiO OjS l:O l:5

Figure 2. Tllustration of the mapping f(S) = ao/ + @S in the structural eigenspace. This figure shows the unit circle
mapped through the toy structural matrix S using a first-order polynomial f(S) = apl 4 a;S. The result is an ellipse (in orange)
whose principal axes align with the eigenvectors v and v, of S, scaled according to the polynomial coefficients. This
transformation remains locked into the structural eigenbasis (V-basis), meaning that the directions of deformation are entirely
governed by the structure of S, regardless of the target matrix F. This highlights the limitation of using f(S) directly to
approximate F': although the spectral values may be matched, the directional (eigenvector) information is misaligned.

5/23



Mapped Ellipse in Functional Basis

1.0} u2
0.5f
0.0f
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-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Figure 3. Illustration of the target functional matrix F in its eigenbasis. In this figure, the same unit circle is mapped
through the toy functional connectivity matrix F', producing a new ellipse (in orange). The ellipse now aligns with the
eigenvectors uj and u of F, which define the functional eigenbasis (U-basis). Although the shape of the ellipse may be similar
in scale to the one from f(S), its orientation reflects the distinct eigenspace of F. This visual discrepancy demonstrates that
directly using f(S) without a change of basis cannot capture the correct geometry of F; both eigenvalues and eigenvectors must
be accounted for, motivating the introduction of a rotation matrix R € SO(n) to realign the eigenspaces.

This example highlights the core issue: without a change of basis, it is not possible to simultaneously match both the
eigenvalues and eigenvectors of S and F.

If we select the coefficients ; to ensure that the eigenvalues of f(S) match those of F , the resulting matrix will still be
misaligned in terms of direction, it will have incorrect eigenvectors. Conversely, if we force the eigenvectors to align, we lose
the correct spectral magnitudes.

To overcome this, we must perform a change of eigen-basis to align the spectra correctly. Specifically, to match the
empirical functional eigenspace, we introduce a rotation matrix R € SO(n), resulting in

k
F(S)=Rf(S)R" = RV( a,»diag(/l"))VTRT. (17)
i=0

=

This R matrix needs to have some specific proprieties. It should represent a pure rotation, preserving the magnitude and
distances in the transformed space without any scaling or distortion, representing a change of coordinates. For that, it is
mandatory that the det(R) = 1 because the determinant of a matrix, in this case R, equals the volume of a box in n-dimensional
space’. The edges of the box come from the rows of R, in Figure 4. The columns of R would give an entirely different box with
the same volume.
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as1, a32, as3)

Yy

(az1, a22, azs)
(a11, a12,a13)

xr

Figure 4. Geometric interpretation of the rotation matrix R in R>. The figure shows the parallelepiped formed by the row
vectors of R, with each edge corresponding to one of the rows. The volume of this box equals the absolute value of det(R),
which must be unitary to preserve orientation and volume under rotation. This ensures that R € SO(n), is a proper rotation
matrix with no reflection or scaling.

Knowing that the determinant should be unitary, in order to keep the eigen space and preserving the magnitude and distances,
we can think that R should integrate the group of orthogonal matrices, which have their determinant unitary, as prooved below.

Proposition 1. [fR € R"™*" is orthogonal, i.e. RT R = I, then det(R) = +1. Equivalently, an orthogonal matrix either preserves
or reverses oriented volume.

Proof. Since R is orthogonal,
R'R=1

Taking determinants and using det(AB) = det(A) det(B) and det(R”) = det(R) gives

det(RTR) = det(I) = det(RT)det(R) = 1 = det(R)*>=1. (18)
Hence
det(R) =41 or det(R)=—1. (19)

Thus, the following holds:
e If det(R) = +1, R is orientation-preserving and scales every volume element by +1. Equivalently, R is a “pure” rotation.

e If det(R) = —1, R is orientation-reversing (a rotation combined with a reflection), still preserving volume magnitude but
flipping its sign.

O

If det(R) = —1, then R includes a reflection and is not in SO(n). However, one verifies easily that (—R) £(S) (—R)? =
Rf(S)RT.

Since the two factors of —1 cancel. Moreover, det(—R) = (—1)"det(R) = (—1)"(—1). In particular, when n is odd,
det(—R) = +1, and —R is a valid pure rotation in SO(n) yielding the exact same mapped matrix F'.
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3 Supplementary methods: Cumulative-contributions

Using the strategies described in Section (2), we seek to infer an individual functional connectivity matrix F € R"*" from the
corresponding structural connectivity matrix S € R™*". This structure—function mapping problem is approached here through
the spectral methodology introduced by Becker et al.%. Specifically, we approximate the unknown mapping by a finite-degree
polynomial in S, an approach we call individual spectral mapping.

Let k € N denote the maximum walk length considered. The model can take the form as seen before

k
f8) =Y as, (20)
i=0
where the coefficients ; € R (i = 0,...,k) are estimated from data. The identity term S° = I, captures intrinsic (zero-step)

interactions, while the higher powers S’ (i > 1) encode walks of length i in the structural network. Appropriate weighting by
{a;} therefore enables the model to balance direct and polysynaptic pathways, yielding a concise yet flexible representation of
the structure—function relationship.

Because (20) is a sum of successive powers, each additional term augments the information already supplied by shorter
walks. Consequently, f(S) integrates the cumulative contribution of all walks whose length does not exceed k. Increasing k,
therefore, broadens the dynamic range by progressively bringing longer anatomical pathways into play, while still retaining the
weights of all shorter walks.

Considering that S is symmetric, we use its eigen-decomposition as in (14)—(15). Applying this decomposition to (20)
yields

k . k k
F&) =Y a(vavT) = Y av AvT =v(Y aidiagA))V", @n
i=0 i=0 i=0

where diag(A?) denotes the diagonal matrix of ith powers of A.

Introducing R € SO(n), the rotated prediction becomes
A k H
F(S)=Rf(S)R" =RV (Z a; diag(w)) V'R, 22)
i=0

The unknown rotation R and coefficients {q;} are then obtained by minimising the Frobenius-norm misfit:

Rmin IF—FES)|F =Y. ([Fl — [Flij)*,
ai} ij 23)
st. RR"=R'R=1,.

The optimization task can than be written from (23) and (21) in to

2

k
min [[F~F|7= min |F—RV(Y adiagA))VTRT|  subjectto R'R=1. 24)
? i=0

ao,...,ak,R ag,..,Aaj R

F

3.1 Finding initial values for optimization - Warm-start
Following Becker et al.?, we initialize at

k
R*=UV', diag(¢)~ Y adiag(A’), (25)
i=0
which drives the norm in (23) to zero for k to oo. For finite k, we solve

k .
Igli? |diag(@) — ) a;diag(2") Hi, (26)
ai i=0
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via the Vandermonde matrix

1 A - Mf
L=|: . at=(L"L)7 L. 27
I A - A
3.2 Optimisation Process
After finding the initial values for optimization, we can advance to the optimization and iterative phase. Equation (24) constrains
the rotation matrix R € SO(n) = {Q € R™" | Q" Q =1, a smooth! but curved manifold. Standard unconstrained algorithms
operate in the Euclidean space R"*" and would therefore leave SO(n). To solve this issue, we adopt a Riemannian-optimisation
framework.
In the proposed framework we start the optimization process by defining a mixed search space, given by:

M = SO(n) x R x=(Ra)e.#, a=(ap,....a)". (28)
R a

Where R lives in a non-euclidian space and the coefficients a = (ao, . . . 7ak)T, live on an euclidean space.
The cost function

il —R, f(Ra)= H F fRV():’E:Oagdiag(M))VTRTHi, (29)

depends on V € R™ " (the eigenvectors of S) and A € R” (the associated eigenvalues).

With respect to the gradients, at iteration f we compute the Euclidean derivatives Vg f € R"" and V,f € R, Because R
is constrained to SO(n), only directions inside its tangent space are admissible.

Because R is required to remain in the special-orthogonal group, a legitimate search direction must belong to the tangent
space.

To obtain such a direction we orthogonally project the full matrix Vg f onto this tangent space. The projection operator is
denoted ITg : R"*" — JxSO(n):

gradg f = TIg(Vr/) (30)

Here, Vi f is the Euclidean gradient with respect to R, and the resulting matrix grady, f is the Riemannian gradient of f at R.

For the polynomial coefficients a = (a,...,a;) " € R¥!, which are not subject to any manifold constraint, the Riemannian
and Euclidean gradients coincide:

grad, f = Vof € RFL (31)

These two quantities, grady, f and grad, f, together provide the full gradient on the product manifold .# = SO(n) x Rk+1
used by the Riemannian optimisation algorithm.

Considering the search direction and retraction part, if we let A, = (Ag,Ax) € Tk, SO(n) x R**1 be a search direction. A
step of length 1, > 0 produces the tentative update

ﬁZRt+ntAR7 5=at—ntAa. (32)

Because the tentative update R=R + N: Ag does not necessarily satisfy the orthogonality constraint, we map it back to the
manifold with a retraction.

R[+1 - RetrR,(Th AR), a[Jr] = a[ - T’t Aa. (33)

The operator Retrg(-) guarantees that R,.; € SO(n) while preserving the local geometry, so the new pair (R;+1,a,41) again
lies in the product manifold .# = SO(n) x R¥*! and serves as the next iterate. The concrete numerical realisation of this
retraction is detailed in the implementation details subsection (3.3).

1SO(n) is a compact Lie group of dimension n(n — 1) /2.
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3.3 Implementation details (MANOPT baseline)

All optimisation routines were implemented in MATLAB using the MANOPT toolbox *. The optimization process was done
following the steps indicated below:

* Rotation component. The factor rotationsfactory (n) initiates the Riemannian geometry of the special-orthogonal
group SO(n) = {R € R™" | RTR = I, detR = 1}. It provides intrinsic routines for projection (proj), retraction (ret r),
and conversion from Euclidean to Riemannian gradients (egrad2rgrad).

+ Coefficient component. The vector of polynomial coefficients a = (ay, ..., a;)' € R¥*1 is modelled by the Euclidean
manifold euclideanfactory (k+1,1).

+ Cartesian product. The full search space .# = SO(n) x R*! is declared via productmanifold with the two
COmpOnentS above.

To calculate the costs and gradients, we proceed in the following way:

* Cost handle. The objective in (24) is coded in frob_error_combined.m. Given a point x = (R, a), it builds the
spectral filter in the structural eigenbasis, forms F, and returns ||F — F||%.

* Euclidean gradient. Closed-form derivatives with respect to R and a are implemented in frob_grad_combined.m.
manopt automatically projects Vg f onto JxSO(n) and leaves V, f unchanged.

The optimisation is launched with the Riemannian L-BFGS routine r1bfgs. In our experiments Riemannian L-BFGS
with step size 0.1 and tolerance 10~ yielded a reasonable trade-off between speed and robustness. Preliminary experiments
confirmed that these hyper-parameters balance speed and robustness across all subjects and walk lengths £ < 10. For comparison,
the conjugate-gradient and trust-region solvers yielded similar solutions but required more computation time.

Stopping criterion. Iterations terminate when || grad f(x;)||2 < 10~8 or when the step size drops below 1072, In practice the
gradient tolerance is met first.

3.4 Convexity

There are great advantages to recognizing a problem as a convex optimization problem. The most basic advantage is that the
problem can then be solved, very reliably and efficiently, using interior-point methods or other special methods for convex
optimization®. To reach that goal, we must characterise the landscape of the objective function f(R,a), describe by the
optimization problem represented by (24). To characterise the optimisation landscape we begin by recalling the notion of
convexity in Euclidean space’. A function g : RY — R is convex if, for any two points x,y € R¢ and any r € [0,1],

gltx+(1—1)y) < tg(x) + (1—1)g(y). (34)

Equivalently, its Hessian is positive semidefinite everywhere, a synonym of convexity >, which guarantees that all local
minima are global minima, a characteristic that simplifies the optimization process if verified.

In our problem, however, the orthogonality constraint R7 R = I forces the rotation variable R to lie on the manifold SO(n)
rather than in a Euclidean space. This non-Euclidean geometry invalidates the standard euclidean notion of convexity, since it
cannot form arbitrary linear interpolants between two rotations.

To generalise convexity to this setting, one replaces the straight segment z x+ (1 —¢)y by the geodesic ¥(z) on the Riemannian
product manifold SO(n) x R¥*1. A function f on this manifold is said to be geodesically convex if, for every pair of feasible
points (Ry,a;) and (Ry,a), and for every ¢ € [0, 1],

f(r(0) < tfRisar) + (1-1) f(Ry,a2), 35)

where ¥(0) = (Ry,a2), (1) = (Ry,a1), and ¥(t) traverses the shortest path in SO (1) x R*1, Geodesic convexity is equivalently
characterised by positive semidefiniteness of the Riemannian Hessian on each tangent space, and likewise ensures that any
local minimum is global.
By simplifyng the problem and constructing a two-dimensional toy case in SO(2) x R, we can verify this Jensen inequality.
For that, if we consider k = 1, ag = 0 and a@; = a € R, we force f(S) = aS and the modified optimization function is given
by
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min
R.,ap.a;

2
Udiag(@)U" — RV diag(ao+aiAf)VTR" HF subjectto R R =1. (36)

This modified problem, implies that (R € SO(2)), so a possible R matrix that complies with the orthogonal restriction could
be

_ [COSO —sin 9] ’ 37

sin@ cosO

which represents a valid rotation by angle 6 and satisfies R(0) 'R(8) = I.
A convenient way to assess the convexity of the objective is to visualise its simplified form through contour and surface
plots, that are presented in Figures 5a and 5b.

Contour Map of the Objective Function Objective Function Surface

35
&> Objective function levels 35
X Local minima
30
2 20
= 40
[ 25 35 25
1 30 |
20 25 Lonin 20
w
0 22
15
15 &
10
4 -
5
= 10 10
0
» I 4 05

¢ (angle of R)

0 15
2 2
05 1 15 2 25 0 (angle of R) 4 25 a

(a) Contour (2-D) view (b) Surface (3-D) view

Figure 5. Side-by-side visualisation of the simplified objective function: (a) contour plot and (b) surface plot. Together they
reveal the presence of multiple valleys, confirming the non-convex character of the objective function.

After visualizing non-convexity, we also prove that the function violates Jensen’s inequality, establishing non-convexity.
To test the inequality in (36) on this manifold we pick two feasible points

(Ri,a1) = (R(0),0.8),  (Ry,a2) = (R(7),2.5), (3%

where R(6) is the rotation matrix defined above. The unique geodesic ¥ : [0,1] — SO(2) x R joining these points is given by

Y1) = (R(7), (1 —t)ai +1az),  1€[0,1], (39)
so that the midpoint is y(1/2) = (R(7/2),1.65). Evaluating the objective we obtain
F(R1,a1) =2.9592,  f(Ry,a2) = 10.9900, f(y(1)) =17.6173. (40)

Jensen’s geodesic condition would require £(¥(3)) < 3 f(Ri,a1) + 1 f(Rz,a2) = 6.9746, but the computed values violate
this inequality 17.6173 > 6.9746.

Hence, even in the two—dimensional setting the objective is not geodesically convex, implying that the full high—dimensional
problem inherits a non-convex landscape with multiple local minima.
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4 Supplementary methods: Individual-contributions

Where the cumulative model in Section 3 sums every walk up to order k£ (20), here we isolate the predictive power of a single
walk length k € {1,...,knax }- The structural-function mapping therefore reduces to the smaller parameter model

fi8) = aol, + aSk, ao,ar € R, 41)

which is fitted independently for each k. This restriction removes all dependences from walks sizes lower than k that characterise
the cumulative approach.

4.1 Spectral least-squares fit on eigenvalues
Let S = Vdiag(A)V " be the eigendecomposition of the structural matrix with eigenvalues A = (A;,...,A,) . Substituting into
(41) yields the spectral form

fulS) = v(a01+ak/l") vT, (42)

with A denoting the element—wise k-th power. Analogous to (27) in the cumulative section, the Vandermonde-type matrix
for the individual fit is

1 af
Li=|: |, ¢=(¢0), (43)
1 Ak
where ¢; are the eigenvalues of the empirical functional matrix in its own basis. Solving the 2 x 2 normal equations gives
ag _
[ag] = (L L)™' Ly 9. (@4

In contrast to the (kmax+ 1)-column system faced in the cumulative model, (42) contains only two columns, minimizing
complexity.

4.2 Rotation step and optimisation problem
Reintroducing orientation, the functional prediction associated with walk length k becomes

Fe=RA(S)R™ =RV(aol +ad*)VTRT, (45)
so that the unknowns (ag,ay, R) are obtained from the Frobenius—norm mis-fit
in |F —RV (aol, +axS)VTRT||%, st. RTR=RRT =1,. (46)
>a0,4k

which lives on the product manifold .# = SO(n) x R? ( (28) for the cumulative analogue).

4.3 Finding initial values for optimisation — Warm-start

The warm-start follows exactly the procedure used in the cumulative case (see (25)). First, we align the eigen-bases of the
structural and functional matrices by setting R* = UV |, where U contains the eigenvectors of . With this rotation held fixed,
we then obtain the coefficient estimates a;; and af from (44). optimisation.

4.4 Optimisation process
As in Section 3.2, we adopt a mixed Riemannian framework: R lives on SO(n) while (ag,ay) lie in an unconstrained Euclidean
space. Manopt factories and dimensions are summarised below:

Component Manopt factory Dimension
Rotation R rotationsfactory (n) n(n—1)/2
Coeffs. (ap,ay) euclideanfactory(2,1) 2

The cost and gradient handles are identical to the cumulative approach except that the spectral model that now uses (46). We
launch r1bfgs with step size 0.1 and tolerance 10~8; stopping criteria mirror those in the cumulative section 3. The convexity
analysis presented in Section 3.4 applies unchanged to the individual—-contributions model.
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5 Spatial Alignment with the Network Correspondence Toolbox

To determine what regions are involved in the results obtained in the main article, we quantified the spatial correspondence
between individual hub maps and multiple canonical atlases. Demonstrating a preferential alignment (or mis-alignment) with
specific networks can provide insights into disease-related reorganisation of the connectome and can, in this case, help pinpoint
which regions may mediate migraine pathology.

The spatial overlap between our subject—level hub maps and canonical functional atlases was quantified with the Network
Correspondence Toolbox (NCT),°. which first projects each volumetric map, then computes Dice coefficients, and finally
assesses significance with spatial “spin” permutations that preserve surface autocorrelation.

For each group (patients and controls), the computation pipeline was the following:

130x130

1. The functional connectivity (FC) matrix F €[—1,1] was summed row by row to obtain a degree vector. d; =} Fj;.

2. Voxels belonging to ROIs whose degree exceeded the 75th percentile (top 25%) were assigned the value 1; others 0. This
yielded a binary individual hub mask Hgyp;.

2‘Hsubj r-\|Aref|

3. For every reference network Ay the Dice coefficient Dice(Hgypj, Aret) = o ocg]
subj Te;

was computed.

4. Spatial significance was evaluated with Nperm = 5,000 random rotations (spin test) 7. An empirical p-value was assigned
as the proportion of spins whose Dice > the observed value.

5. NCT’s “network-clock™ and “radar” plots were generated for every group and are displayed in Fig. 6 and 7 on the main
article, and in the Tables 2 and 3.

The complete workflow of the Network Correspondence Toolbox and an example of its summary outputs are illustrated in
Figure 6.

= Atlases
D :CONF'G Fil= | | - Name: 28R
NAME: 2BK + SPACE: fs_LR

 TYPE: Metric
TYPE: Metric

A [Input Data

[ C_J Network Correspondence (Dice overlap)

@ + Compute Dice overlap between input data
and all networks.
« Perform spin test to test the significance of
L Dice-overlap.

D |{ Network Clock [-——- —-- <

Figure 6. Visual workflow and summary outputs of the network correspondence analysis. This figure summarizes the use
of the CBIG Network Correspondence Toolbox (NCT) to evaluate the alignment between functional hub maps and canonical
brain networks. (A) Subject-specific input data, including cortical hub maps and configuration files, are defined alongside the
target atlas list. (B) Selected network atlases are aligned to the subject space for comparison. (C) The core analysis computes
Dice overlap between hub maps and reference networks, and performs permutation-based spin tests to assess statistical
significance. (D) Final outputs include a Network Clock plot showing Dice values across networks, and a Summary Table
reporting Dice coefficients and empirical p-values.
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6 Correlation Metrics

To quantify how well the predicted functional connectivity matrix £ approximates the empirical matrix F, we evaluated three
complementary metrics across walk lengths k € {1,...,7}. Each metric captures a different aspect of approximation quality
and is visualized for both control and patient groups in Figures 7 and 8.

1. The Frobenius error quantifies the total squared difference between F and F':

n n
Eron ) = |[F—E13 =Y. Y. (F;—£)°.
1

i=1j=

It reflects the total prediction error, including both structure and scale. In both groups, this metric drops sharply for small
k and plateaus beyond k = 3 (in blue, in Figures 7 and 8).

2. The upper-triangular (off-diagonal) Pearson correlation assesses similarity in connection patterns, independent of absolute
scale. It is defined as:

Lo (m — %) (Ym —3)
Pote(k) = corr(x,y) = Tl 7x)2\/y):m(yi; -k

where x and y are the vectorized upper triangles of F and . This is sensitive to pattern alignment but invariant to overall
magnitude. This correlation increases rapidly up to k = 2 and decreases slightly beyond that point (in green, in Figures 7
and 8).

3. The spectral-domain Frobenius error measures how well the predicted eigenvalues match the true spectrum of F in the
aligned basis. With A; the eigenvalues of S and ¢; the aligned eigenvalues of F, we compute

n 2
EspecVec(k) = ||¢_(P||%: Z (a0+alk]]§_(pj) .
Jj=1

This metric isolates spectral approximation error and is particularly informative when analysing models constrained to
fixed walk lengths. It is shown in red on Figures 7 (controls) and 8 (patients).

These three metrics provide an understanding perspective of the model performance. They are used throughout the study to
evaluate reconstruction quality, compare models, and to analyse robustness across cohorts.
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Three metrics vs. walk length
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Figure 7. Control group: summary of three error metrics. (Blue) Frobenius error quantifies residual energy between
predicted and empirical connectivity. (Green)) Upper-triangle Pearson correlation measures pattern alignment. (Red)
Spectral-domain error measures eigenvalue misfit in the aligned eigenspace of F.
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Figure 8. Patient group: summary of three error metrics. Same layout as Figure 7, showing error trends and correlation
profiles for the migraine group across walk lengths k =1,...,7.
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7 Perturbation Analysis

The process of obtaining the experimental matrices S and F for each individual is exposed to noise. The goal is then to test how
well the spectral mapping between structural S and functional F connectivity matrices holds up when noise is introduced to the
structural connectivity matrix S, helping to understand if the mapping process is reliable under realistic imperfections in data.

To that propose, let’s consider simple and examplificative 4 x 4 structural S and functional F connectivity matrices. Let’s
consider, two randomly generated matrix that maintain the main characteristics of the matrices S and F.

1.0000 0.4119 0.6857 0.6314 1.0000 0.4763 0.4594 0.7309
P 0.4119 1.0000 0.8290 0.5109 S— 0.4763 1.0000 0.1207 0.6043
0.6857 0.8290 1.0000 0.3835 0.4594 0.1207 1.0000 0.5647
0.6314 0.5109 0.3835 1.0000 0.7309 0.6043 0.5647 1.0000

With these matrices, it is possible, by solving the optimization problem described in (24), to obtain the coefficients {ai}f?:()
and the rotation matrix R, which allow the mapping to be performed.

To evaluate the robustness of the mapping, a new perturbed structural connectivity matrix, denoted by SV, is computed
using a random multiplicative perturbation model.

For each element [S]; ; of the structural connectivity (SC) matrix, a random value [A]; ;j 1s sampled from a uniform distribution
between —p and p, where p is the maximum magnitude of the perturbation. The perturbed value is then computed as

[$¥]ij = (1+[Al;j) [S]ij (47)

where SV denotes the perturbed structural matrix.

This model ensures that the perturbation magnitude is proportional to the original value of each connection. Stronger
connections are perturbed more than weaker ones, reflecting realistic variations in data.

The perturbed matrix SV, the coefficients {ai}{-‘zo, and the rotation matrix R are then used in (24) to predict the functional
connectivity matrix V.

To assess robustness, the original functional connectivity (FC) matrix F and the perturbed matrix " are compared using a
correlation measure:

ucorr(FvFV), (48)

where ucor denotes the correlation measure.

A high correlation value indicates that the mapping is robust to perturbations, as the perturbed matrix F" remains similar to
the original matrix F'.

The robustness is analysed for different values of the perturbation parameter p, which controls the noise level. The results
allow to understand how sensitive the spectral mapping is to variations in the structural data and are presented in Figure 9.
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10 Robustness of Spectral Mapping to Structural Noise
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Figure 9. Impact of perturbation parameter p on the correlation measure icor-

In Figure 9 is illustrated the robustness of spectral mapping, obtained by considering walks of length less than or equal to 7.
This choice was motivated by the observation that the median mapping quality saturates for k > 8, as reported by Becker et al.”.
The plot represents the average correlation values (i) across 10,000 independent runs, mitigating the influence of outliers
caused by random noise. This averaging process ensures a reliable estimate of the mapping’s robustness against perturbations.

The results indicate that spectral mapping remains highly robust under small perturbations, especially when the entries of
the structural connectivity matrix are perturbed by at most 10% (p < 0.1). However, for p > 0.1, the correlation quality begins
to decline, following an almost linear trend with increasing perturbations.

As the structural matrices deviate more significantly from their original form, the method becomes less effective. Nev-
ertheless, these findings highlight that the proposed mapping demonstrates considerable robustness with respect to bounded
perturbations in the structural matrix.

Finally, when there is no noise, p = 0, the methodology proposed allows to fully recover (ucor = 1) the functional
connectivity matrix F, assuring the good formulation of the mapping.
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8 Supplementary Results

Cumulative contributions of walk lengths in function matrix estimation
We fit the cumulative spectral mapping model (24) to characterize how indirect structural walks of increasing length contribute
to the prediction of the empirical functional connectivity matrix F € R!30x130,

Figure 10 summarizes the distribution of off-diagonal Pearson correlations between predicted and observed connectivity for
walk lengths k =1,2,...,10.

When we consider only direct structural connections (k = 1), the median correlation reaches 0.8305 in the control group
and 0.7922 in the migraine group. Incorporating two-step walks (k = 2) increases the median correlations to 0.9851 (controls)
and 0.9914 (patients), capturing over 95% of the final structure—function alignment. Adding three-step walks (k = 3) yields
modest improvements: 0.9927 for controls and 0.9940 for patients. Further contributions diminish for k > 4 (e.g., k = 4:
0.9952 and 0.9963; k = 5: 0.9969 and 0.9974), and for k > 8 both groups exceed 0.9992. At k = 10, both cohorts approach
perfect alignment (controls: 0.9996, patients: 0.9995).

We assess statistical differences between groups using two-sample Kolmogorov—Smirnov tests at each walk length. The
null hypothesis asserts that the off-diagonal correlation distributions are identical between groups. Atk =1, p = 0.062, so
we do not reject the null hypothesis at a significance level of o = 0.05. For 2 < k < 10, p > 0.05, indicating no significant
differences once polysynaptic paths of length two or greater are included.

Controls vs. Patients
1 T 1 T T T T T

I
i 0 ﬁ? *r TT T 77 -+ e ]

-

0.95 -

0.9

0.85 - + -

Off-diag correlation
o
[o4]
T
(]
1

o

o

ol
T

[ B

®  Patients

®  Controls
0.7+
+

0.65 -p=0.662 p=0.22 p=0.52 p=0.44 p=0.66 p=0.81 p=0.21 p=0.81 p=092 p=0.46-

0.6 1 ] 1 ] 1 ] ] ] ] ]
1 2 3 4 5 6 7 8 9 10

Walk length k

Figure 10. Boxplots of off-diagonal Pearson correlations between predicted and observed functional connectivity based on
cumulative walk contributions for k = 1:10. Blue boxes denote controls (n = 15) and red boxes denote migraine patients

(n = 14). The central mark indicates the median; box edges represent interquartile range; whiskers extend to 1.5 x IQR; and
crosses mark outliers. Two-sample Kolmogorov—Smirnov p-values appear below each pair of boxplots.

These findings confirm that, aside from a non-significant deviation at k = 1, the cumulative effect of indirect structural
walks on functional connectivity is preserved across both populations.

We quantify inter-subject variability via the interquartile range (IQR) of off-diagonal Pearson correlations at each walk
length k € N.

At k =1, the control group exhibits IQR = 0.0831, indicating substantial heterogeneity in monosynaptic predictive accuracy.
The migraine group shows a narrower IQR = 0.0400, suggesting more uniform but overall attenuated first-order coupling.

At k =2, both groups show a marked reduction in variability, with IQR = 0.0280 for controls and IQR = 0.0242 for
patients, indicating that two-step polysynaptic pathways yield consistently high predictive accuracy across individuals.
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As k increases further, IQRs continue to decrease: at k = 3, controls have IQR = 0.0168 and patients have IQR = 0.0067,
for k > 5, both groups drop below 0.005, and at k£ = 10, controls reach IQR = 0.0002 and patients reach IQR = 0.0005,
indicating near-ceiling correlations with negligible dispersion.

These results demonstrate that indirect structural walks of length greater than one not only improve predictive accuracy but
also homogenize the structure—function mapping across individuals and groups.

Our observations align with the principle proposed by Becker et al.”: structural walks up to length three suffice to reconstruct
large-scale functional networks with near-perfect fidelity, and mapping accuracy saturates for k > 7.

8.1 Bootstrapping
8.1.1 Two sided Bootstrap
To validate the group differences found, we applied a two-sided Kolmogorov—Smirnov (KS) under variability in the data across
10 non-parametric bootstrap resamples per subject. This approach assesses whether differences persist across surrogate datasets
generated from the BOLD signal.

Figure 11 presents the resulting distribution of p-values across bootstraps for each walk length k = 1,...,10. Boxplots
summarize the variability in significance, and a red dashed line indicates the @ = 0.05 threshold. This analysis allows us to
identify walk lengths where the observed effect between groups remained robust under repeated sampling.
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Figure 11. Distribution of two-sided Kolmogorov—Smirnov (KS) test p-values across bootstrap replicates for each walk
length k € {1,...,10}. For each subject’s functional connectivity matrix, 10 surrogate datasets were generated using
non-parametric bootstrapping of the BOLD time series, yielding multiple realizations of the original analysis.

8.1.2 One sided Bootstrap

To test for group differences assuming a specific direction, we repeated the bootstrap analysis using a one-sided KS test. This
approach enables detection of divergence in the distributions of correlation values between migraine patients and controls, in a
specific direction.
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Figure 12 displays p-value distributions from both directional tests: Figure 12a tests whether patients exhibit stochastically
lower correlations than controls, and Figure 12b tests the opposite.
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Figure 12. Distributions of p-values from one-sided Kolmogorov—Smirnov (KS) tests across bootstrap replicates for each
walk length k, under two complementary null hypotheses. In both panels, the dashed red line marks the o = 0.05 significance
threshold.

8.1.3 Block Bootstrap

We also applied a circular block bootstrap procedure to further validate our findings and account for temporal autocorrelation in
the BOLD time series, a known limitation of standard bootstrapping methods. By resampling contiguous blocks of timepoints
(block size = 5), this approach better preserves the short-range temporal dependencies while generating the new datasets.

For each subject, we created 10 block-bootstrap samples and recomputed their corresponding functional connectivity
matrices F. These were then processed through the full structure-function mapping pipeline, and group-level statistics were
re-evaluated across walk lengths k =1,...,10.

The resulting distribution of p-values closely mirrors those obtained with conventional bootstrapping, confirming that the
observed group differences, especially those at intermediate walk lengths, reflecting stable, reproducible effects.
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9 Supplementary Tables

Anatomical Parcelation and Recording Sites
To create brain divisions, an atlas is used to establish the ROIs. These atlases provide standardized templates for segmenting
the brain into distinct regions, which can then serve as nodes in the brain’s connectome. Each ROI consists of Voxels, which
are volumetric subdivisions of the brain, obtained through neuroimaging techniques.

Examples of an atlas are the AAL, which has several versions that focus on different brain regionsg‘lo,the Schaefer atlas'!,
and the Glasser-360 atlas'?.

For this study, will be used the Schaefer atlas'!, comprising 100 ROIs, supplemented by 30 additional regions from the
AALI116 atlas®. This inclusion ensures the coverage of key subcortical regions, which have been prominently associated with
migraine studies'3. Altogether, this results in a comprehensive set of 130 ROISs, detailed in table [1].

Nr | Region Nr | Region Nr | Region Nr | Region
1 LH CCing 1 2 RH CCing 1 3 LH CPFLat 1 4 RH CPFLat 1
5 RH CPFLat 2 6 RH CPFLat 3 7 RH CPFLat 4 8 RH CPFMed 1
9 LH CPar 1 10 | RHCPar1 11 | RHCPar2 12 | LH CPrec 1
13 RH CPrec 1 14 | LH DPreFC 1 15 LH DPreFC 2 16 | LH DPreFC 3
17 | LH DPreFC 4 18 | LH DPreFC 5 19 | LH DPreFC 6 20 | LH DPreFC 7
21 | RH DPFDorM 1 22 | RHDPFDorM 2 | 23 | RHDPFDorM 3 | 24 | RH DPFVent 1
25 RH DPFVent 2 26 | LH DPar 1 27 RH DPar 1 28 LH DPar 2
29 | LHDTemp 1 30 | RHDTemp 1 31 | LHDTemp 2 32 | RHDTemp 2
33 | RH DTemp 3 34 | LH DPrecPC 1 35 | RH DPrecPC 1 36 | LH DPrecPC 2
37 | RH DPrecPC 2 38 | LH DAFEF 1 39 | RH DAFEF 1 40 | LH DAPost 1
41 | RH DAPost 1 42 | LH DAPost 2 43 | RH DAPost 2 44 | LH DAPost 3
45 | RH DAPost 3 46 | LH DAPost 4 47 | RH DAPost 4 48 | LH DAPost 5
49 RH DAPost 5 50 | LH DAPost 6 51 LH DAPost 1 52 RH DAPost 1
53 | LH LimbOF 1 54 | RH LimbOF 1 55 | LH LimbTP 1 56 | RHLimbTP 1
57 | LHLimbTP 2 58 | LHSVAFI 1 59 | RHSVAFI 1 60 | LH SVAFI2
61 LH SVAMed 1 62 | RH SVAMed 1 63 | LH SVAMed 2 64 | RH SVAMed 2
65 | LH SVAMed 3 66 | LH SVAPF 1 67 | LHSVAPO 1 68 | RH SVATOP 1
69 | RH SVATOP 2 70 | LHSM 1 71 | RHSM 1 72 | LHSM 2
73 | RHSM 2 74 | LHSM 3 75 | RHSM 3 76 | LHSM 4
77 | RHSM 4 78 | LHSM S5 79 | RHSM 5 80 | LHSM6
81 | RHSM 6 82 | RHSM7 83 | RHSM 8 84 | LHVis 1
85 | RHVis 1 86 | LH Vis2 87 | RH Vis2 88 | LH Vis 3
89 | RH Vis 3 90 | LH Vis4 91 | RHVis4 92 | LHVis5
93 | RHVis 5 94 | LH Vis 6 95 | RHVis6 96 | LH Vis7
97 | RHVis7 98 | LH Vis 8 99 | RH Vis 8 100 | LH Vis 9
101 | LH Hippo 1 102 | RH Hippo 1 103 | LH Amyg 1 104 | RH Amyg 1
105 | LH Caud 1 106 | RH Caud 1 107 | LHPut 1 108 | RHPut 1
109 | LHPall 1 110 | RH Pall 1 111 | LH Thal 1 112 | RH Thal 1
113 | LHCrusl 1 114 | RH Crusl 1 115 | LH Cer 3 116 | RH Cer 3
117 | LHCer4-51 118 | RH Cer 4-5 119 | LHCer 6 120 | RH Cer 6
121 | LHCer 6 122 | RH Cer 6 123 | Vermis 1-2 124 | Vermis 3
125 | Vermis 4-5 126 | Vermis 6 127 | Vermis 7 128 | Vermis 8
129 | Vermis 9 130 | Vermis 10

Table 1. Table of brain regions with corresponding numbers. This table lists numbered brain regions with their respective
abbreviations, organized by left hemisphere (LH) and right hemisphere (RH) designations, as well as specific anatomical and
functional regions.
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9.1 NCT Results Tables

The following two tables provide the full numeric output from the CBIG Network Correspondence Toolbox (NCT)® analyses described
in Section "Computing the spatial localization of network-level alterations" of the main article. For each of the four atlas/network-label
combinations—AS400Y 17, AS400K17, AS200K17 and AS200Y 17—we list the Dice coefficient quantifying the spatial overlap between
every Intrinsically Connectedness (IC) map and each of the 17 canonical functional networks, together with the associated spin-test p-value.
An asterisk next to a p-value indicates statistical significance at & = 0.05.

Table 2. Dice coefficients and p-values for AS400Y 17 and AS400K 17 conditions

AS400Y17 AS400K 17
Name Dice p-value Name Dice p-value
TempPar 0.1251 0.048*  DefaultA 0.1745 0.1279
DefaultC 0.0867 0.1508 DefaultB 0.1531 0.0579
DefaultB 0.1727 0.0679  DefaultC 0.1316 0.0739
DefaultA 0.1600 0.2867 Language 0.0888 0.2138
ControlC 0.0663 0.049*  ControlA 0.0714 0.7223
ControlB 0.2296 0.007*  ControlB 0.1985 0.016*
ControlA 0.0271 0.9810 ControlC 0.0941 0.6124
LimbicA 0.1266 0.1768  Sal/VenAttnA  0.0809 0.4835
LimbicB 0.0202 0.8072  Sal/VenAttnB  0.1082 0.5844
Sal/VenAttnB  0.0843 0.5714 DorsAttnA 0.0902 0.6563
Sal/VenAttnA  0.0723 0.8202 DorsAttnB 0.1008 0.1249
DorsAttnB 0.1107 0.1688  Auditory 0.0669 0.4515

DorsAttnA 0.1042 0.4276  SomatomotorA 0.0625 0.4945
SomatomotorB  0.0632 0.5884  SomatomotorB  0.0693 0.2897

SomatomotorA  0.0924 0.4366  VisualA 0.0674 0.8312
VisualB 0.0385 0.7872  VisualB 0.0387 0.8442
VisualA 0.0618 0.8172  VisualC 0.0507 0.4406

Table 3. Dice coefficients and p-values for AS200K17 and AS200Y 17 conditions

AS200K17 AS200Y17
Name Dice p-value Name Dice p-value
DefaultA 0.1660 0.1139  TempPar 0.1052 0.033*
DefaultB 0.1549 0.2707 DefaultC 0.0796 0.1598
DefaultC 0.1225 0.042*  DefaultB 0.1620 0.0829
Language 0.1063 0.1019  DefaultA 0.1369 0.2567
ControlA 0.0682 0.8911 ControlC 0.0657 0.0909
ControlB 0.2046  0.009*  ControlB 0.2724 0.001*
ControlC 0.0869 0.6823 ControlA 0.0525 0.9610
Sal/VenAttnA  0.0874 0.4615 LimbicA 0.1214 0.2557
Sal/VenAttnB ~ 0.1023 0.5495 LimbicB 0.0183 0.8961
DorsAttnA 0.1024 0.5904 Sal/VenAttnB  0.0696 0.5904
DorsAttnB 0.0911 0.1089  Sal/VenAttnA  0.0807 0.8212
Auditory 0.0574 0.4835 DorsAttnB 0.1118 0.0679

SomatomotorA  0.0690 0.4416 DorsAttnA 0.1117 0.3836
SomatomotorB  0.0676 0.3357 SomatomotorB  0.0611 0.6374

VisualA 0.0618 0.7932 SomatomotorA 0.0951 0.4286
VisualB 0.0394 0.8092 VisualB 0.0419 0.7163
VisualC 0.0619 0.3417  VisualA 0.0587 0.8452
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