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I. CONTINUOUS WAVE SOLUTIONS OF THE EFFECTIVE SEMICONDUCTOR MAXWELL-BLOCH
EQUATIONS

Let us consider the ESMBEs for the ring configuration:

∂F

∂η
+

∂F

∂t
= −σ (F + P ) , (S1)

∂P

∂t
= −Γ(1 + iα)2FD − Γ(1 + iα)P , (S2)

∂D

∂t
= b

[
µ−D +

1

2
(F ∗P + FP ∗)

]
. (S3)

Following the approach presented in [1], we seek solutions of the form F = F0e
−ikη+iωt, P = P0e

−ikη+iωt, D = D0.
We then obtain:

−ikF0 + iωF0 = −σ(F0 + P0) , (S4)

iωP0 = −Γ(1 + iα)2F0D0 − Γ(1 + iα)P0 , (S5)

0 = µ−D0 +
1

2
(F ∗

0 P0 + F0P
∗
0 ) . (S6)

From Eq. (S5) we can write an expression for P0:

P0 = −Γ(1− α2) + 2iαΓ

Γ + i(ω + αΓ)
D0F0 = [−H1(ω) + iH2(ω)]D0F0 , (S7)

with

H1(ω) =
Γ2(1− α2) + 2αΓ(ω + αΓ)

Γ2 + (ω + αΓ)2
, (S8)

H2(ω) =
−2αΓ2 + Γ(1− α2)(ω + αΓ)

Γ2 + (ω + αΓ)2
. (S9)

Substituting Eq. (S7) in Eqs. (S4) and (S6) we obtain:

F0 (ik − iω − σ) = σ [−H1(ω) + iH2(ω)]D0F0 , (S10)

0 = µ−D0 −H1(ω)|F0|2D0 . (S11)

Dividing Eq. (S10) by F0 and splitting it into real and imaginary parts, we obtain from the real part:

D0 =
1

H1(ω)
, (S12)

and from the imaginary part:

ω = k − σ
H2(ω)

H1(ω)
. (S13)

Eq. (S11) gives an expression for D0

D0 =
µ

1 + |F0|2H1(ω)
, (S14)
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which, combined with Eq. (S12), allows to write the intensity as

|F0|2 = µ− 1

H1(ω)
. (S15)

We highlight that Eq. (S15) describes the dependence of the field intensity on the pump parameter, while Eq. (S13)
represents the dispersion relation, which, as can be noticed, is a nonlinear equation.

II. LINEAR STABILITY ANALYSIS

In this section we perform the linear stability analysis of the CW solutions Eqs. (S7), (S12), (S15), introducing time
dependent perturbations for the dynamical variables F , P , and D [2, 3]:

F = (F0 + δF )e−ikη+iωt, (S16)

P = (P0 + δP )e−ikη+iωt, (S17)

D = D0 + δD. (S18)

We substitute Eqs. (S16)–(S18) into Eqs. (S1)–(S3), drop the nonlinear terms and expand the generic dynamical
variable perturbation δX as:

δX =
∑
n

δXne
−iknηeλnt, (S19)

where kn represent the wavenumbers of the mode expansion for each of the dynamical variables. Then, for each mode
index n, we obtain a closed subset of equations

δFn[σ − i(k − ω + kn) + λn] + σδPn = 0 , (S20)

δF ∗
−n[σ + i(k − ω − kn) + λn] + σδP ∗

−n = 0 , (S21)

δPn[iω + Γ(1 + iα) + λn] + Γ(1 + iα)2(D0δFn + F0δDn) = 0 , (S22)

δP ∗
−n[−iω + Γ(1− iα) + λn] + Γ(1− iα)2(D0δF

∗
−n + F ∗

0 δDn) = 0 , (S23)

δDn(λn + b)− b

2

(
P0δF

∗
−n + F ∗

0 δPn + F0δP
∗
−n + P ∗

0 δFn

)
= 0 . (S24)

From Eqs. (S20)–(S24), we can construct the matrix Mλn of the linearized system:

Mλn
=


σ − i(k − ω + kn) + λn 0 σ 0 0

0 σ + i(k − ω − kn) + λn 0 σ 0
Γ(1 + iα)2D0 0 iω + Γ(1 + iα) + λn 0 Γ(1 + iα)2F0

0 Γ(1− iα)2D0 0 −iω + Γ(1− iα) + λn Γ(1− iα)2F ∗
0

− b
2P

∗
0 − b

2P0 − b
2F

∗
0 − b

2F0 b+ λn

 .

(S25)
The eigenvalues λn are determined by solving the characteristic equation det(Mλn

) = 0.

III. EFFECTIVE RABI FREQUENCY

We assume that the field F is constant and monochromatic with a frequency coincident with the maximum of the
unsaturated gain and consider the dynamical equations for P , P ∗, and D

dP

dt
= −Γ(1 + iα)2DF − Γ(1 + iα)P, (S26)

dP ∗

dt
= −Γ(1− iα)2DF − Γ(1− iα)P ∗, (S27)

dD

dt
= bµ− bD +

b

2
(F ∗P + FP ∗) . (S28)
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The dynamics of this linear system is described by the complex eigenvalues β solutions of the characteristic equation
det(Mβ) = 0 with

Mβ =

β + Γ(1 + iα) 0 Γ(1 + iα)2F
0 β + Γ(1− iα) Γ(1− iα)2F ∗

− b
2F

∗ − b
2F β + b

 . (S29)

The cubic characteristic equation is

β3 + (2Γ + b)β2 + Γ
[
Γ(1 + α2) + b(2 +X −Xα2)

]
β + bΓ2(1 + α2)(1 +X) = 0 , (S30)

where we set X = |F |2. As mentioned in the main text, Eq. (S30) has in general two complex-conjugate solutions and
one real solution. Therefore, we identify the Effective Rabi frequency (ERF) with the absolute value of the imaginary
part of the complex solutions. In physical units, the expression of the Rabi frequency is ERF= |Im(β)|/(2πτd). The
damping coefficient is defined for the complex solutions as |Re(β)|/(2πτd).
If α = 0 (two-level atoms) the characteristic equation can be factorized as

(β + Γ)
[
β2 + (Γ + b)β + bΓ(1 +X)

]
= 0 , (S31)

whose solutions are

β1 = −Γ , β± =
1

2

[
−Γ− b±

√
(Γ− b)2 − 4bΓX

]
. (S32)

The latter are complex if X > (Γ− b)2/(4bΓ) and the associated ERF is

Im(β+) =
√
4bΓX − (Γ− b)2 , (S33)

as for two-level lasers at resonance [4]. At the laser threshold (X = 0) the characteristic equation (S30) can be
factorized as well

(β + b)
[
Γ2α2 + (Γ + β)2

]
= 0 . (S34)

The solutions are

β1 = −b , β± = −Γ± iΓα . (S35)

and the associated ERF is

Im(β+) = Γα . (S36)

This explains the behaviour reported in Fig. 1(a) of the main text, where the ERF at X = 0 increases proportionally
to α and the curves representing the damping coefficient start all from the same value since Γ is kept constant.
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IV. SCAN OF THE CAVITY LENGTH FOR α > 1

In Fig. S1 we report the HFCs obtained for α > 1 as the cavity length varies. This completes the discussion done
in the main text and the results reported in Fig. 5.

FIG. S1. Harmonic frequency combs of different order obtained by scanning the cavity length L at fixed α = 1.05. The other
parameters are Γ = 0.06, µ = 7.9, σ = 1.6 × 10−3, and b = 0.02. Parametric gain as a function of the frequency (panels (a),
(c), (e)), and simulated optical spectra (panels (b), (d), (f)). The red markers represent the estimated ERF. Each figure in the
same column has the same scale on the horizontal axis.

V. TRANSITION BETWEEN TWO DIFFERENT HARMONIC STATES

We present here a simulation example in which a transition between two different harmonic states is observed for
the same value of the pump parameter (see Fig. S2). At the beginning of the simulation, the laser starts emitting in
a continuous wave (CW) at fc = 2.5 GHz from the reference frequency, which is the fundamental CW corresponding
to k = 0. This CW then destabilizes in favor of the formation of a 7th-order harmonic frequency comb (HFC) (see
insets in the top left). We verified that the peak of the parametric gain and the ERF are in proximity to the cavity
mode located 7 FSRs away from the reference frequency, as shown in Fig. S3. After a few nanoseconds the simulation
shows (Fig. S2), a transition to an irregular transient, lasting several tens of nanoseconds. Then, the system settles
into a new 11th-order harmonic comb regime, with a central frequency of fc = −64 GHz. Therefore, this second HFC
corresponds to the destabilization of a different CW mode than the one associated with the harmonic comb observed
in the first part of the simulation.
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FIG. S2. Numerical simulation initially showing the formation of a transient 7th order HFC (insets on top left), followed by
an irregular transient and the formation of a regular steady state 11th order HFC (insets on top right). Parameters: α = 1.05,
Γ = 0.06, b = 0.014, and µ = 5.9, σ = 1.6× 10−3.

FIG. S3. Parametric gain and ERF (red marker) for the fundamental CW (k = 0) with the parameters of Fig. S2.
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