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1. [bookmark: Tables][bookmark: MaterialsMethods]Discussion on the origin of the WSe2 quantum dots
Based on atomic force microscopy (AFM) analysis of the freshly mechanical exfoliated WSe2 surface and after transferring the graphene monolayer (Fig. S1), it is reasonably to assume that the WSe2 quantum dots (QDs) are naturally generated during the process of mechanical exfoliated. Around these WSe2 QDs, a few WSe2 anti-dots usually can be observed in the STM images (Fig. S2a). Such a result indicates that nanoscaled WSe2 flakes are pulled off the substrate and then fall down to the substrate to form the WSe2 QDs in the process of mechanical exfoliation.
[image: ]
Fig. S1. a, Large-area AFM topograph of graphene/WSe2 heterostructure. The large and flat area can be observed in addition to some bubbles. b, Zoom-in image of a. The WSe2 QD with around 0.8 nm in height (WSe2 monolayer).

  [image: ]
Fig. S2. a, The STM images of GQDs (V = −0.8 V, I = 100 pA) and height profiles (solid white line) along the white dotted line (the thickness of monolayer WSe2 is about 0.8 nm). A few anti-dots (-0.8 nm) usually can be observed near the GQDs. b FFT of the GQD in Fig. 1b.  the bright spots in the white dotted circles represent the reciprocal lattice of graphene, the bright spots in the blue dotted circles represent the reciprocal lattice of WSe2, and the bright spots in the green dotted circles represent moiré structures from the graphene/WSe2 heterostructure.
2. WGMs confinement in the GQDs
As shown in Fig. 1F and Fig. S3, the quasibound state marked by N1 displays strong intensity near the center of the GQD, and higher quasibound states (marked by N2~N4) exhibits maxima which are progressively closer to the edge of the GQD. These equally spaced quasibound states confined in the GQD, which can be described by the whispering-gallery modes (WGMs) confinement.








Based on WGMs confinement of massless Dirac fermions in graphene, the quasibound states spacing is related to the radius of the GQDs by, where  is a dimensionless constant of order unity, ħ is Planck's constant divided by 2,  is the Fermi velocity of the graphene monolayer, and  denotes the effective radius of the GQDs (1-3). Since the QDs are not standard circle shapes, we define the effective radius by , where A is the area of the GQD measured from STM images. Four representative STS spectra recorded on the GQDs with different sizes are shown in Fig. S4c, which indicates that the average energy spacing of these quasibound states decreases with the increase of the effective radius . In Fig. S4d, the average energy spacing of the quasibound states (E) have summarized as a function of the inverse effective radius () of the GQDs. The result agrees well with the confinement of the massless Dirac fermions in the GQDs, which can be described well by  with .
[image: ]
Fig. S3. The dI/dV maps (N3 and N4 marked in the Fig. 1e) of the GQD (Fig. 1b). The maps exhibit maxima progressively closer to the edge of the GQD, which can be described by the WGM confinement.
3. The dangling bonds of WSe2 induce confining potential in graphene


We summarized the measured potential difference (U, which is obtained according to the Dirac point from the dI/dV spectra) between inside and outside the graphene quantum dots (GQDs) as a function of the ratio () of the number of boundary atoms to the inner atoms. The U roughly increases linear with the ratio   (Fig. S4a). Here, the ratio is estimated according by , where l and  are the circumference and effective radius of the quasi-circle WSe2 QDs, a = 0.353 nm denotes the WSe2 lattice constant (4-5), as shown in Fig. S4a for schematic diagram of a WSe2 QD. The linear dependence between the U and the ratio   is quite reasonable. There will be many danging bonds due to the unsaturated atoms at the boundary of the WSe2 QD. These dangling bonds (5-6) can significantly change the electronic structure and work function of the WSe2 island, resulting in a circular electrostatic potential of the graphene covering it. As the size of the island increases, the ratio of the number of boundary atoms to the inner atoms decreases, which will reduce the impact on the work function of the QD, and ultimately lead to a reduction in the potential difference between inside and outside the GQDs. This result has significant effects in introducing electrostatic potential into graphene systems. 
[image: ]


 Fig. S4. The effect of island size on the confining potential and quasibound states. a, Schematics of a WSe2 QD, a = 0.353 nm denotes the WSe2 lattice constant, R indicates radius of WSe2 island, l is the circumference of the quasi-circle WSe2 island. b, Plot of average potential difference inside and outside the GQDs as a function of the ratio () of the number of boundary atoms to the inner atoms. c, dI/dV spectrum for GQDs with different effective radius. d, Plot of average level spacing for quasibound states as a function of inverse effective radius for GQDs, which can be described well by  with α  1. 

4. Theoretical model 
The tight-binding Hamiltonian for graphene in the presence of the quantum dot is given by (7)

.












[bookmark: _Hlk77518253]Here  is the hopping energy between site i and site j in the graphene and is directly related to the Fermi velocity  by the relation  where ħ is reduced Planck constant and  is the lattice constant (= 0.142 nm). Unless otherwise stated, the Fermi velocity  and  are used.  In this work, we only consider the nearest hopping energy and higher hopping terms do not affect our results.  and  denote the annihilation (creation) operators for A and B sublattice at site i.  denotes the position relative to the GQD.  and  are the on-site energy and potential of atoms at each sublattice. For a GQD, we model its potential as a Coulomb form with a finite cut-off length r0 which can be described as (8)






[bookmark: MTBlankEqn]Different from the artificial nucleus (9) or charge vacancy (10) studied in the previous experiments, the potential originates from GQD is Coulomb repulsive due to the repulsion between electrons. We argue that repulsive potential can lead to ‘hole atomic collapse states’ in which their energies are always higher than the bulk Dirac point and extend towards positive infinity. Its physics content is parallel to the ACSs in view of particle-hole symmetry in the Dirac cone, so that we don’t distinguish them in the following.  is the dimensionless coupling constant ( is relative permittivity). The cut-off length  should be consistent with the size of the GQDs. They are commonly a few nanometers in size, ten times larger than the artificial nucleus. The value of β can be inferred by analyzing the difference between the inner and outer Dirac points in the experiment. We estimate that β is roughly between 2 to 5 in our experiment. It is much higher than the critical value  for the appearance of ACSs (8,11-13). The values of  can be also deduced from the measured positions of energy states experimentally. 
5. Theoretical model in the presence of a magnetic field



The magnetic field effect can be also included in our simulation. In the presence of a uniform perpendicular magnetic field B, the hopping energy is replaced by the Peierls substitution, where  is the Peierls phase,  is the magnetic quantum flux. Under strong magnetic field, Landau levels can arise as

                                                         (1)



where  is the magnetic length, N = 0, ±1, ±2… is the LLs index, ± indicate the electron/hole branch with N > 0/N <0. When the system is uniform, each Landau level is degenerate consisting of an infinite number of orbital states with orbital number  (7). The existence of GQD could break the translation symmetry and lift the Landau level degeneracy into m-dependent sublevels (8).
6. Numerical tight-binding approach
In the computation detail, we build a large hexagonal flake graphene system with all armchair edges (to avoid zigzag edge states with low energy).  The width of hexagon edge is 200 nm so it is large enough to remove the finite size effect. The quantum dot is positioned in the center of flake.  We use an open source code package for numerical tight-binding calculations: Pybinding (14). With the help of fast implementation of kernel polynomial method (15-16)in this package, we can quickly obtain the LDOS in an appropriate energy broadening  in this about 4 million carbon atoms system and compare them with our experiment results.



We emphasis that the Fermi velocity  and  for the GQD ( = 2.4, r0 = 9 nm, corresponding to the numerical calculation in Fig. 2b, Fig. 3, Fig. 4, Fig. S5b, Fig. S9a, Fig. S11), based on the measured results experimentally. To present better effect, the different energy broadening  are used to calculate in different cases. We employ   = 0.011 eV to the GQD ( = 2, r0 = 6.5 nm),  = 0.009 eV to the GQD ( = 2.4, r0 = 9 nm),  = 0.02 eV to the GQD ( = 4.3, r0 = 4 nm). Specially, we emphasis that   = 0.003 eV for the map of LDOS as a function of the square root of the magnetic field for the GQD ( = 2.4, r0 = 9 nm) and as a function of  for B = 0 to determine the position of the energy states precisely (corresponding to the numerical calculation in Fig. 4 and Fig. S8).
7. The dI/dV spectra  and simulated LDOS at different GQDs
[image: ]

Fig. S5. The dI/dV spectra (Top panels) and simulated LDOS (Bottom panels) taken at different locations inside and outside different GQDs. a,  = 2, r0 = 6.5 nm. b,  = 2.4, r0 = 9 nm. c,  = 4.3, r0 = 4 nm. Insets of a to c: the STM images of the GQDs. The spectra with different colors are measured at the positions with the same colored pentagram in the insets. At a smaller  ( = 2,  = 6.5 nm), only one resonance peak (R1) can be observed. With increasing the , the characteristic of WGMs confinement becomes more pronounced: they display a series of equally spaced resonance peaks at the edge of GQDs. In the case of a larger  ( = 4.3, r0 = 4 nm), in addition to the quasibound states dominated by WGM confinement at the edge of the GQD, there are three unequally spaced resonance peaks (R1~R3) located at the center.
8. Spatial distribution of ACSs in the GQD
[bookmark: OLE_LINK38][bookmark: OLE_LINK39]We plot the radially d2I/dV2 spectroscopic maps (Fig. S6a) of the GQD with  = 4.3 (Fig. 1b) to accentuate the striking ACSs features. After differentiation, we can clearly see other two peaks in the center of the GQD. The three unequally spaced resonance peaks are identified as quasibound states due to atomic collapse resonance. For convenience, the two quasibound states are marked as N1’ and N1’’. As shown in Fig. S6b, the corresponding d2I/dV2 spatial maps display strong intensity near the center of the GQD, which is consistent with ACS (9-10). To further analyze the properties of these quasibound states (marked by N1~N4, N1’ and N1’’ in Fig. S6a), the LDOS spatial distribution of the six states in the GQD has been calculated (Fig. S7). The LDOS of quasibound states corresponding to purple hollow dots in Fig. S6a (N1, N1’, N1’’) gather in the central area. While the LDOS of quasibound states corresponding to the three black solid dots in Fig. S6a show a typical WGM ring-like spatial distribution. These evident traits demonstrate that ACSs and WGMs coexist in the GQD.
[image: ]
Fig. S6. Spatial distribution of the ACSs in the GQD. a, The radially d2I/dV2 spectroscopic maps of the GQD (Fig. 1b). The quasibound states dominated by WGMs confinement (N2, N3, N4) are indicated by black solid dots, and quasibound states due to the ACSs are indicated by purple hollow dots (N1, N1’, N1’’). b, The corresponding d2I/dV2 spatial maps of N1’ and N1’’. The quasibound states marked by N1’ and N1’’ display strong intensity near the center of the GQD, which is consistent with a. 
[image: ]


Fig. S7. Simulated maps of LDOS spatial distribution for quasibound states in the GQD ( = 4.3, r0 = 4 nm), where the N1~N4 states marked in Fig. 1e and N1’~N1’’ states shown in Fig. S6. N1~N1’’ are quasibound states located at the center (corresponding to the purple hollow dots in Fig. S6a). N2~N4 are quasibound states located at the edge (corresponding to the black solid dots in Fig. S6a). Parameters in the calculation: , .
9. Simulated LDOS of quasibound states in the GQD (r0 = 9 nm) as a function of  and energy



To affirm the existence of ACSs, we further analyze the LDOS for the GQD (r0 = 9 nm, which corresponding to STM image inset to Fig. S5b) by tuning  at the edge (r = 9 nm) and center (r = 0 nm) of the quantum dot respectively in the absence of magnetic field (Fig. S8a). Fig. S8b shows the cut-off LDOS of Fig. S8a at  = 9 for r = 9 nm and r = 0 nm respectively. We extract the energy positions of peaks in Fig. S8b, and then do a fitting analysis as a function of n (Fig. S8c), where n is the quasibound states index. The energy levels of quasibound states at the edge follows a linear function with a slope around -0.076. While the energy levels of quasibound states at the center follows an exponential function  approximately. They are well consistent with the theoretical predictions for WGMs’ energy spacing and  for ACSs’ energy levels (8). Thus these data strongly indicate that ACSs appear in the center and, simultaneously, the WGMs confinement appear in the edge of the GQD.
[image: ]



Fig. S8. Simulated maps of LDOS of quasibound states in the GQD (r0 = 9 nm) as a function of  and energy. a, LDOS maps of quasibound states located at the edge (r = 9 nm) and the center (r = 0 nm) of the GQD. The red dots indicate experimental results at  = 2.4 (the full width at half maximum of the peaks in experiment was used as the error bar), which is well consistent with the simulated results. b, Cut-off of LDOS map for a at  = 9. c, The fitting of the peaks extracted from c. The energy levels of quasibound states at r = 0 nm follow a linear function with a slope around -0.076. At r = 9 nm, the energy levels of quasibound states display an exponential function    approximately, where n is the quasibound states index. Parameters in the similation: , . 
10. Screened electrostatic potential and asymmetry of electron and hole branches



[bookmark: _GoBack]In the presence of a finite magnetic field B, normal to the graphene plane, particularly pronounced Landau quantization can be observed (Fig. S9a). According to Equation (1), we plot the measured peak energies of LLs as a function of the magnetic field and level index, which show  and  to electron and hole respectively. The asymmetry is caused by the Dirac point slightly doped to +45 meV (17-18). Near the center of GQD (~30 nm), the peak of 0 LL exhibits significant shifting upwards toward positive energies, which indicates a repulsive potential produced by the GQD (Fig. S9a). We also calculated LDOS map over large distances to the GQD ( = 2.4, r0 = 9 nm), which show similar result to experiment. However, there is an obvious difference between calculation and experiment. The electrostatic potential has been affected the Landau level up to the farthest distance in calculation, but only about 30 nm experimentally. This is most likely because the electrostatic potential generated by the GQD would be screened by the charge carriers in graphene.
[image: ]



Fig. S9. a, dI/dV spectroscopic map (Left) along the black arrow in the top image at B = 10 T, the corresponding calculated LDOS map (Right) for the GQD ( = 2.4). The calculated parameters are the same as simulation in Fig. 3c.  Pronounced Landau quantization corresponding to the graphene monolayer can be observed. b, the measured peak energies of LLs away from the GQD as a function of the magnetic field and level index . The asymmetry of electron () and hole () parts can be observed because that the Dirac point is slightly doped to +45 meV. 








11. The others radially dI/dV spectroscopic maps under a series of magnetic fields
[image: ]
Fig. S10. The radially dI/dV spectroscopic maps on the GQD ( = 2.4, r0 = 9 nm) in the case of a series of magnetic fields. The corresponding maps with magnetic fields B = 3.5 T, 6 T, and 10 T have been shown in Fig.3a-3c. In the case of lower magnetic fields, the map displays almost the characteristics of GQD as that of the zero field (as shown in Fig. 2b). With increasing magnetic field, the formation of LLs can be observed in the GQD.





12. The dI/dV spectra and simulated LDOS at B = 10 T
[image: ]
Fig. S11. The dI/dV spectra (Bottom) and simulated LDOS (Top) taken at different locations of the GQD ( = 2.4, r0 = 9 nm) at B = 10 T (i.e. along the vertical line in Fig. 3c). a, in the center (r = 0 nm). b, in the edge (r = 9 nm). Only electron parts can be observed in the center and edge of GQD. At r = 0 nm, -1 LL is split into m = -1 and m = 0 orbital states with energy gap about 38 meV.









13. The corresponding dI/dV spectra to experimental data in Fig. 4 in main text
[image: ] 
Fig. S12. the corresponding dI/dV spectra at the center of the GQD ( = 2.4, r0 = 9 nm) under different magnetic fields to experimental data in Fig. 4. Only one broad quasibound state (ACS-R1) can be observed in the case of lower magnetic fields, which is well connected to the m = -1 orbital state of -1 LL at higher magnetic fields.
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