

Supplementary Material for “Penalized communication-efficient algorithm for quantile regression with high-dimensional and large-scale longitudinal data”

Yanan Song, Haohui Han, Liya Fu*
 School of Mathematics and Statistics, Xi'an Jiaotong University

This document contains supplementary material for “Penalized communication-efficient algorithm for quantile regression with high-dimensional and large-scale longitudinal data”. Section 1 provides additional definitions and technical preliminaries. Section 2 presents supporting lemmas and their proofs. Section 3 contains detailed proofs of the main results from the article.

1 Preliminary Definitions and Notation

We begin by establishing key notations and definitions used throughout the supplementary material. We denote the global estimating function and its derivative as

$$\mathbf{U}_M(\boldsymbol{\beta}) = \frac{1}{M} \sum_{i=1}^M \mathbf{U}_i(\boldsymbol{\beta}), \quad \mathbf{D}_M(\boldsymbol{\beta}) = \frac{1}{M} \sum_{i=1}^M \mathbf{D}_i(\boldsymbol{\beta}),$$

where for $1 \leq i \leq M$,

$$\begin{aligned} \mathbf{U}_i(\boldsymbol{\beta}) &= \mathbf{x}_i^T \mathbf{A}_i^{-1/2} \mathbf{R}_i^{-1}(\boldsymbol{\alpha}) \mathbf{A}_i^{-1/2} \left[\mathbf{K}_h(-\boldsymbol{\epsilon}_i(\boldsymbol{\beta})) - \mathbf{1}_{n_i} \cdot \boldsymbol{\tau} \right], \\ \mathbf{D}_i(\boldsymbol{\beta}) &= \frac{\partial \mathbf{U}_i(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \mathbf{x}_i^T \mathbf{A}_i^{-1/2} \mathbf{R}_i^{-1}(\boldsymbol{\alpha}) \mathbf{A}_i^{-1/2} \boldsymbol{\Lambda}_i(\boldsymbol{\beta}) \mathbf{x}_i. \end{aligned}$$

For each subset \mathcal{I}_l (with $l = 1, \dots, L$), we denote their local counterparts as

$$\mathbf{U}_{m,l}(\boldsymbol{\beta}) = \frac{1}{m} \sum_{i \in \mathcal{I}_l} \mathbf{U}_i(\boldsymbol{\beta}), \quad \mathbf{D}_{m,l}(\boldsymbol{\beta}) = \frac{1}{m} \sum_{i \in \mathcal{I}_l} \mathbf{D}_i(\boldsymbol{\beta}).$$

Let $\mathbf{J}_i(\boldsymbol{\beta}) = E[\mathbf{U}_i(\boldsymbol{\beta})]$ and $\mathbf{H}_i(\boldsymbol{\beta}) = E[\mathbf{D}_i(\boldsymbol{\beta})]$ be the expected estimating function and its derivative for the i -th subject, respectively. We define their global averages as

$$\mathbf{J}_M(\boldsymbol{\beta}) = E[\mathbf{U}_M(\boldsymbol{\beta})] = \frac{1}{M} \sum_{i=1}^M \mathbf{J}_i(\boldsymbol{\beta}), \quad \mathbf{H}_M(\boldsymbol{\beta}) = E[\mathbf{D}_M(\boldsymbol{\beta})] = \frac{1}{M} \sum_{i=1}^M \mathbf{H}_i(\boldsymbol{\beta}),$$

*The authors gratefully acknowledge National Natural Science Foundation of China (No.12371295)

and their local averages as

$$\mathbf{J}_{m,l}(\boldsymbol{\beta}) = E[\mathbf{U}_{m,l}(\boldsymbol{\beta})] = \frac{1}{m} \sum_{i \in \mathcal{I}_l} \mathbf{J}_i(\boldsymbol{\beta}), \quad \mathbf{H}_{m,l}(\boldsymbol{\beta}) = E[\mathbf{D}_{m,l}(\boldsymbol{\beta})] = \frac{1}{m} \sum_{i \in \mathcal{I}_l} \mathbf{H}_i(\boldsymbol{\beta}).$$

We further define the centered expected estimating function as

$$\mathfrak{J}_i(\boldsymbol{\beta}) = \mathbf{J}_i(\boldsymbol{\beta}) - \mathbf{J}_i(\boldsymbol{\beta}_\tau), \quad \mathfrak{J}_M(\boldsymbol{\beta}) = \frac{1}{M} \sum_{i=1}^M \mathfrak{J}_i(\boldsymbol{\beta}).$$

Finally, we introduce the stochastic process as

$$\varphi_M(\boldsymbol{\beta}) = \mathbf{U}_M(\boldsymbol{\beta}) - \mathbf{U}_M(\boldsymbol{\beta}_\tau),$$

which satisfies:

$$E[\varphi_M(\boldsymbol{\beta})] = \mathbf{J}_M(\boldsymbol{\beta}) - \mathbf{J}_M(\boldsymbol{\beta}_\tau) = \mathfrak{J}_M(\boldsymbol{\beta}).$$

2 Technical Lemmas

This section contains technical lemmas that support the proofs of the main theorems.

Lemma 1. *Following He et al. (2023)[4], for $\delta \in (0, 1]$, define $\iota_\delta \geq 0$ as:*

$$\iota_\delta = \inf \{ \iota > 0 : E\{\langle \mathbf{z}, \mathbf{u} \rangle^2 I(|\langle \mathbf{z}, \mathbf{u} \rangle| > \iota)\} \leq \delta \text{ for all } \mathbf{u} \in \mathbb{S}^{p-1} \}, \quad (1)$$

where $\mathbf{z} = \boldsymbol{\Sigma}^{-1/2} \mathbf{x}$ satisfying $E(\mathbf{z}\mathbf{z}^\top) = \mathbf{I}_{p \times p}$ and $\mathbf{u} \in \mathbb{S}^{p-1}$ satisfying $E\langle \mathbf{u}, \mathbf{z} \rangle^2 = 1$. For any $\gamma > 0$, $0 < r < h_l/(4\iota_{0.25})$ and $s \geq 0$, there exists $f_{l,l} \geq 0$ such that

$$\inf_{\boldsymbol{\beta} \in \mathbb{B}_\Sigma(r)} \frac{\bar{D}_{\tilde{\mathcal{L}}_{M,l}}^{(s)}(\boldsymbol{\beta}, \boldsymbol{\beta}_\tau)}{\kappa_* C_m^{-1} \|\boldsymbol{\beta} - \boldsymbol{\beta}_\tau\|_\Sigma^2} \geq \frac{3n_l}{4} f_{l,l} - \frac{5n_u}{4r} \sqrt{\frac{pf_{u,l}h_l}{m}} - 3n_u \sqrt{\frac{2\gamma\mu_4 f_{u,l}}{h_l m}} - \frac{13\gamma h_l n_u}{48r^2 m}$$

holds with probability at least $1 - e^{-\gamma}$, where $C_m = \tau(1 - \tau)\xi_{\max}$ and $\kappa_* = \min_{|u| \leq 1} k(u) > 0$.

Proof. Define the symmetrized Bregman divergence for the surrogate loss functions $\tilde{\mathcal{L}}_{M,l}^{(s)}(\boldsymbol{\beta})$ on the l th machine at s -th iteration as

$$\begin{aligned} \bar{D}_{\tilde{\mathcal{L}}_{M,l}}^{(s)}(\boldsymbol{\beta}, \boldsymbol{\beta}_\tau) &= \left\langle \nabla \tilde{\mathcal{L}}_{M,l}^{(s)}(\boldsymbol{\beta}) - \nabla \tilde{\mathcal{L}}_{M,l}^{(s)}(\boldsymbol{\beta}_\tau), \boldsymbol{\beta} - \boldsymbol{\beta}_\tau \right\rangle \\ &= \left\langle \nabla \mathcal{L}_{m,l}^{(s)}(\boldsymbol{\beta}) - \nabla \mathcal{L}_{m,l}^{(s)}(\boldsymbol{\beta}_\tau), \boldsymbol{\beta} - \boldsymbol{\beta}_\tau \right\rangle = \bar{D}_{\mathcal{L}_{m,l}}^{(s)}(\boldsymbol{\beta}, \boldsymbol{\beta}_\tau). \end{aligned}$$

For $\epsilon_{ik} = y_{ik} - \mathbf{x}_{ik}^\top \boldsymbol{\beta}_\tau$, $i = 1, \dots, M$, $k = 1, \dots, n_i$, define the event

$$\mathcal{E}_{ik} = \left\{ |\epsilon_{ik}| \leq \frac{h_l}{2} \right\} \cap \left\{ \frac{|\langle \mathbf{x}_{ik}, \boldsymbol{\beta} - \boldsymbol{\beta}_\tau \rangle|}{\|\boldsymbol{\beta} - \boldsymbol{\beta}_\tau\|_\Sigma} \leq \frac{h_l}{2r} \right\}.$$

Recall that $\mathbb{B}_\Sigma(r) = \{\boldsymbol{\beta} \in \mathbb{R}^p : \|\boldsymbol{\beta} - \boldsymbol{\beta}_\tau\|_\Sigma \leq r\}$ is a local neighborhood of $\boldsymbol{\beta}_\tau$ under $\|\cdot\|_\Sigma$ -norm. For any $\boldsymbol{\beta} \in \mathbb{B}_\Sigma(r)$, we have $|y_{ik} - \mathbf{x}_{ik}^\top \boldsymbol{\beta}| \leq h_l$ on \mathcal{E}_{ik} . Therefore, conditioned

on the event \mathcal{E}_{ik} , we have

$$\begin{aligned}
\bar{D}_{\mathcal{L}_{m,l}}^{(s)}(\boldsymbol{\beta}, \boldsymbol{\beta}_\tau) &= \left\langle \frac{1}{m} \sum_{i \in \mathcal{I}_l} \mathbf{x}_i^T \mathbf{W}_i^{(s)} \mathbf{x}_i (\boldsymbol{\beta} - \boldsymbol{\beta}_\tau), \boldsymbol{\beta} - \boldsymbol{\beta}_\tau \right\rangle \\
&= \frac{1}{m} \sum_{i \in \mathcal{I}_l} (\boldsymbol{\beta} - \boldsymbol{\beta}_\tau)^T \mathbf{x}_i^T (\widehat{\mathbf{V}}_i^{(s)})^{-1} \boldsymbol{\Lambda}_i^{(s)} \mathbf{x}_i (\boldsymbol{\beta} - \boldsymbol{\beta}_\tau) \\
&\geq \frac{\kappa_*}{mh_l} \frac{1}{\tau(1-\tau)\xi_{\max}} \sum_{i \in \mathcal{I}_l} \sum_{k=1}^{n_i} \langle \mathbf{x}_{ik}, \boldsymbol{\beta} - \boldsymbol{\beta}_\tau \rangle^2 I(\mathcal{E}_{ik}) \\
&= \frac{\kappa_*}{mh_l} \frac{1}{\tau(1-\tau)\xi_{\max}} \sum_{i \in \mathcal{I}_l} \sum_{k=1}^{n_i} \langle \mathbf{x}_{ik}, \boldsymbol{\beta} - \boldsymbol{\beta}_\tau \rangle^2 \varsigma_{ik} I\left(|\delta_{ik,\mathbf{v}}| \leq \frac{h_l}{2r}\right)
\end{aligned}$$

for any $\boldsymbol{\beta} \in \mathbb{B}_\Sigma(r)$, where $\varsigma_{ik} = I(|\epsilon_{ik}| \leq h_l/2)$ and $\delta_{ik,\mathbf{v}} = \langle \mathbf{z}_{ik}, \mathbf{v} \rangle$ with $\mathbf{z}_{ik} = \Sigma^{-1/2} \mathbf{x}_{ik}$, $\mathbf{v} = \Sigma^{1/2} \boldsymbol{\zeta} / \|\boldsymbol{\zeta}\|_\Sigma \in \mathbb{S}^{p-1}$ and $\boldsymbol{\zeta} = \boldsymbol{\beta} - \boldsymbol{\beta}_\tau$. Note that $E(\delta_{ik,\mathbf{v}}^2) = 1$.

Following the prove of Lemma C.3 in He et al. (2023)[4], we have

$$\langle \mathbf{z}_{ik}, \mathbf{v} \rangle^2 I\left(|\langle \mathbf{z}_{ik}, \mathbf{v} \rangle| \leq \frac{h_l}{2r}\right) \geq \varphi_{h_l/(2r)}(\langle \mathbf{z}_{ik}, \mathbf{v} \rangle) \geq \langle \mathbf{z}_{ik}, \mathbf{v} \rangle^2 I\left(|\langle \mathbf{z}_{ik}, \mathbf{v} \rangle| \leq \frac{h_l}{4r}\right),$$

where $\varphi_R(u) = u^2 I(|u| \leq R/2) + [u \operatorname{sign}(u) - R]^2 I(R/2 < |u| \leq R)$ satisfying $u^2 I(|u| \leq R/2) \leq \varphi_R(u) \leq u^2 I(|u| \leq R)$, $\varphi_0(u) = 0$, and $\varphi_{sR}(su) = s^2 \varphi_R(u)$ for any $s > 0$ and $R > 0$. Define

$$D_0(\mathbf{v}) = \frac{1}{mh_l} \sum_{i \in \mathcal{I}_l} \sum_{k=1}^{n_i} \varsigma_{ik} \varphi_{h_l/(2r)}(\langle \mathbf{z}_{ik}, \mathbf{v} \rangle) = \frac{1}{m} \sum_{i \in \mathcal{I}_l} \sum_{k=1}^{n_i} \aleph_{ik}(\mathbf{z}_{ik}, \mathbf{v}), \quad (2)$$

where $\aleph_{ik}(\mathbf{z}_{ik}, \mathbf{v}) = h_l^{-1} \varsigma_{ik} \varphi_{h_l/(2r)}(\langle \mathbf{z}_{ik}, \mathbf{v} \rangle)$. At follows, we drive the lower bound of $D_0(\mathbf{v})$ uniformly over $\mathbf{v} \in \mathbb{S}^{p-1}$.

According to Condition (A5), there exist some constants $f_{u,l} \geq f_{l,l} \geq 0$ such that $f_{l,l} \leq \min_{|u| \leq h_l/2} f_{\epsilon|\mathbf{x}}(u) \leq \max_{|u| \leq h_l/2} f_{\epsilon|\mathbf{x}}(u) \leq f_{u,l}$ almost surely (over \mathbf{x}) as long as h_l is sufficiently small. Then, we have

$$f_{l,l} h_l \leq E(\varsigma_{ik} | \mathbf{x}_{ik}) = \int_{-h_l/2}^{h_l/2} f_{\epsilon|\mathbf{x}}(u) du \leq f_{u,l} h_l \quad (3)$$

almost surely (over \mathbf{x}). For $r \leq h_l/(4\iota_{1/4})$ with $\iota_{1/4}$ defined in (1), we have

$$\begin{aligned}
E[\varsigma_{ik} \varphi_{h_l/(2r)}(\delta_{ik,\mathbf{v}})] &\geq E\left[\varsigma_{ik} \delta_{ik,\mathbf{v}}^2 I\left(|\delta_{ik,\mathbf{v}}| \leq \frac{h_l}{4r}\right)\right] \\
&\geq f_{l,l} h_l \left\{ 1 - E\left[\delta_{ik,\mathbf{v}}^2 I\left(|\delta_{ik,\mathbf{v}}| > \frac{h_l}{4r}\right)\right] \right\} \\
&\geq f_{l,l} h_l \left\{ 1 - \sup_{\mathbf{u} \in \mathbb{S}^{p-1}} E[\langle \mathbf{z}, \mathbf{u} \rangle^2 I(|\langle \mathbf{z}, \mathbf{u} \rangle| \geq \iota_{1/4})] \right\} \\
&\geq \frac{3}{4} f_{l,l} h_l.
\end{aligned} \quad (4)$$

Together with (2) and (4),

$$\inf_{\boldsymbol{\beta} \in \mathbb{B}_\Sigma(r)} E[D_0(\mathbf{v})] \geq \frac{3}{4} n_l f_{l,l}. \quad (5)$$

Let $\mathcal{N}_\varepsilon \subseteq \mathbb{S}^{p-1}$ be an ε -net of \mathbb{S}^{p-1} , which is a finite set satisfying that: for any $\mathbf{u} \in \mathbb{S}^{p-1}$, there exists $\mathbf{u}' \in \mathcal{N}_\varepsilon$ such that $\|\mathbf{u} - \mathbf{u}'\|_2 \leq \varepsilon$. Define

$$\Pi(\mathbf{v}) = \sup_{\mathbf{v} \in \mathcal{N}_\varepsilon} \left\{ E[D_0(\mathbf{v})] - D_0(\mathbf{v}) \right\} = \sup_{\mathbf{v} \in \mathcal{N}_\varepsilon} \left\{ \frac{1}{m} \sum_{i \in \mathcal{I}_l} \sum_{k=1}^{n_i} E[\aleph_{ik}(\mathbf{z}_{ik}, \mathbf{v})] - \aleph_{ik}(\mathbf{z}_{ik}, \mathbf{v}) \right\}.$$

Next, we derive the upper bound of $\Pi(\mathbf{v})$.

Since $0 \leq \varphi_R(u) \leq (R/2)^2$ for all $u \in \mathbb{R}$. We have $0 \leq \aleph_{ik}(\mathbf{z}_{ik}, \mathbf{v}) \leq h_l/(4r)^2$. For $\varsigma_{ik} \in \{0, 1\}$, based on (3), we have $E[\aleph_{ik}^2(\mathbf{z}_{ik}, \mathbf{v})] \leq h_l^{-1} \mu_4 f_{u,l}$. Define the function

$$g_i(\mathbf{z}_i, \mathbf{v}) = \frac{(4r)^2}{h_l n_u} \sum_{k=1}^{n_i} E[\aleph_{ik}(\langle \mathbf{z}_{ik}, \mathbf{v} \rangle)] - \aleph_{ik}(\langle \mathbf{z}_{ik}, \mathbf{v} \rangle),$$

where $\mathbf{z}_i = (\mathbf{z}_{i1}, \dots, \mathbf{z}_{in_i})^T$. Let \mathcal{G} be a countable set of functions from \mathcal{Z} to \mathbb{R} , and assume that all functions g_i ($i \in \mathcal{I}_l$) in \mathcal{G} are measurable, square-integrable and satisfy $E[g_i(\mathbf{z}_i, \mathbf{v})] = 0$. We have $\sup_{g_i \in \mathcal{G}} g_i \leq 1$ and

$$\begin{aligned} \sup_{g_i \in \mathcal{G}} E[g_i^2(\mathbf{z}_i, \mathbf{v})] &= \frac{(4r)^4 n_i^2}{(h_l n_u)^2} E \left\{ \frac{1}{n_i} \sum_{k=1}^{n_i} E[\aleph_{ik}(\langle \mathbf{z}_{ik}, \mathbf{v} \rangle)] - \aleph_{ik}(\langle \mathbf{z}_{ik}, \mathbf{v} \rangle) \right\}^2 \\ &\leq \frac{(4r)^4}{h_l^2} \cdot \frac{1}{n_i} \sum_{k=1}^{n_i} E \left\{ E[\aleph_{ik}(\langle \mathbf{z}_{ik}, \mathbf{v} \rangle)] - \aleph_{ik}(\langle \mathbf{z}_{ik}, \mathbf{v} \rangle) \right\}^2 \leq \frac{f_{u,l}(4r)^4 \mu_4}{h_l^3} = C_{h_l}. \end{aligned}$$

Therefore, $\sup_{g_i \in \mathcal{G}} \sum_{i \in \mathcal{I}_l} E[g_i^2(\mathbf{z}_i, \mathbf{v})] \leq m C_{h_l}$. Since

$$\begin{aligned} \sup_{g_i \in \mathcal{G}} \sum_{i \in \mathcal{I}_l} g_i(\mathbf{z}_i, \mathbf{v}) &= \frac{(4r)^2}{h_l n_u} \sup_{\mathbf{v} \in \mathcal{N}_\varepsilon} \sum_{i \in \mathcal{I}_l} \sum_{k=1}^{n_i} E[\aleph_{ik}(\langle \mathbf{z}_{ik}, \mathbf{v} \rangle) - \aleph_{ik}(\langle \mathbf{z}_{ik}, \mathbf{v} \rangle)] \\ &= \frac{(4r)^2 m}{h_l n_u} \sup_{\mathbf{v} \in \mathcal{N}_\varepsilon} \left\{ E[D_0(\mathbf{v})] - D_0(\mathbf{v}) \right\} = \frac{(4r)^2 m}{h_l n_u} \Pi(\mathbf{v}). \end{aligned}$$

According to a refined Talagrand's inequality in Theorem 7.3 of Bousquet (2003) [2] and the elementary inequality $ab \leq a^2/4 + b^2$ for all $a, b \in \mathbb{R}$,

$$\begin{aligned} \Pi(\mathbf{v}) &\leq E[\Pi(\mathbf{v})] + \frac{h_l n_u}{(4r)^2 m} \sqrt{2\gamma \left[m \frac{f_{u,l}(4r)^4 \mu_4}{h_l^3} + 2 \frac{(4r)^2 m}{h_l n_u} E[\Pi(\mathbf{v})] \right]} + \frac{\gamma}{3} \frac{h_l n_u}{(4r)^2 m} \\ &\leq E[\Pi(\mathbf{v})] + n_u \sqrt{2\gamma \frac{\mu_4 f_{u,l}}{h_l m}} + \sqrt{\frac{4\gamma h_l n_u E[\Pi(\mathbf{v})]}{(4r)^2 m}} + \frac{\gamma h_l n_u}{3(4r)^2 m} \\ &\leq E[\Pi(\mathbf{v})] + n_u \sqrt{\frac{2\gamma \mu_4 f_{u,l}}{h_l m}} + \frac{1}{4} E[\Pi(\mathbf{v})] + \frac{\gamma h_l n_u}{4r^2 m} + \frac{\gamma h_l n_u}{48r^2 m} \\ &\leq \frac{5}{4} E[\Pi(\mathbf{v})] + n_u \sqrt{\frac{2\gamma \mu_4 f_{u,l}}{h_l m}} + \frac{13\gamma h_l n_u}{48r^2 m} \end{aligned} \tag{6}$$

holds with probability at least $1 - e^{-\gamma}$ for any $\gamma > 0$.

Now, we derive the upper bound of $E[\Pi(\mathbf{v})]$. Since $\varsigma_{ik} = I(|\epsilon_{ik}| \leq h_l/2) \in \{0, 1\}$, we have $\varsigma_{ik} \varphi_{h_l/(2r)}(\delta_{ik}, \mathbf{v}) = \varsigma_{ik}^2 \varphi_{h_l/(2r)}(\delta_{ik}, \mathbf{v}) = \varphi_{\varsigma_{ik} h_l/(2r)}(\varsigma_{ik} \delta_{ik}, \mathbf{v}) = \varphi_{h_l/(2r)}(\varsigma_{ik} \delta_{ik}, \mathbf{v})$. Write

$\aleph_{ik}(\bar{\mathbf{z}}_{ik}, \mathbf{v}) = h_l^{-1}\varphi_{h_l/(2r)}(\langle \bar{\mathbf{z}}_{ik}, \mathbf{v} \rangle)$ with $\bar{\mathbf{z}}_{ik} = \varsigma_{ik}\mathbf{z}_{ik}$. Since $\varphi_R(\cdot)$ is R -Lipschitz continuous, $h_l^{-1}\varphi_{h_l/(2r)}(\bar{\mathbf{z}}_{ik}, \mathbf{v})$ is $(2r)^{-1}$ -Lipschitz continuous, that is, for any $\mathbf{v}, \mathbf{v}' \in \mathbb{R}^p$,

$$\frac{1}{h_l} \left| \varphi_{h_l/(2r)}(\langle \bar{\mathbf{z}}_{ik}, \mathbf{v} \rangle) - \varphi_{h_l/(2r)}(\langle \bar{\mathbf{z}}_{ik}, \mathbf{v}' \rangle) \right| \leq \frac{1}{2r} \left| \langle \bar{\mathbf{z}}_{ik}, \mathbf{v} \rangle - \langle \bar{\mathbf{z}}_{ik}, \mathbf{v}' \rangle \right|. \quad (7)$$

Moreover, for any \mathbf{v} such that $\langle \bar{\mathbf{z}}_{ik}, \mathbf{v} \rangle = 0$, we have $\aleph_{ik}(\bar{\mathbf{z}}_{ik}, \mathbf{v}) = 0$.

Suppose that Z_1, \dots, Z_m are m independent Rademacher random variables. According to Rademacher symmetrization, we have

$$E[\Pi(\mathbf{v})] \leq 2E \left[\sup_{\mathbf{v} \in \mathcal{N}_\varepsilon} \left(\frac{1}{m} \sum_{i \in \mathcal{I}_l} Z_i \aleph_i(\langle \bar{\mathbf{z}}_i, \mathbf{v} \rangle) \right) \right], \quad (8)$$

where $\aleph_i(\langle \bar{\mathbf{z}}_i, \mathbf{v} \rangle) = \sum_{k=1}^{n_i} \aleph_{ik}(\langle \bar{\mathbf{z}}_{ik}, \mathbf{v} \rangle)$ and $\bar{\mathbf{z}}_i = (\bar{\mathbf{z}}_{i1}, \dots, \bar{\mathbf{z}}_{in_i})^T$. Define the subset $\mathcal{V}_l \subseteq \mathbb{R}^{N_l}$ ($N_l = \sum_{i \in \mathcal{I}_l} n_i$) as

$$\begin{aligned} \mathcal{V}_l = \{ & \boldsymbol{\nu} = (\boldsymbol{\nu}_1^T, \dots, \boldsymbol{\nu}_m^T)^T, \boldsymbol{\nu}_i = (\nu_{i1}, \dots, \nu_{in_i})^T : \\ & \nu_{ik} = \langle \bar{\mathbf{z}}_{ik}, \mathbf{v} \rangle, i = 1, \dots, m, k = 1, \dots, n_i, \mathbf{v} \in \mathcal{N}_\varepsilon \}. \end{aligned}$$

Let $\phi_{ik}(\nu_{ik}) = (2r/h_l) \cdot \varphi_{h_l/(2r)}(\nu_{ik})$. Then, ϕ_{ik} is a convex function on its segment value ranges and $\aleph_{ik}(\langle \bar{\mathbf{z}}_{ik}, \mathbf{v} \rangle) = h_l^{-1}\varphi_{h_l/(2r)}(\nu_{ik}) = (1/2r)\phi_{ik}(\nu_{ik})$. Based on (7), we have $|\phi(\nu) - \phi(\nu')| \leq |\nu - \nu'|$ for $\nu, \nu' \in \mathbb{R}$. According to the Talagrand's contraction principle (4.20) of Theorem 4.12 in Ledoux and Talagrand (1991) [5],

$$\begin{aligned} 2E \left[\sup_{\mathbf{v} \in \mathcal{N}_\varepsilon} \left(\frac{1}{m} \sum_{i \in \mathcal{I}_l} Z_i \aleph_i(\langle \bar{\mathbf{z}}_i, \mathbf{v} \rangle) \right) \right] & \leq \frac{1}{r} E \left\{ \sup_{\boldsymbol{\nu} \in \mathcal{V}_l} \left[\frac{1}{m} \sum_{i \in \mathcal{I}_l} Z_i \left(\sum_{k=1}^{n_i} \phi_{ik}(\nu_{ik}) \right) \right] \right\} \\ & \leq \frac{1}{r} E \left\{ \sup_{\boldsymbol{\nu} \in \mathcal{V}_l} \left[\frac{1}{m} \sum_{i \in \mathcal{I}_l} Z_i \left(\sum_{k=1}^{n_i} \nu_{ik} \right) \right] \right\} \\ & = \frac{1}{r} E \left\{ \sup_{\mathbf{v} \in \mathcal{N}_\varepsilon} \left[\frac{1}{m} \sum_{i \in \mathcal{I}_l} Z_i \left(\sum_{k=1}^{n_i} \langle \bar{\mathbf{z}}_{ik}, \mathbf{v} \rangle \right) \right] \right\} \\ & \leq \frac{1}{r} E \left\| \frac{1}{m} \sum_{i \in \mathcal{I}_l} Z_i \left(\sum_{k=1}^{n_i} \varsigma_{ik} \mathbf{z}_{ik} \right) \right\|_2. \end{aligned} \quad (9)$$

Let $\hbar_j = m^{-1} \sum_{i \in \mathcal{I}_l} Z_i \sum_{k=1}^{n_i} \varsigma_{ik} z_{ik,j}$. Note that $E(Z_i \sum_{k=1}^{n_i} \varsigma_{ik} z_{ik,j}) = 0$. Based on (3),

$$\begin{aligned} E(\hbar_j^2) & = E \left[\frac{1}{m} \sum_{i \in \mathcal{I}_l} Z_i \left(\sum_{k=1}^{n_i} \varsigma_{ik} z_{ik,j} \right) \right]^2 = \frac{1}{m^2} \sum_{i \in \mathcal{I}_l} E \left[Z_i^2 n_i^2 \left(\frac{1}{n_i} \sum_{k=1}^{n_i} \varsigma_{ik} z_{ik,j} \right)^2 \right] \\ & \leq \frac{1}{m^2} \sum_{i \in \mathcal{I}_l} n_i \sum_{k=1}^{n_i} E[(\varsigma_{ik} z_{ik,j})^2] \leq \frac{f_{u,l} h_l n_u^2}{m} \end{aligned}$$

for $j = 1, \dots, p$. Then,

$$E \left\| \frac{1}{m} \sum_{i \in \mathcal{I}_l} Z_i \left(\sum_{k=1}^{n_i} \varsigma_{ik} \mathbf{z}_{ik} \right) \right\|_2 \leq \sqrt{\sum_{j=1}^p E(\hbar_j^2)} \leq n_u \sqrt{\frac{p f_{u,l} h_l}{m}}. \quad (10)$$

Together with (6) and (8)–(10),

$$\sup_{\mathbf{v} \in \mathcal{N}_\varepsilon} \left\{ E[D_0(\mathbf{v})] - D_0(\mathbf{v}) \right\} \leq \frac{5n_u}{4r} \sqrt{\frac{pf_{u,l}h_l}{m}} + n_u \sqrt{\frac{2\gamma\mu_4 f_{u,l}}{h_l m}} + \frac{13\gamma h_l n_u}{48r^2 m} \quad (11)$$

holds with probability at least $1 - e^{-\gamma}$. Since for any $\mathbf{v} \in \mathbb{S}^{p-1}$, there exists $\mathbf{v}' \in \mathcal{N}_\varepsilon$ such that

$$\begin{aligned} & \sup_{\mathbf{v} \in \mathbb{S}^{p-1}} \left\{ E[D_0(\mathbf{v})] - D_0(\mathbf{v}) \right\} \\ &= \sup_{\mathbf{v} \in \mathbb{S}^{p-1}, \mathbf{v}' \in \mathcal{N}_\varepsilon} \left\{ E[D_0(\mathbf{v}')] - D_0(\mathbf{v}') + E[D_0(\mathbf{v})] - E[D_0(\mathbf{v}')] + D_0(\mathbf{v}') - D_0(\mathbf{v}) \right\} \\ &\leq \sup_{\mathbf{v}' \in \mathcal{N}_\varepsilon} \left\{ E[D_0(\mathbf{v}')] - D_0(\mathbf{v}') \right\} \end{aligned} \quad (12)$$

as $\varepsilon \rightarrow 0$. Together with (5), (11) and (12),

$$\begin{aligned} \inf_{\mathbf{v} \in \mathbb{S}^{p-1}} D_0(\mathbf{v}) &= \inf_{\mathbf{v} \in \mathbb{S}^{p-1}} \left\{ D_0(\mathbf{v}) - E[D_0(\mathbf{v})] + E[D_0(\mathbf{v})] \right\} \\ &\geq \inf_{\mathbf{v} \in \mathbb{S}^{p-1}} E[D_0(\mathbf{v})] + \inf_{\mathbf{v} \in \mathbb{S}^{p-1}} \left\{ D_0(\mathbf{v}) - E[D_0(\mathbf{v})] \right\} \\ &= \inf_{\mathbf{v} \in \mathbb{S}^{p-1}} E[D_0(\mathbf{v})] - \sup_{\mathbf{v} \in \mathbb{S}^{p-1}} \left\{ -D_0(\mathbf{v}) + E[D_0(\mathbf{v})] \right\} \\ &\geq \frac{3n_l}{4} f_{l,l} - \frac{5n_u}{4r} \sqrt{\frac{pf_{u,l}h_l}{m}} - n_u \sqrt{\frac{2\gamma\mu_4 f_{u,l}}{h_l m}} - \frac{13\gamma h_l n_u}{48r^2 m} \end{aligned}$$

holds with probability at least $1 - e^{-\gamma}$. Consequently,

$$\begin{aligned} \inf_{\boldsymbol{\beta} \in \mathbb{B}_\Sigma(r)} \bar{D}_{\mathcal{L}_{m,l}}^{(s)}(\boldsymbol{\beta}, \boldsymbol{\beta}_\tau) &\geq \frac{\kappa_* \|\boldsymbol{\zeta}\|_\Sigma^2}{\tau(1-\tau)\xi_{\max}} \inf_{\mathbf{v} \in \mathbb{S}^{p-1}} D_0(\mathbf{v}) \\ &\geq \frac{\kappa_* \|\boldsymbol{\zeta}\|_\Sigma^2}{\tau(1-\tau)\xi_{\max}} \left(\frac{3n_l}{4} f_{l,l} - \frac{5n_u}{4r} \sqrt{\frac{pf_{u,l}h_l}{m}} - 3n_u \sqrt{\frac{2\gamma\mu_4 f_{u,l}}{h_l m}} - \frac{13\gamma h_l n_u}{48r^2 m} \right). \end{aligned}$$

■

Lemma 2. *Given an estimator $\hat{\boldsymbol{\beta}}$ of $\boldsymbol{\beta}$, denote $\hat{\mathbf{R}}_i$ as the estimator of $\mathbf{R}_i = \mathbf{R}_i(\boldsymbol{\alpha})$ based on $\hat{\boldsymbol{\beta}}$. Let $\bar{\tau} = \max(1 - \tau, \tau)$. Under Conditions (A1)–(A4), for any $\varepsilon > 0$, there exist constants $C_\varepsilon, M_0 > 0$ such that for every $M \geq M_0$, the following hold simultaneously with probability at least $1 - \varepsilon$:*

(i)

$$\left\| \hat{\mathbf{U}}_M(\boldsymbol{\beta}) - \mathbf{U}_M(\boldsymbol{\beta}) \right\|_\infty \leq C_0 C_\varepsilon \sqrt{\frac{p}{M}},$$

where $C_0 = (1 - \bar{\tau})^{-1} n_u B$ is independent of M and p .

(ii)

$$\left\| \boldsymbol{\Sigma}_M(\boldsymbol{\beta}) \right\|_2 = \left\| \boldsymbol{\Sigma}^{-1/2} \left\{ \hat{\mathbf{U}}_M(\boldsymbol{\beta}) - \mathbf{U}_M(\boldsymbol{\beta}) \right\} \right\|_2 \leq \xi_p^{-1/2} C_0 C_\varepsilon \frac{p}{\sqrt{M}},$$

where $\xi_p > 0$ is the smallest eigenvalue of $\boldsymbol{\Sigma} = E(\mathbf{x}\mathbf{x}^\top)$.

Proof. Under Conditions (A1)–(A4), with probability at least $1 - \varepsilon$:

$$\begin{aligned}
\mathfrak{U}_M &= \left\| \widehat{\mathbf{U}}_M(\boldsymbol{\beta}) - \mathbf{U}_M(\boldsymbol{\beta}) \right\|_{\infty} \\
&= \max_{1 \leq j \leq p} \left| \frac{1}{M} \sum_{i=1}^M \mathbf{x}_{i,j}^T \mathbf{A}_i^{-1/2} \left(\widehat{\mathbf{R}}_i^{-1} - \mathbf{R}_i^{-1} \right) \mathbf{A}_i^{-1/2} \left[\mathbf{K}_h(-\boldsymbol{\epsilon}_i(\boldsymbol{\beta})) - \mathbf{1}_{n_i} \cdot \tau \right] \right| \\
&\leq \max_{1 \leq j \leq p} \frac{1}{M} \sum_{i=1}^M \|\mathbf{x}_{i,j}\|_2 \cdot \left\| \mathbf{A}_i^{-1/2} \left(\widehat{\mathbf{R}}_i^{-1} - \mathbf{R}_i^{-1} \right) \mathbf{A}_i^{-1/2} \right\|_2 \cdot \left\| \mathbf{K} \left(-\frac{\mathbf{y}_i - \mathbf{x}_i \boldsymbol{\beta}}{h} \right) - \mathbf{1}_{n_i} \cdot \tau \right\|_2 \\
&\leq \frac{1}{\tau(1-\tau)} \cdot \frac{1}{M} \sum_{i=1}^M \|\mathbf{x}_{i,j}\|_2 \cdot \left\| \widehat{\mathbf{R}}_i^{-1} - \mathbf{R}_i^{-1} \right\|_2 \cdot \sqrt{n_u} \max_{i,k} \left| K \left(-\frac{y_{ik} - \mathbf{x}_{ik}^T \boldsymbol{\beta}}{h} \right) - \tau \right| \\
&\leq \frac{1}{\tau(1-\tau)} \cdot \frac{1}{M} \sum_{i=1}^M \sqrt{n_u} \max_{i,k,j} |x_{ik,j}| \cdot C_{\varepsilon} \sqrt{\frac{p}{M}} \cdot \sqrt{n_u} \cdot \bar{\tau} \\
&\leq (1-\bar{\tau})^{-1} n_u B C_{\varepsilon} \sqrt{\frac{p}{M}} = C_0 C_{\varepsilon} \sqrt{\frac{p}{M}},
\end{aligned}$$

where the identity $\tau^{-1}(1-\tau)^{-1}\bar{\tau} = (1-\bar{\tau})^{-1}$ follows from the definition of $\bar{\tau}$. With the same probability, we have

$$\begin{aligned}
\|\mathfrak{S}_M(\boldsymbol{\beta})\|_2 &= \left\| \boldsymbol{\Sigma}^{-1/2} \left(\widehat{\mathbf{U}}_M(\boldsymbol{\beta}) - \mathbf{U}_M(\boldsymbol{\beta}) \right) \right\|_2 \leq \xi_p^{-1/2} \left\| \widehat{\mathbf{U}}_M(\boldsymbol{\beta}) - \mathbf{U}_M(\boldsymbol{\beta}) \right\|_2 \\
&\leq \xi_p^{-1/2} \sqrt{p} \left\| \widehat{\mathbf{U}}_M(\boldsymbol{\beta}) - \mathbf{U}_M(\boldsymbol{\beta}) \right\|_{\infty} \leq \xi_p^{-1/2} C_0 C_{\varepsilon} \sqrt{\frac{p^2}{M}}.
\end{aligned}$$

■

Lemma 3. Assume that Conditions (A2)–(A7) hold. For any $\gamma > 0$, as long as $h \gtrsim \sqrt{(p+\gamma)/M}$,

$$\begin{aligned}
\sup_{\boldsymbol{\beta} \in \mathbb{B}_{\boldsymbol{\Sigma}}(r)} \|\Delta_M(\boldsymbol{\beta})\|_2 &= \sup_{\boldsymbol{\beta} \in \mathbb{B}_{\boldsymbol{\Sigma}}(r)} \left\| \boldsymbol{\Sigma}^{-1/2} \left\{ \mathbf{U}_M(\boldsymbol{\beta}) - \mathbf{U}_M(\boldsymbol{\beta}_{\tau}) - \mathbf{H}_M(\boldsymbol{\beta}_{\tau})(\boldsymbol{\beta} - \boldsymbol{\beta}_{\tau}) \right\} \right\|_2 \\
&\lesssim C_1 r \left(\sqrt{\frac{p+\gamma}{Mh}} + r \right)
\end{aligned}$$

holds with probability at least $1 - e^{-\gamma}$, where $C_1 > 0$ is a constant depending on $(\tau, L_0, n_u, f_u, \kappa_u, a_1, \mu_3, \xi_{\min})$.

Proof. Similar to the proof of Proposition S5 in Song et al. (2024) [6], we just need to derive the upper bound of

$$\sup_{\boldsymbol{\beta} \in \mathbb{B}_{\boldsymbol{\Sigma}}(r)} \|\Delta_M(\boldsymbol{\beta})\|_2 \leq \sup_{\boldsymbol{\beta} \in \mathbb{B}_{\boldsymbol{\Sigma}}(r)} \left\| E[\Delta_M(\boldsymbol{\beta})] \right\|_2 + \sup_{\boldsymbol{\beta} \in \mathbb{B}_{\boldsymbol{\Sigma}}(r)} \left\| \Delta_M(\boldsymbol{\beta}) - E[\Delta_M(\boldsymbol{\beta})] \right\|_2. \quad (13)$$

According to the mean-value theorem of vector-valued functions, for $\boldsymbol{\zeta} = \boldsymbol{\beta} - \boldsymbol{\beta}_{\tau}$ with $\boldsymbol{\beta} \in \mathbb{B}_{\boldsymbol{\Sigma}}(r)$,

$$\begin{aligned}
E[\Delta_M(\boldsymbol{\beta})] &= \boldsymbol{\Sigma}^{-1/2} \left\langle \int_0^1 \mathbf{H}_M(\boldsymbol{\beta}_{\tau} + t\boldsymbol{\zeta}) dt, \boldsymbol{\zeta} \right\rangle - \boldsymbol{\Sigma}^{-1/2} \mathbf{H}_M(\boldsymbol{\beta}_{\tau}) \cdot \boldsymbol{\zeta} \\
&= \left\langle \boldsymbol{\Sigma}^{-1/2} \int_0^1 \mathbf{H}_M(\boldsymbol{\beta}_{\tau} + t\boldsymbol{\zeta}) dt \cdot \boldsymbol{\Sigma}^{-1/2} - \boldsymbol{\Sigma}^{-1/2} \mathbf{H}_M(\boldsymbol{\beta}_{\tau}) \cdot \boldsymbol{\Sigma}^{-1/2}, \boldsymbol{\Sigma}^{1/2} \boldsymbol{\zeta} \right\rangle.
\end{aligned} \quad (14)$$

Denote $\mathbf{z}_i = \mathbf{x}_i \Sigma^{-1/2}$ and $\boldsymbol{\delta} = \Sigma^{1/2} \boldsymbol{\zeta}$, we have

$$\Sigma^{-1/2} \mathbf{H}_M(\boldsymbol{\beta}_\tau) \cdot \Sigma^{-1/2} = \frac{1}{M} \sum_{i=1}^M E \left\{ \mathbf{z}_i^T \mathbf{A}_i^{-1/2} \mathbf{R}_i^{-1} \mathbf{A}_i^{-1/2} \Lambda_i(\boldsymbol{\beta}_\tau) \mathbf{z}_i \right\}. \quad (15)$$

Since for \mathbf{z}_{ik} ($1 \leq i \leq M$, $1 \leq k \leq n_i$),

$$\begin{aligned} E \left\{ \mathbf{z}_{ik} \Lambda_{ik}(\boldsymbol{\beta}_\tau + t \boldsymbol{\zeta}) \mathbf{z}_{ik}^T \right\} &= \frac{1}{h} E \left\{ k \left(\frac{\mathbf{z}_{ik}^T \boldsymbol{\delta} \cdot t - \epsilon_{ik}}{h} \right) \cdot \mathbf{z}_{ik} \mathbf{z}_{ik}^T \right\} \\ &= E \left[\int_{-\infty}^{+\infty} k(u) f_{\epsilon|\mathbf{x}}(\mathbf{z}^T \boldsymbol{\delta} \cdot t - hu) du \cdot \mathbf{z} \mathbf{z}^T \right], \end{aligned} \quad (16)$$

where $\Lambda_{ik}(\cdot)$ is the k th diagonal element of $\Lambda_i(\cdot)$ and $\mathbf{z} = \Sigma^{-1/2} \mathbf{x}$. According to (15) and (16), For $\boldsymbol{\delta}$ which satisfies $\|\boldsymbol{\delta}\|_2 \leq r$,

$$\begin{aligned} &\left\| \Sigma^{-1/2} \mathbf{H}_M(\boldsymbol{\beta}_\tau + t \boldsymbol{\zeta}) \cdot \Sigma^{-1/2} - \Sigma^{-1/2} \mathbf{H}_M(\boldsymbol{\beta}_\tau) \cdot \Sigma^{-1/2} \right\|_2 \\ &= \left\| \frac{1}{M} \sum_{i=1}^M E \left\{ \mathbf{z}_i^T \mathbf{A}_i^{-1/2} \mathbf{R}_i^{-1} \mathbf{A}_i^{-1/2} [\Lambda_i(\boldsymbol{\beta}_\tau + t \boldsymbol{\zeta}) - \Lambda_i(\boldsymbol{\beta}_\tau)] \mathbf{z}_i \right\} \right\|_2 \\ &\leq \frac{1}{\tau(1-\tau)\xi_{\min}} \left\| \frac{1}{M} \sum_{i=1}^M \sum_{k=1}^{n_i} E \left\{ \mathbf{z}_{ik} [\Lambda_{ik}(\boldsymbol{\beta}_\tau + t \boldsymbol{\zeta}) - \Lambda_{ik}(\boldsymbol{\beta}_\tau)] \mathbf{z}_{ik}^T \right\} \right\|_2 \\ &\leq \frac{n_u}{\tau(1-\tau)\xi_{\min}} E \left\| \int_{-\infty}^{+\infty} k(u) [f_{\epsilon|\mathbf{x}}(\mathbf{z}^T \boldsymbol{\delta} \cdot t - hu) - f_{\epsilon|\mathbf{x}}(-hu)] du \cdot \mathbf{z} \mathbf{z}^T \right\|_2 \\ &\leq \frac{n_u L_0 t}{C_r} \sup_{\|\mathbf{u}\|_2=1} \left\{ E(\langle \mathbf{z}, \mathbf{u} \rangle^2 |\langle \mathbf{z}, \mathbf{v} \rangle|) \right\} \cdot \|\boldsymbol{\delta}\|_2 \\ &\leq \frac{n_u \mu_3 L_0 r t}{C_r}, \end{aligned} \quad (17)$$

where $C_r = \tau(1-\tau)\xi_{\min}$. Together with (14) and (17),

$$\sup_{\boldsymbol{\beta} \in \mathbb{B}_\Sigma(r)} \left\| E[\Delta_M(\boldsymbol{\beta})] \right\|_2 \leq 0.5 C_r^{-1} L_0 n_u \mu_3 r^2. \quad (18)$$

At follows, we derive the upper bound of $\sup_{\boldsymbol{\beta} \in \mathbb{B}_\Sigma(r)} \|\Delta_M(\boldsymbol{\beta}) - E[\Delta_M(\boldsymbol{\beta})]\|_2$. Define the centralized gradient process

$$\Psi_M(\boldsymbol{\beta}) = \Sigma^{-1/2} [\mathbf{U}_M(\boldsymbol{\beta}) - \mathbf{J}_M(\boldsymbol{\beta})]$$

such that $\Delta_M(\boldsymbol{\beta}) - E[\Delta_M(\boldsymbol{\beta})] = \Psi_M(\boldsymbol{\beta}) - \Psi_M(\boldsymbol{\beta}_\tau)$. For $\boldsymbol{\delta}$ which satisfies $\|\boldsymbol{\delta}\|_2 \leq r$,

$$\begin{aligned} \sup_{\boldsymbol{\beta} \in \mathbb{B}_\Sigma(r)} \left\| \Delta_M(\boldsymbol{\beta}) - E[\Delta_M(\boldsymbol{\beta})] \right\|_2 &= \sup_{\boldsymbol{\beta} \in \mathbb{B}_\Sigma(r)} \left\| \Psi_M(\boldsymbol{\beta}) - \Psi_M(\boldsymbol{\beta}_\tau) \right\|_2 \\ &= \sup_{\|\boldsymbol{\delta}\|_2 \leq r} \left\| \Psi_M(\boldsymbol{\beta}_\tau + \Sigma^{-1/2} \boldsymbol{\delta}) - \Psi_M(\boldsymbol{\beta}_\tau) \right\|_2. \end{aligned}$$

Let $\Delta_{M,0}(\boldsymbol{\delta}) = \Psi_M(\boldsymbol{\beta}_\tau + \Sigma^{-1/2} \boldsymbol{\delta}) - \Psi_M(\boldsymbol{\beta}_\tau)$, then $\Delta_{M,0}(\mathbf{0}) = \mathbf{0}$ and $E[\Delta_{M,0}(\boldsymbol{\delta})] = \mathbf{0}$. We now drive the upper bound of $\sup_{\|\boldsymbol{\delta}\|_2 \leq r} \Delta_{M,0}(\boldsymbol{\delta})$ based on Theorem A.3 in Spokoiny

(2012) [7]. Take the first-order derivative of $\Delta_{M,0}(\boldsymbol{\delta})$ with respect to $\boldsymbol{\delta}$, we have

$$\begin{aligned}
\nabla \Delta_{M,0}(\boldsymbol{\delta}) &= \boldsymbol{\Sigma}^{-1/2} \left[\mathbf{D}_M(\boldsymbol{\beta}_\tau + \boldsymbol{\Sigma}^{-1/2}\boldsymbol{\delta}) - \mathbf{H}_M(\boldsymbol{\beta}_\tau + \boldsymbol{\Sigma}^{-1/2}\boldsymbol{\delta}) \right] \cdot \boldsymbol{\Sigma}^{-1/2} \\
&\leq \frac{1}{C_r} \frac{1}{M} \sum_{i=1}^M \left\{ \mathbf{z}_i^T \boldsymbol{\Lambda}_i (\boldsymbol{\beta}_\tau + \boldsymbol{\Sigma}^{-1/2}\boldsymbol{\delta}) \mathbf{z}_i - E[\mathbf{z}_i^T \boldsymbol{\Lambda}_i (\boldsymbol{\beta}_\tau + \boldsymbol{\Sigma}^{-1/2}\boldsymbol{\delta}) \mathbf{z}_i] \right\} \\
&= \frac{1}{C_r} \frac{1}{M} \sum_{i=1}^M \sum_{k=1}^{n_i} \left\{ \mathbf{z}_{ik} \Lambda_{ik} (\boldsymbol{\beta}_\tau + \boldsymbol{\Sigma}^{-1/2}\boldsymbol{\delta}) \mathbf{z}_{ik}^T - E[\mathbf{z}_{ik} \Lambda_{ik} (\boldsymbol{\beta}_\tau + \boldsymbol{\Sigma}^{-1/2}\boldsymbol{\delta}) \mathbf{z}_{ik}^T] \right\} \\
&= \frac{1}{C_r} \frac{1}{M} \sum_{i=1}^M \sum_{k=1}^{n_i} \left\{ k_h (\mathbf{z}_{ik}^T \boldsymbol{\delta} - \epsilon_{ik}) \mathbf{z}_{ik} \mathbf{z}_{ik}^T - E[k_h (\mathbf{z}_{ik}^T \boldsymbol{\delta} - \epsilon_{ik}) \mathbf{z}_{ik} \mathbf{z}_{ik}^T] \right\},
\end{aligned}$$

where $k_h(\cdot) = (1/h)k(\cdot)$. Write $k_{ik,\delta} = k_h(\mathbf{z}_{ik}^T \boldsymbol{\delta} - \epsilon_{ik})$, then $0 \leq k_{ik,\delta} \leq \kappa_u/h$. According to the proof of Proposition S5 in the supplementary of Song et al. (2024) [6] and the elementary inequality $|e^u - 1 - u| \leq u^2 e^{|u|}/2$, for any $\mathbf{u}, \mathbf{u}' \in \mathbb{S}^{p-1}$ and $\lambda \in \mathbb{R}$,

$$\begin{aligned}
&E \left[\exp \left\{ \lambda \sqrt{M} \langle \mathbf{u}, \nabla \Delta_{M,0}(\boldsymbol{\delta}) \mathbf{u}' \rangle / a_1^2 \right\} \right] \\
&\leq E \left[\exp \left\{ \frac{\lambda \sqrt{M}}{a_1^2 C_r} \left\langle \mathbf{u}, \frac{1}{M} \sum_{i=1}^M \sum_{k=1}^{n_i} \left\{ k_{ik,\delta} \mathbf{z}_{ik} \mathbf{z}_{ik}^T - E(k_{ik,\delta} \mathbf{z}_{ik} \mathbf{z}_{ik}^T) \right\} \mathbf{u}' \right\rangle \right\} \right] \\
&= \prod_{i=1}^M E \left[\exp \left\{ \frac{\lambda \sqrt{M}}{a_1^2 C_r M} \sum_{k=1}^{n_i} \left\langle \mathbf{u}, \left\{ k_{ik,\delta} \mathbf{z}_{ik} \mathbf{z}_{ik}^T - E(k_{ik,\delta} \mathbf{z}_{ik} \mathbf{z}_{ik}^T) \right\} \mathbf{u}' \right\rangle \right\} \right] \\
&\leq \prod_{i=1}^M \left\{ 1 + E \left[\frac{\lambda \sqrt{M}}{a_1^2 C_r M} \sum_{k=1}^{n_i} \left\langle \mathbf{u}, \left\{ k_{ik,\delta} \mathbf{z}_{ik} \mathbf{z}_{ik}^T - E(k_{ik,\delta} \mathbf{z}_{ik} \mathbf{z}_{ik}^T) \right\} \mathbf{u}' \right\rangle \right] \right. \\
&\quad \left. + \frac{\lambda^2 M}{2a_1^4 C_r^2 M^2} E \left[\left(\sum_{k=1}^{n_i} \left\langle \mathbf{u}, \left\{ k_{ik,\delta} \mathbf{z}_{ik} \mathbf{z}_{ik}^T - E(k_{ik,\delta} \mathbf{z}_{ik} \mathbf{z}_{ik}^T) \right\} \mathbf{u}' \right\rangle \right)^2 \right. \right. \\
&\quad \left. \left. \times \exp \left\{ \left| \frac{\lambda \sqrt{M}}{a_1^2 C_r M} \sum_{k=1}^{n_i} \left\langle \mathbf{u}, \left\{ k_{ik,\delta} \mathbf{z}_{ik} \mathbf{z}_{ik}^T - E(k_{ik,\delta} \mathbf{z}_{ik} \mathbf{z}_{ik}^T) \right\} \mathbf{u}' \right\rangle \right| \right\} \right] \right\} \\
&\leq \prod_{i=1}^M \left\{ 1 + \frac{\lambda^2 M n_i^2}{2a_1^4 C_r^2 M^2} E \left[\frac{1}{n_i} \sum_{k=1}^{n_i} \left\{ k_{ik,\delta} \langle \mathbf{z}_{ik}, \mathbf{u} \rangle \langle \mathbf{z}_{ik}, \mathbf{u}' \rangle - E(k_{ik,\delta} \langle \mathbf{z}_{ik}, \mathbf{u} \rangle \langle \mathbf{z}_{ik}, \mathbf{u}' \rangle) \right\}^2 \right. \right. \\
&\quad \left. \left. \times \exp \left\{ \frac{\kappa_u |\lambda| \sqrt{M} n_u}{h a_1^2 C_r M} \frac{1}{n_i} \sum_{k=1}^{n_i} |\langle \mathbf{z}_{ik}, \mathbf{u} \rangle \langle \mathbf{z}_{ik}, \mathbf{u}' \rangle| \right\} \exp \left\{ \frac{f_u |\lambda| \sqrt{M} n_u}{a_1^2 C_r M} \left| E[\langle \mathbf{z}_{ik}, \mathbf{u} \rangle \langle \mathbf{z}_{ik}, \mathbf{u}' \rangle] \right| \right\} \right] \right\} \\
&\leq \prod_{i=1}^M \left\{ 1 + \frac{\lambda^2 M n_u^2}{2a_1^4 C_r^2 M^2} E \left[\frac{1}{n_i} \sum_{k=1}^{n_i} \left\{ k_{ik,\delta} \langle \mathbf{z}_{ik}, \mathbf{u} \rangle \langle \mathbf{z}_{ik}, \mathbf{u}' \rangle - E(k_{ik,\delta} \langle \mathbf{z}_{ik}, \mathbf{u} \rangle \langle \mathbf{z}_{ik}, \mathbf{u}' \rangle) \right\}^2 \right. \right. \\
&\quad \left. \left. \times \exp \left\{ \frac{\kappa_u |\lambda| \sqrt{M} n_u}{h a_1^2 C_r M} |\langle \mathbf{z}_{ik}, \mathbf{u} \rangle \langle \mathbf{z}_{ik}, \mathbf{u}' \rangle| \right\} \exp \left\{ \frac{f_u |\lambda| \sqrt{M} n_u}{a_1^2 C_r M} \right\} \right] \right\},
\end{aligned}$$

where $k' = \text{argmax}_{1 \leq k \leq n_i} |\langle \mathbf{z}_{ik}, \mathbf{u} \rangle \langle \mathbf{z}_{ik}, \mathbf{u}' \rangle|$. Let $|\lambda| \leq \min \{h/(4n_u \kappa_u \sqrt{M}), 1/(n_u f_u \sqrt{M})\} C_r M$,

then $\kappa_u |\lambda| \sqrt{M} n_u / (h C_r M) \leq 1/4$ and $f_u |\lambda| \sqrt{M} n_u / (a_1^2 C_r M) \leq 1$. Consequently,

$$\begin{aligned}
& E \left[\exp \left\{ \lambda \sqrt{M} \langle \mathbf{u}, \nabla \Delta_{M,0}(\boldsymbol{\delta}) \mathbf{u}' \rangle / a_1^2 \right\} \right] \\
& \leq \prod_{i=1}^M \left\{ 1 + \frac{\lambda^2 M n_u^2 e}{2 a_1^4 C_r^2 M^2} E \left[\frac{1}{n_i} \sum_{k=1}^{n_i} \left\{ k_{ik,\delta} \langle \mathbf{z}_{ik}, \mathbf{u} \rangle \langle \mathbf{z}_{ik}, \mathbf{u}' \rangle - E(k_{ik,\delta} \langle \mathbf{z}_{ik}, \mathbf{u} \rangle \langle \mathbf{z}_{ik}, \mathbf{u}' \rangle) \right\}^2 \right. \right. \\
& \quad \times \exp \left\{ \left| \langle \mathbf{z}_{ik'}, \mathbf{u} \rangle \langle \mathbf{z}_{ik'}, \mathbf{u}' \rangle \right| / (4 a_1^2) \right\} \left. \right] \left\{ 1 + \frac{\lambda^2 M n_u^2 e}{a_1^4 C_r^2 M^2} E \left[\frac{1}{n_i} \sum_{k=1}^{n_i} \left\{ (k_{ik,\delta} \langle \mathbf{z}_{ik}, \mathbf{u} \rangle \langle \mathbf{z}_{ik}, \mathbf{u}' \rangle)^2 + [E(k_{ik,\delta} \langle \mathbf{z}_{ik}, \mathbf{u} \rangle \langle \mathbf{z}_{ik}, \mathbf{u}' \rangle)]^2 \right\} \right. \right. \\
& \quad \times \exp \left\{ \left| \langle \mathbf{z}_{ik'}, \mathbf{u} \rangle \langle \mathbf{z}_{ik'}, \mathbf{u}' \rangle \right| / (4 a_1^2) \right\} \left. \right] \left\{ 1 + \frac{\lambda^2 M n_u^2 e}{a_1^4 C_r^2 M^2} E \left\{ \frac{1}{n_i} \sum_{k=1}^{n_i} (k_{ik,\delta} \langle \mathbf{z}_{ik}, \mathbf{u} \rangle \langle \mathbf{z}_{ik}, \mathbf{u}' \rangle)^2 e^{|\langle \mathbf{z}_{ik'}, \mathbf{u} \rangle \langle \mathbf{z}_{ik'}, \mathbf{u}' \rangle| / (4 a_1^2)} \right\} \right. \\
& \quad + \frac{\lambda^2 M n_u^2 e}{a_1^4 C_r^2 M^2} \left\{ E(k_{ik,\delta} \langle \mathbf{z}_{ik}, \mathbf{u} \rangle \langle \mathbf{z}_{ik}, \mathbf{u}' \rangle) \right\}^2 E \left[e^{|\langle \mathbf{z}_{ik'}, \mathbf{u} \rangle \langle \mathbf{z}_{ik'}, \mathbf{u}' \rangle| / (4 a_1^2)} \right] \left. \right\} \\
& \leq \prod_{i=1}^M \left\{ 1 + \frac{\lambda^2 M n_u^2 e}{a_1^4 C_r^2 M^2} \frac{1}{n_i} \sum_{k=1}^{n_i} E \left\{ (k_{ik,\delta} \langle \mathbf{z}_{ik}, \mathbf{u} \rangle \langle \mathbf{z}_{ik}, \mathbf{u}' \rangle)^2 e^{|\langle \mathbf{z}_{ik'}, \mathbf{u} \rangle \langle \mathbf{z}_{ik'}, \mathbf{u}' \rangle| / (4 a_1^2)} \right\} \right. \\
& \quad + \frac{\lambda^2 M n_u^2 e}{a_1^4 C_r^2 M^2} f_u E \left[e^{(\langle \mathbf{z}_{ik'}, \mathbf{u} \rangle^2 / (2 \cdot 4 a_1^2) + \langle \mathbf{z}_{ik'}, \mathbf{u}' \rangle^2 / (2 \cdot 4 a_1^2))} \right] \left. \right\} \\
& \leq \prod_{i=1}^M \left\{ 1 + \frac{\lambda^2 M n_u^2 e \kappa_u}{a_1^4 C_r^2 M^2 h} E \left\{ (\langle \mathbf{z}_{ik'}, \mathbf{u} \rangle \langle \mathbf{z}_{ik'}, \mathbf{u}' \rangle)^2 e^{|\langle \mathbf{z}_{ik'}, \mathbf{u} \rangle \langle \mathbf{z}_{ik'}, \mathbf{u}' \rangle| / (4 a_1^2)} \right\} + 3 \frac{\lambda^2 M n_u^2 e f_u}{a_1^4 C_r^2 M^2} \right\} \\
& \leq \prod_{i=1}^M \left\{ 1 + \frac{\lambda^2 M n_u^2 e \kappa_u}{a_1^4 C_r^2 M^2 h} \left[E \langle \mathbf{z}_{ik'}, \mathbf{u} \rangle^4 e^{(\langle \mathbf{z}_{ik'}, \mathbf{u} \rangle^2 / (4 a_1^2))} \right]^{1/2} \left[E \langle \mathbf{z}_{ik'}, \mathbf{u}' \rangle^4 e^{(\langle \mathbf{z}_{ik'}, \mathbf{u}' \rangle^2 / (4 a_1^2))} \right]^{1/2} \right. \\
& \quad + 3 \frac{\lambda^2 M n_u^2 e f_u}{a_1^4 C_r^2 M^2} \left. \right\} \\
& \leq \prod_{i=1}^M \left\{ 1 + 8 \frac{\lambda^2 M n_u^2 e \kappa_u}{a_1^4 C_r^2 M^2 h} 16 a_1^4 + 3 \frac{\lambda^2 M n_u^2 e f_u}{a_1^4 C_r^2 M^2} \right\} \leq \prod_{i=1}^M \left\{ 1 + \frac{C^2 M n_u^2 \lambda^2}{2 C_r^2 M^2 h} \right\} \\
& \leq \prod_{i=1}^M \exp \left\{ \frac{C^2 n_u^2 \lambda^2}{2 C_r^2 M h} \right\} = \exp \left\{ \frac{C^2 n_u^2 \lambda^2}{2 C_r^2 h} \right\},
\end{aligned}$$

where $C > 0$ depends on (f_u, κ_u) .

Let $v_0 = C n_u C_r^{-1} h^{-1/2}$ and $g = \min \{h/(4 n_u \kappa_u), 1/(n_u f_u)\} C_r \sqrt{M/2}$. After applying Theorem A.3 of Spokoiny (2013) [8] to the process $\{\sqrt{M} \Delta_{M,0}(\boldsymbol{\delta}) / a_1^2, \boldsymbol{\delta} \in \mathbb{B}^p(r)\}$ with $\mathbb{B}^p(r) = \{\boldsymbol{\delta} \in \mathbb{R}^p : \|\boldsymbol{\delta}\|_2 \leq r\}$, we have

$$\sup_{\boldsymbol{\beta} \in \mathbb{B}_{\Sigma}(r)} \left\| \Delta_M(\boldsymbol{\beta}) - E[\Delta_M(\boldsymbol{\beta})] \right\|_2 \leq 6 C_r^{-1} C n_u r a_1^2 \sqrt{\frac{4p + 2\gamma}{M h}} \quad (19)$$

with probability at least $1 - e^{-\gamma}$ for any $\gamma \geq 0$ as long as $h \geq 8 C_r^{-1} \kappa_u n_u \sqrt{(2p + \gamma)/M}$

and $M \geq 4 C_r^{-2} f_u^2 n_u^2 (2p + \gamma)$. Together with (13), (18) and (19), for any $\gamma \geq 0$,

$$\sup_{\boldsymbol{\beta} \in \mathbb{B}_{\Sigma}(r)} \left\| \Delta_M(\boldsymbol{\beta}) \right\|_2 \leq 0.5 C_r^{-1} n_u \mu_3 L_0 r^2 + 6 C_r^{-1} C n_u a_1^2 r \sqrt{\frac{4p + 2\gamma}{Mh}}$$

holds with probability at least $1 - e^{-\gamma}$. ■

Lemma 4. *Assume that Conditions (A2)–(A7) hold. For any $\gamma > 0$, as long as $M \gtrsim p + \gamma$,*

$$\left\| \mathfrak{T}_M(\boldsymbol{\beta}_\tau) \right\|_2 = \left\| \boldsymbol{\Sigma}^{-1/2} \mathbf{U}_M(\boldsymbol{\beta}_\tau) \right\|_2 \lesssim C_2 \left(\sqrt{\frac{p + \gamma}{M}} + h^2 \right)$$

holds with probability at least $1 - e^{-\gamma}$, where $C_2 > 0$ is a constant depending on $(\tau, L_0, n_u, \kappa_2, a_1, h, \xi_{\min})$.

Proof. Assume that \mathbf{x}_{ik} ($1 \leq i \leq M, 1 \leq k \leq n_i$) satisfies Condition (A7). Let $\varpi_{ik} = K(-y_{ik} - \mathbf{x}_{ik}^T \boldsymbol{\beta}_\tau)/h - \tau$ and $\boldsymbol{\varpi}_i = (\varpi_{i1}, \dots, \varpi_{in_i})^T = \mathbf{K}(-(\mathbf{y}_i - \mathbf{x}_i \boldsymbol{\beta}_\tau)/h) - \mathbf{1}_{n_i} \cdot \tau$. Denote $\boldsymbol{\Omega}_i = \mathbf{A}_i^{-1/2} \mathbf{R}_i^{-1} \mathbf{A}_i^{-1/2}$. According to He et al. (2023)[4], for any $\varepsilon \in (0, 1)$, there exists an ε -net \mathcal{N}_ε of the unit sphere \mathbb{S}^{p-1} with cardinality $|\mathcal{N}_\varepsilon| \leq (1 + 2/\varepsilon)^p$ such that

$$\begin{aligned} \left\| \boldsymbol{\Sigma}^{-1/2} \left\{ \mathbf{U}_M(\boldsymbol{\beta}_\tau) - E[\mathbf{U}_M(\boldsymbol{\beta}_\tau)] \right\} \right\|_2 &= \left\| \frac{1}{M} \sum_{i=1}^M \left\{ \mathbf{z}_i^T \boldsymbol{\Omega}_i \boldsymbol{\varpi}_i - E[\mathbf{z}_i^T \boldsymbol{\Omega}_i \boldsymbol{\varpi}_i] \right\} \right\|_2 \\ &\leq (1 - \varepsilon)^{-1} \max_{\mathbf{u} \in \mathcal{N}_\varepsilon} \left\langle \mathbf{u}, \frac{1}{M} \sum_{i=1}^M \left\{ \mathbf{z}_i^T \boldsymbol{\Omega}_i \boldsymbol{\varpi}_i - E[\mathbf{z}_i^T \boldsymbol{\Omega}_i \boldsymbol{\varpi}_i] \right\} \right\rangle. \end{aligned}$$

Let $\mathcal{X}_{\mathbf{u},i} = \mathbf{u}^T \mathbf{z}_i^T \boldsymbol{\Omega}_i \boldsymbol{\varpi}_i$ for each direction $\mathbf{u} \in \mathcal{N}_\varepsilon$, we have

$$\begin{aligned} \sum_{i=1}^M E(\mathcal{X}_{\mathbf{u},i})^2 &= \sum_{i=1}^M E(\mathbf{u}^T \mathbf{z}_i^T \boldsymbol{\Omega}_i \boldsymbol{\varpi}_i)^2 \leq \frac{1}{C_r^2} \sum_{i=1}^M E(\mathbf{u}^T \mathbf{z}_i^T \boldsymbol{\varpi}_i)^2 \\ &\leq \frac{1}{C_r^2} \sum_{i=1}^M E \left(\sum_{k=1}^{n_i} \langle \mathbf{u}, \mathbf{z}_{ik} \varpi_{ik} \rangle \right)^2 \leq \frac{n_u^2}{C_r^2} \sum_{i=1}^M E[\langle \mathbf{u}, \mathbf{z} \rangle^2 \varpi^2], \end{aligned}$$

where $\varpi = K(-\epsilon/h) - \tau$ with ϵ the random variable of $\epsilon_{ik} = y_{ik} - \mathbf{x}_{ik}^T \boldsymbol{\beta}_\tau$. It follows, we derive the upper bound for $E(\varpi^2 | \mathbf{x})$, which involves calculating $E[K^2(-\epsilon/h) | \mathbf{x}]$ and $E[K(-\epsilon/h) | \mathbf{x}]$. Note that

$$\begin{aligned} E \left[K^2 \left(\frac{-\epsilon}{h} \right) \middle| \mathbf{x} \right] &= \int_{-\infty}^{+\infty} K^2 \left(\frac{-t}{h} \right) f_{\epsilon | \mathbf{x}}(t) dt = h \int_{-\infty}^{+\infty} K^2(u) f_{\epsilon | \mathbf{x}}(-uh) du \\ &= - \int_{-\infty}^{+\infty} K^2(u) dF_{\epsilon | \mathbf{x}}(-uh) = 2 \int_{-\infty}^{+\infty} K(u) k(u) F_{\epsilon | \mathbf{x}}(-uh) du. \quad (20) \end{aligned}$$

Let

$$0 < u_k = \int_{-\infty}^{+\infty} u k(u) K(u) du = \int_0^{+\infty} k(u) (1 - k(u)) du \leq \kappa_1. \quad (21)$$

Since $F_{\epsilon|\mathbf{x}}(0) = P(\epsilon \leq 0|\mathbf{x}) = \tau$ and

$$\begin{aligned} F_{\epsilon|\mathbf{x}}(-uh) &= F_{\epsilon|\mathbf{x}}(0) + \int_0^{-uh} f_{\epsilon|\mathbf{x}}(t)dt \\ &= \tau + (-uh) f_{\epsilon|\mathbf{x}}(0) + \int_0^{-uh} [f_{\epsilon|\mathbf{x}}(t) - f_{\epsilon|\mathbf{x}}(0)] dt. \end{aligned} \quad (22)$$

Based on (20)–(22) and Conditions (A5) and (A6), we have

$$\begin{aligned} E \left[K^2 \left(\frac{-\epsilon}{h} \right) \middle| \mathbf{x} \right] &= 2\tau \int_{-\infty}^{+\infty} k(u)K(u)du - 2h f_{\epsilon|\mathbf{x}}(0) \int_{-\infty}^{+\infty} u k(u)K(u)du \\ &\quad + 2 \int_{-\infty}^{+\infty} k(u)K(u) \int_0^{-uh} [f_{\epsilon|\mathbf{x}}(t) - f_{\epsilon|\mathbf{x}}(0)] dt du \\ &\leq \tau - 2h f_{\epsilon|\mathbf{x}}(0)u_k + L_0 h^2 \int_{-\infty}^{+\infty} u^2 k(u)K(u)du \\ &\leq \tau + L_0 \kappa_2 h^2. \end{aligned} \quad (23)$$

Similarly to (22),

$$E \left[K \left(\frac{-\epsilon}{h} \right) \middle| \mathbf{x} \right] = \tau + \int_{-\infty}^{+\infty} k(u) \int_0^{-uh} [f_{\epsilon|\mathbf{x}}(t) - f_{\epsilon|\mathbf{x}}(0)] dt du.$$

Based on the Lipschitz condition of $f_{\epsilon|\mathbf{x}}(\cdot)$,

$$\left| E \left[K \left(\frac{-\epsilon}{h} \right) \middle| \mathbf{x} \right] - \tau \right| \leq 0.5 L_0 \kappa_2 h^2.$$

Therefore,

$$\tau - 0.5 L_0 \kappa_2 h^2 \leq E \left[K \left(\frac{-\epsilon}{h} \right) \middle| \mathbf{x} \right] \leq \tau + 0.5 L_0 \kappa_2 h^2. \quad (24)$$

Together with (23) and (24),

$$\begin{aligned} E(\varpi^2|\mathbf{x}) &= E \left[K^2 \left(\frac{-\epsilon}{h} \right) \middle| \mathbf{x} \right] - 2\tau E \left[K \left(\frac{-\epsilon}{h} \right) \middle| \mathbf{x} \right] + \tau^2 \\ &\leq \tau + L_0 \kappa_2 h^2 - 2\tau(\tau - 0.5 L_0 \kappa_2 h^2) + \tau^2 \\ &= \tau(1 - \tau) + (\tau + 1)L_0 \kappa_2 h^2 = C_\tau^2. \end{aligned}$$

Therefore, $\sum_{i=1}^M E(\mathcal{X}_{\mathbf{u},i})^2 \leq C_r^{-2} M n_u^2 C_\tau^2$. Since $|\varpi| \leq \max(1 - \tau, \tau) = \bar{\tau}$. Based on Condition (A7), for $\iota \geq 3$, we have $P(|x_j| \geq a_0 \sigma_{jj}^{1/2} \gamma) \leq e^{-\gamma}$, where a_0 is a constant depending on a_1 . Therefore, for all $\gamma \geq 0$,

$$\begin{aligned} E|\varpi x_j|^\iota &= E_{\mathbf{x}} [|x_j|^\iota E(|\varpi|^\iota|\mathbf{x})] \leq \bar{\tau}^{\iota-2} E_{\mathbf{x}} [|x_j|^\iota E(\varpi^2|\mathbf{x})] \\ &\leq \bar{\tau}^{\iota-2} C_\tau^2 a_0^\iota \sigma_{jj}^{\iota/2} \int_0^{+\infty} \iota \gamma^{\iota-1} P(|x_j| \geq a_0 \sigma_{jj}^{1/2} \gamma) d\gamma \\ &\leq \bar{\tau}^{\iota-2} C_\tau^2 a_0^\iota \sigma_{jj}^{\iota/2} \iota \int_0^{+\infty} \gamma^{\iota-1} e^{-\gamma} d\gamma = \bar{\tau}^{\iota-2} C_\tau^2 a_0^\iota \sigma_{jj}^{\iota/2} \iota! \\ &\leq \frac{\iota!}{2} C_\tau^2 a_0^2 \sigma_{jj} [2\bar{\tau} a_0 \sigma_{jj}^{1/2}]^{\iota-2}. \end{aligned}$$

Thus, $E(|\langle \mathbf{u}, \mathbf{z}_{ik} \varpi_{ik} \rangle|^\iota) \leq (\iota!/2) C_r^2 a_0^2 (2\bar{\tau}a_0)^{\iota-2}$ for $\iota \geq 3$. This implies that for all integers $\iota \geq 3$,

$$\begin{aligned} \sum_{i=1}^M E(|\mathcal{X}_{\mathbf{u},i}|^\iota) &= \sum_{i=1}^M E(|\mathbf{u}^T \mathbf{z}_i^T \boldsymbol{\Omega}_i \varpi_i|^\iota) \leq \frac{1}{C_r^\iota} \sum_{i=1}^M E\left(\left|\sum_{k=1}^{n_i} \langle \mathbf{u}, \mathbf{z}_{ik} \varpi_{ik} \rangle\right|^\iota\right) \\ &\leq \frac{\iota!}{2} M C_r^{-2} n_u^2 C_r^2 a_0^2 (2\bar{\tau}a_0 n_u C_r^{-1})^{\iota-2}. \end{aligned}$$

According to the Bernstein's inequality in Theorem 2.10 of Boucheron (2013) [1], for all $\gamma > 0$,

$$\max_{\mathbf{u} \in \mathcal{N}_\varepsilon} \left\langle \mathbf{u}, \frac{1}{M} \sum_{i=1}^M \left\{ \mathbf{z}_i^T \boldsymbol{\Omega}_i \varpi_i - E[\mathbf{z}_i^T \boldsymbol{\Omega}_i \varpi_i] \right\} \right\rangle \leq C_r^{-1} a_0 n_u \left[C_\tau \sqrt{\frac{2\gamma}{M}} + \bar{\tau} \frac{2\gamma}{M} \right]$$

holds with probability at least $1 - e^{-\gamma}$. Applying a union bound over all vectors $\mathbf{u} \in \mathcal{N}_\varepsilon$,

$$\left\| \boldsymbol{\Sigma}^{-1/2} \left\{ \mathbf{U}_M(\boldsymbol{\beta}_\tau) - E[\mathbf{U}_M(\boldsymbol{\beta}_\tau)] \right\} \right\|_2 \leq \frac{a_0 n_u}{(1-\varepsilon) C_r} \left[C_\tau \sqrt{\frac{2\gamma}{M}} + \bar{\tau} \frac{2\gamma}{M} \right]$$

holds with probability at least $1 - e^{\log(1+2/\varepsilon)p-\gamma}$. After taking $\varepsilon = 2/(e^2 - 1)$ and replacing γ by $2p + \gamma$, we have

$$\left\| \boldsymbol{\Sigma}^{-1/2} \left\{ \mathbf{U}_M(\boldsymbol{\beta}_\tau) - E[\mathbf{U}_M(\boldsymbol{\beta}_\tau)] \right\} \right\|_2 \leq 1.46 C_r^{-1} a_0 n_u \left[C_\tau \sqrt{\frac{4p+2\gamma}{M}} + \bar{\tau} \frac{4p+2\gamma}{M} \right] \quad (25)$$

with probability at least $1 - e^{-\gamma}$. Also because

$$\begin{aligned} \omega_M^* &= \left\| \boldsymbol{\Sigma}^{-1/2} E[\mathbf{U}_M(\boldsymbol{\beta}_\tau)] \right\|_2 = \left\| \frac{1}{M} \sum_{i=1}^M E[\mathbf{z}_i^T \boldsymbol{\Omega}_i \varpi_i] \right\|_2 \\ &\leq \sup_{\mathbf{u} \in \mathbb{S}^{p-1}} \left| \frac{1}{M} \sum_{i=1}^M \frac{n_u}{C_r} E \left\{ [K(-\epsilon/h) - \tau] \langle \mathbf{z}, \mathbf{u} \rangle \right\} \right| \\ &\leq \frac{n_u}{C_r} \sup_{\mathbf{u} \in \mathbb{S}^{p-1}} \left\{ E_{\mathbf{z}} \left| \int_{-\infty}^{+\infty} k(u) \int_0^{-hu} [f_{\epsilon|\mathbf{x}}(t) - f_{\epsilon|\mathbf{x}}(0)] dt \cdot du \cdot \mathbf{z}^T \mathbf{u} \right| \right\} \\ &\leq 0.5 C_r^{-1} n_u L_0 \kappa_2 h^2. \end{aligned} \quad (26)$$

Together with (25) and (26), as long as $M \gtrsim p + \gamma$,

$$\begin{aligned} \left\| \boldsymbol{\Sigma}^{-1/2} \mathbf{U}_M(\boldsymbol{\beta}_\tau) \right\|_2 &\leq \left\| \boldsymbol{\Sigma}^{-1/2} \left\{ \mathbf{U}_M(\boldsymbol{\beta}_\tau) - E[\mathbf{U}_M(\boldsymbol{\beta}_\tau)] \right\} \right\|_2 + \left\| \boldsymbol{\Sigma}^{-1/2} E[\mathbf{U}_M(\boldsymbol{\beta}_\tau)] \right\|_2 \\ &\leq 1.46 C_r^{-1} a_0 n_u \left[C_\tau \sqrt{\frac{4p+2\gamma}{M}} + \bar{\tau} \frac{4p+2\gamma}{M} \right] + 0.5 C_r^{-1} n_u L_0 \kappa_2 h^2 \\ &\lesssim C_2 \left(\sqrt{\frac{p+\gamma}{M}} + h^2 \right) \end{aligned}$$

holds with probability at least $1 - e^{-\gamma}$, where $C_2 > 0$ is a constant depending on $(\tau, L_0, n_u, \kappa_2, a_1, h, \xi_{\min})$. This completes the proof. \blacksquare

Lemma 5. Under Conditions (A2)–(A6),

$$\sup_{\beta \in \mathbb{B}_{\Sigma}(r)} \|\mathfrak{F}_M(\beta)\|_2 = \sup_{\beta \in \mathbb{B}_{\Sigma}(r)} \left\| \Sigma^{-1/2} [\mathbf{H}_M(\beta) - \mathbf{H}_M(\beta_\tau)] (\beta - \beta_\tau) \right\|_2 \leq C_3 r^2,$$

where $C_3 > 0$ is a constant depending only on $(\tau, L_0, n_u, \mu_3, \xi_{\min})$.

Proof. For $\zeta = \beta - \beta_\tau$, $\delta = \Sigma^{1/2} \zeta$, and $\mathbf{v} = \delta / \|\delta\|_2$, we have

$$\begin{aligned} & \sup_{\beta \in \mathbb{B}_{\Sigma}(r)} \left\| \Sigma^{-1/2} [\mathbf{H}_M(\beta) - \mathbf{H}_M(\beta_\tau)] \zeta \right\|_2 \\ &= \sup_{\beta \in \mathbb{B}_{\Sigma}(r)} \left\| \frac{1}{M} \sum_{i=1}^M E \left\{ \Sigma^{-1/2} \mathbf{x}_i^T \boldsymbol{\Omega}_i [\Lambda_i(\beta) - \Lambda_i(\beta_\tau)] \mathbf{x}_i \Sigma^{-1/2} \Sigma^{1/2} \zeta \right\} \right\|_2 \\ &= \sup_{\delta \in \mathbb{B}^p(r)} \sup_{\mathbf{u} \in \mathbb{S}^{p-1}} \left| \frac{1}{M} \sum_{i=1}^M E \left[\mathbf{u}^T \mathbf{z}_i^T \boldsymbol{\Omega}_i \text{diag} \left(\frac{1}{h} \left\{ k \left(\frac{\mathbf{z}_{ik}^T \delta - \epsilon_{ik}}{h} \right) - k \left(\frac{-\epsilon_{ik}}{h} \right) \right\}_{k=1}^{n_i} \right) \mathbf{z}_i \delta \right] \right| \\ &\leq \sup_{\delta \in \mathbb{B}^p(r)} \sup_{\mathbf{u} \in \mathbb{S}^{p-1}} \frac{1}{M} \sum_{i=1}^M \frac{1}{C_r} \sum_{k=1}^{n_i} E \left| \mathbf{u}^T \mathbf{z}_{ik} \int_{-\infty}^{\infty} k(u) [f_{\epsilon|\mathbf{x}}(\mathbf{z}_{ik}^T \delta - hu) - f_{\epsilon|\mathbf{x}}(-hu)] du \cdot \mathbf{z}_{ik}^T \delta \right| \\ &\leq \frac{n_u L_0}{C_r} \sup_{\delta \in \mathbb{B}^p(r)} \sup_{\mathbf{u}, \mathbf{v} \in \mathbb{S}^{p-1}} E(|\langle \mathbf{z}, \mathbf{u} \rangle| |\langle \mathbf{z}, \mathbf{v} \rangle|^2) \cdot \|\delta\|_2^2 \quad (\text{by Conditions (A5) and (A6)}) \\ &\leq \frac{n_u L_0}{C_r} \mu_3 \cdot r^2 = C_3 r^2. \end{aligned}$$

■

Lemma 6. Under Conditions (A2)–(A6),

$$\begin{aligned} \sup_{\beta \in \mathbb{B}_{\Sigma}(r)} \|\mathfrak{F}_{M,l}(\beta)\|_2 &= \sup_{\beta \in \mathbb{B}_{\Sigma}(r)} \left\| \Sigma^{-1/2} [\mathbf{H}_M(\beta) - \mathbf{H}_{m,l}(\beta)] (\beta - \beta_\tau) \right\|_2 \\ &\leq [C_4(1 - L^{-1}) + C_5|h_l - h|] r, \end{aligned}$$

where $C_4 > 0$ is a constant depending only on $(\tau, n_u, f_u, \xi_{\min})$, $C_5 > 0$ is a constant depending only on $(\tau, n_u, L_0, \kappa_1, \xi_{\min})$.

Proof. Define $\mathbf{H}_{i,h}(\beta) = E[\mathbf{x}_i^T \boldsymbol{\Omega}_i \Lambda_i(\beta) \mathbf{x}_i]$, where the k th diagonal element of $\Lambda_i(\beta)$ is $k((\mathbf{z}_{ik}^T \delta - \epsilon_{ik})/h)/h$. Then, we have the decomposition:

$$\begin{aligned} & \left\| \Sigma^{-1/2} [\mathbf{H}_M(\beta) - \mathbf{H}_{m,l}(\beta)] (\beta - \beta_\tau) \right\|_2 \\ &\leq \left\| \Sigma^{-1/2} \left[\frac{1}{M} \sum_{i=1}^M \mathbf{H}_{i,h}(\beta) - \frac{1}{m} \sum_{i \in \mathcal{I}_l} \mathbf{H}_{i,h}(\beta) \right] (\beta - \beta_\tau) \right\|_2 \\ &\quad + \left\| \Sigma^{-1/2} \frac{1}{m} \sum_{i \in \mathcal{I}_l} [\mathbf{H}_{i,h}(\beta) - \mathbf{H}_{i,h_l}(\beta)] (\beta - \beta_\tau) \right\|_2. \end{aligned} \tag{27}$$

Define the coefficients $a_{i,l} = 1/M - 1/m$ for $i \in \mathcal{I}_l$ and $a_{i,l} = 1/M$ for $i \notin \mathcal{I}_l$. Then, $\sum_{i=1}^M a_{i,l} = 0$ and $\sum_{i=1}^M |a_{i,l}| = \sum_{i \in \mathcal{I}_l} (1/m - 1/M) + \sum_{i \notin \mathcal{I}_l} 1/M = 2(1 - m/M)$. Thus,

$$\frac{1}{M} \sum_{i=1}^M \mathbf{H}_{i,h}(\beta) - \frac{1}{m} \sum_{i \in \mathcal{I}_l} \mathbf{H}_{i,h}(\beta) = \sum_{i=1}^M a_{i,l} \mathbf{H}_{i,h}(\beta). \tag{28}$$

Next, we bound the norm of each term in (27). First,

$$\begin{aligned}
& \sup_{\beta \in \mathbb{B}_{\Sigma}(r)} \left\| \Sigma^{-1/2} \mathbf{H}_{i,h}(\beta)(\beta - \beta_{\tau}) \right\|_2 \\
&= \sup_{\delta \in \mathbb{B}^p(r)} \sup_{\mathbf{u} \in \mathbb{S}^{p-1}} \left| E \left[\mathbf{u}^T \mathbf{z}_i^T \boldsymbol{\Omega}_i \text{diag} \left(\left\{ \frac{1}{h} k \left(\frac{\mathbf{z}_{ik}^T \delta - \epsilon_{ik}}{h} \right) \right\}_{k=1}^{n_i} \right) \mathbf{z}_i \right] \delta \right| \\
&\leq \sup_{\delta \in \mathbb{B}^p(r)} \sup_{\mathbf{u} \in \mathbb{S}^{p-1}} \left| \frac{1}{C_r} \sum_{k=1}^{n_i} E \left[\mathbf{u}^T \mathbf{z}_{ik} \int_{-\infty}^{\infty} k(u) f_{\epsilon|\mathbf{x}}(\mathbf{z}_{ik}^T \delta - hu) du \cdot \mathbf{z}_{ik}^T \delta \right] \right| \\
&\leq \frac{f_u n_u}{C_r} \sup_{\delta \in \mathbb{B}^p(r)} \sup_{\mathbf{u}, \mathbf{v} \in \mathbb{S}^{p-1}} E(|\langle \mathbf{z}, \mathbf{u} \rangle \langle \mathbf{z}, \mathbf{v} \rangle|) \cdot \|\delta\|_2 \leq \frac{f_u n_u r}{C_r}.
\end{aligned} \tag{29}$$

From (28) and (29), we obtain:

$$\begin{aligned}
& \sup_{\beta \in \mathbb{B}_{\Sigma}(r)} \left\| \Sigma^{-1/2} \left[\frac{1}{M} \sum_{i=1}^M \mathbf{H}_{i,h}(\beta) - \frac{1}{m} \sum_{i \in \mathcal{I}_l} \mathbf{H}_{i,h}(\beta) \right] (\beta - \beta_{\tau}) \right\|_2 \\
&\leq \sum_{i=1}^M |a_{i,l}| \sup_{\beta \in \mathbb{B}_{\Sigma}(r)} \left\| \Sigma^{-1/2} \mathbf{H}_{i,h}(\beta)(\beta - \beta_{\tau}) \right\|_2 \\
&\leq 2 \left(1 - \frac{m}{M} \right) \frac{f_u n_u r}{C_r} = C_4 \left(1 - \frac{m}{M} \right) r,
\end{aligned} \tag{30}$$

where $C_4 = 2 C_r^{-1} f_u n_u$.

For the second term in (27), we have:

$$\begin{aligned}
& \sup_{\beta \in \mathbb{B}_{\Sigma}(r)} \left\| \Sigma^{-1/2} \frac{1}{m} \sum_{i \in \mathcal{I}_l} \left[\mathbf{H}_{i,h}(\beta) - \mathbf{H}_{i,h_l}(\beta) \right] (\beta - \beta_{\tau}) \right\|_2 \\
&\leq \sup_{\delta \in \mathbb{B}^p(r)} \sup_{\mathbf{u} \in \mathbb{S}^{p-1}} \left| \frac{1}{m} \sum_{i \in \mathcal{I}_l} \frac{1}{C_r} \sum_{k=1}^{n_i} E \left[\mathbf{u}^T \mathbf{z}_{ik} \int_{-\infty}^{\infty} k(u) [f_{\epsilon|\mathbf{x}}(\mathbf{z}_{ik}^T \delta - hu) \right. \right. \\
&\quad \left. \left. - f_{\epsilon|\mathbf{x}}(\mathbf{z}_{ik}^T \delta - h_l u)] du \cdot \mathbf{z}_{ik}^T \delta \right] \right| \\
&\leq \frac{n_u}{C_r} L_0 \int_{-\infty}^{\infty} |u| k(u) du \cdot |h_l - h| \sup_{\delta \in \mathbb{B}^p(r)} \sup_{\mathbf{u}, \mathbf{v} \in \mathbb{S}^{p-1}} E(|\langle \mathbf{z}, \mathbf{u} \rangle \langle \mathbf{z}, \mathbf{v} \rangle|) \cdot \|\delta\|_2 \\
&\leq C_r^{-1} n_u L_0 \kappa_1 |h_l - h| r = C_5 |h_l - h| r,
\end{aligned} \tag{31}$$

where $C_5 = C_r^{-1} n_u L_0 \kappa_1$. Combining (30) and (31), we conclude that

$$\sup_{\beta \in \mathbb{B}_{\Sigma}(r)} \left\| \Sigma^{-1/2} \left[\mathbf{H}_M(\beta) - \mathbf{H}_{m,l}(\beta) \right] (\beta - \beta_{\tau}) \right\|_2 \leq [C_4(1 - L^{-1}) + C_5 |h_l - h|] r.$$

■

Lemma 7. Assume that Conditions (A2)–(A7) hold. For any $\gamma > 0$, as long as $m \gtrsim p + \gamma$,

$$\sup_{\beta \in \mathbb{B}_{\Sigma}(r)} \left\| \mathfrak{H}_{m,l}(\beta) \right\|_2 = \sup_{\beta \in \mathbb{B}_{\Sigma}(r)} \left\| \Sigma^{-1/2} \left[\mathbf{D}_{m,l}(\beta) - \mathbf{H}_{m,l}(\beta) \right] (\beta - \beta_{\tau}) \right\|_2 \lesssim C_6 r \sqrt{\frac{p + \gamma}{m}}$$

holds with probability at least $1 - e^{-\gamma}$, where $C_6 > 0$ is a constant depending on $(\tau, n_u, f_u, a_1, \xi_{\min})$.

Proof. The proof is similar to that of Lemma 4. For any $\varepsilon \in (0, 1)$, consider an ε -net \mathcal{N}_ε of the unit sphere \mathbb{S}^{p-1} with cardinality $|\mathcal{N}_\varepsilon| \leq (1 + 2/\varepsilon)^p$. Then,

$$\begin{aligned} & \left\| \boldsymbol{\Sigma}^{-1/2} \left[\mathbf{D}_{m,l}(\boldsymbol{\beta}) - \mathbf{H}_{m,l}(\boldsymbol{\beta}) \right] (\boldsymbol{\beta} - \boldsymbol{\beta}_\tau) \right\|_2 \\ &= \left\| \frac{1}{m} \sum_{i \in \mathcal{I}_l} \left\{ \mathbf{z}_i^T \boldsymbol{\Omega}_i \boldsymbol{\Lambda}_i(\boldsymbol{\beta}) \mathbf{z}_i - E \left[\mathbf{z}_i^T \boldsymbol{\Omega}_i \boldsymbol{\Lambda}_i(\boldsymbol{\beta}) \mathbf{z}_i \right] \right\} \boldsymbol{\delta} \right\|_2 \\ &\leq (1 - \varepsilon)^{-1} \max_{\mathbf{u} \in \mathcal{N}_\varepsilon} \left\langle \mathbf{u}, \frac{1}{m} \sum_{i \in \mathcal{I}_l} \left\{ \mathbf{z}_i^T \boldsymbol{\Omega}_i \boldsymbol{\Lambda}_i(\boldsymbol{\beta}) \mathbf{z}_i - E \left[\mathbf{z}_i^T \boldsymbol{\Omega}_i \boldsymbol{\Lambda}_i(\boldsymbol{\beta}) \mathbf{z}_i \right] \right\} \boldsymbol{\delta} \right\rangle. \end{aligned}$$

From Condition (A7), $P(|z_j| \geq a_0 \gamma) \leq e^{-\gamma}$, where z_j is the j th component of \mathbf{z} and a_0 is a constant depending on a_1 . Thus, for any integer $\iota \geq 2$,

$$E(|z_j|^\iota) = a_0^\iota \int_0^\infty \iota \gamma^{\iota-1} P(|z_j| \geq a_0 \gamma) d\gamma \leq a_0^\iota \int_0^\infty \iota \gamma^{\iota-1} e^{-\gamma} d\gamma = a_0^\iota \iota!,$$

which implies that for any $\mathbf{u} \in \mathcal{N}_\varepsilon$, $E(|\langle \mathbf{z}, \mathbf{u} \rangle|^\iota) \leq a_0^\iota \iota!$.

Define $\mathcal{X}_{\mathbf{u},i} = \mathbf{u}^T \mathbf{z}_i^T \boldsymbol{\Omega}_i \boldsymbol{\Lambda}_i(\boldsymbol{\beta}) \mathbf{z}_i \boldsymbol{\delta}$ for each direction $\mathbf{u} \in \mathcal{N}_\varepsilon$. We bound the second moment:

$$\begin{aligned} \max_{\mathbf{u} \in \mathcal{N}_\varepsilon} \sum_{i \in \mathcal{I}_l} E(\mathcal{X}_{\mathbf{u},i})^2 &\leq \sup_{\boldsymbol{\delta} \in \mathbb{B}^p(r)} \max_{\mathbf{u} \in \mathcal{N}_\varepsilon} \sum_{i \in \mathcal{I}_l} E[\mathbf{u}^T \mathbf{z}_i^T \boldsymbol{\Omega}_i \boldsymbol{\Lambda}_i(\boldsymbol{\beta}) \mathbf{z}_i \boldsymbol{\delta}]^2 \\ &\leq \frac{1}{C_r^2} \sup_{\boldsymbol{\delta} \in \mathbb{B}^p(r)} \max_{\mathbf{u} \in \mathcal{N}_\varepsilon} \sum_{i \in \mathcal{I}_l} E[\mathbf{u}^T \mathbf{z}_i^T \boldsymbol{\Lambda}_i(\boldsymbol{\beta}) \mathbf{z}_i \boldsymbol{\delta}]^2 \\ &\leq \frac{1}{C_r^2} \sum_{i \in \mathcal{I}_l} \sup_{\boldsymbol{\delta} \in \mathbb{B}^p(r)} \max_{\mathbf{u} \in \mathcal{N}_\varepsilon} E \left[\sum_{k=1}^{n_i} \mathbf{u}^T \mathbf{z}_{ik} \int_{-\infty}^\infty k(u) f_{\epsilon|\mathbf{x}}(\mathbf{z}_{ik}^T \boldsymbol{\delta} - h_l u) du \cdot \mathbf{z}_{ik}^T \boldsymbol{\delta} \right]^2 \\ &\leq \frac{m f_u^2 n_u^2}{C_r^2} \sup_{\boldsymbol{\delta} \in \mathbb{B}^p(r)} \max_{\mathbf{u}, \mathbf{v} \in \mathcal{N}_\varepsilon} E(\langle \mathbf{z}, \mathbf{u} \rangle \langle \mathbf{z}, \mathbf{v} \rangle)^2 \cdot \|\boldsymbol{\delta}\|_2^2 \\ &\leq \frac{m f_u^2 n_u^2 r^2}{C_r^2} \cdot 4! a_0^4. \end{aligned}$$

For $\iota \geq 3$, the ι th moment is bounded by:

$$\begin{aligned} \max_{\mathbf{u} \in \mathcal{N}_\varepsilon} \sum_{i \in \mathcal{I}_l} E(\mathcal{X}_{\mathbf{u},i})^\iota &\leq \sup_{\boldsymbol{\delta} \in \mathbb{B}^p(r)} \max_{\mathbf{u} \in \mathcal{N}_\varepsilon} \sum_{i \in \mathcal{I}_l} E[\mathbf{u}^T \mathbf{z}_i^T \boldsymbol{\Omega}_i \boldsymbol{\Lambda}_i(\boldsymbol{\beta}) \mathbf{z}_i \boldsymbol{\delta}]^\iota \\ &\leq \frac{1}{C_r^\iota} \sum_{i \in \mathcal{I}_l} \sup_{\boldsymbol{\delta} \in \mathbb{B}^p(r)} \max_{\mathbf{u} \in \mathcal{N}_\varepsilon} E \left[\sum_{k=1}^{n_i} \mathbf{u}^T \mathbf{z}_{ik} \int_{-\infty}^\infty k(u) f_{\epsilon|\mathbf{x}}(\mathbf{z}_{ik}^T \boldsymbol{\delta} - h_l u) du \cdot \mathbf{z}_{ik}^T \boldsymbol{\delta} \right]^\iota \\ &\leq \frac{m f_u^\iota n_u^\iota}{C_r^\iota} \sup_{\boldsymbol{\delta} \in \mathbb{B}^p(r)} \max_{\mathbf{u}, \mathbf{v} \in \mathcal{N}_\varepsilon} E(|\langle \mathbf{z}, \mathbf{u} \rangle \langle \mathbf{z}, \mathbf{v} \rangle|^\iota) \cdot \|\boldsymbol{\delta}\|_2^\iota \\ &\leq \frac{m f_u^\iota n_u^\iota r^\iota}{C_r^\iota} (2\iota)! a_0^{2\iota} \\ &\leq \frac{\iota!}{2} \cdot \frac{m f_u^2 n_u^2 r^2 4! a_0^4}{C_r^2} \left[\frac{f_u n_u r a_0^2}{C_r} \left(\frac{(2\iota)!}{12\iota!} \right)^{1/(\iota-2)} \right]^{\iota-2}. \end{aligned}$$

Applying Bernstein's inequality [1], we obtain that with probability at least $1 - e^{-\gamma}$,

$$\begin{aligned} & \sup_{\boldsymbol{\delta} \in \mathbb{B}^p(r)} \max_{\boldsymbol{u} \in \mathcal{N}_\varepsilon} \left\langle \boldsymbol{u}, \frac{1}{m} \sum_{i \in \mathcal{I}_l} \left\{ \boldsymbol{z}_i^T \boldsymbol{\Omega}_i \boldsymbol{\Lambda}_i(\boldsymbol{\beta}) \boldsymbol{z}_i - E [\boldsymbol{z}_i^T \boldsymbol{\Omega}_i \boldsymbol{\Lambda}_i(\boldsymbol{\beta}) \boldsymbol{z}_i] \right\} \boldsymbol{\delta} \right\rangle \\ & \leq \frac{f_u n_u a_0^2 r}{C_r} \left[4 \sqrt{\frac{3\gamma}{m}} + \left(\frac{(2\iota)!}{12\iota!} \right)^{1/(\iota-2)} \frac{\gamma}{m} \right] \lesssim C r \left(\sqrt{\frac{\gamma}{m}} + \frac{\gamma}{m} \right). \end{aligned}$$

Following the proof of Lemma 4, after choosing an appropriate ε , we can conclude that

$$\sup_{\boldsymbol{\beta} \in \mathbb{B}_\Sigma(r)} \left\| \boldsymbol{\Sigma}^{-1/2} [\boldsymbol{D}_{m,l}(\boldsymbol{\beta}) - \boldsymbol{H}_{m,l}(\boldsymbol{\beta})] (\boldsymbol{\beta} - \boldsymbol{\beta}_\tau) \right\|_2 \lesssim C_6 r \sqrt{\frac{p+\gamma}{m}}$$

holds with probability at least $1 - e^{-\gamma}$, where $C_6 > 0$ is a constant depending on $(\tau, n_u, f_u, a_1, \xi_{\min})$. \blacksquare

Lemma 8. *Assume that Conditions (A1)–(A4) and (A6) hold. For any $\varepsilon > 0$, there exist constants $C_\varepsilon, M_0 > 0$ such that for every $M \geq M_0$,*

$$\sup_{\boldsymbol{\beta} \in \mathbb{B}_\Sigma(r)} \left\| \mathfrak{E}_{m,l}(\boldsymbol{\beta}) \right\|_2 = \sup_{\boldsymbol{\beta} \in \mathbb{B}_\Sigma(r)} \left\| \boldsymbol{\Sigma}^{-1/2} [\widehat{\boldsymbol{D}}_{m,l}(\boldsymbol{\beta}) - \boldsymbol{D}_{m,l}(\boldsymbol{\beta})] (\boldsymbol{\beta} - \boldsymbol{\beta}_\tau) \right\|_2 \leq C_7 C_\varepsilon \frac{r}{h_l} \sqrt{\frac{p^3}{M}}$$

holds with probability at least $1 - \varepsilon$, where $C_7 = \tau^{-1}(1-\tau)^{-1}\xi_p^{-1}\kappa_u n_u B^2$.

Proof. Under Conditions (A1)–(A4) and (A6),

$$\begin{aligned} & \sup_{\boldsymbol{\beta} \in \mathbb{B}_\Sigma(r)} \left\| \boldsymbol{\Sigma}^{-1/2} [\widehat{\boldsymbol{D}}_{m,l}(\boldsymbol{\beta}) - \boldsymbol{D}_{m,l}(\boldsymbol{\beta})] (\boldsymbol{\beta} - \boldsymbol{\beta}_\tau) \right\|_2 \\ &= \sup_{\boldsymbol{\delta} \in \mathbb{B}^p(r)} \sup_{\boldsymbol{u} \in \mathbb{S}^{p-1}} \left| \frac{1}{m} \sum_{i \in \mathcal{I}_l} \boldsymbol{u}^T \boldsymbol{z}_i^T \boldsymbol{A}_i^{-1/2} [\widehat{\boldsymbol{R}}_i^{-1} - \boldsymbol{R}_i^{-1}] \boldsymbol{A}_i^{-1/2} \boldsymbol{\Lambda}_i(\boldsymbol{\beta}) \boldsymbol{z}_i \boldsymbol{\delta} \right| \\ &\leq \frac{1}{m} \sum_{i \in \mathcal{I}_l} \frac{1}{\tau(1-\tau)} \sup_{\boldsymbol{\delta} \in \mathbb{B}^p(r)} \sup_{\boldsymbol{u} \in \mathbb{S}^{p-1}} \left| \boldsymbol{u}^T \boldsymbol{z}_i^T [\widehat{\boldsymbol{R}}_i^{-1} - \boldsymbol{R}_i^{-1}] \text{diag} \left(\left\{ \frac{1}{h_l} k \left(-\frac{y_{ik} - \boldsymbol{x}_{ik}^T \boldsymbol{\beta}}{h_l} \right) \right\}_{k=1}^{n_i} \right) \boldsymbol{z}_i \boldsymbol{\delta} \right| \\ &\leq \frac{1}{\tau(1-\tau)} \frac{1}{m} \sum_{i \in \mathcal{I}_l} \sup_{\boldsymbol{\delta} \in \mathbb{B}^p(r)} \sup_{\boldsymbol{u} \in \mathbb{S}^{p-1}} \left\{ \|\boldsymbol{z}_i \boldsymbol{u}\|_2 \cdot \left\| \widehat{\boldsymbol{R}}_i^{-1} - \boldsymbol{R}_i^{-1} \right\|_2 \cdot \frac{\kappa_u}{h_l} \cdot \|\boldsymbol{z}_i \boldsymbol{\delta}\|_2 \right\} \\ &\leq \frac{\kappa_u C_\varepsilon}{\tau(1-\tau) h_l} \sqrt{\frac{p}{M}} \cdot \frac{1}{m} \sum_{i \in \mathcal{I}_l} \sup_{\boldsymbol{\delta} \in \mathbb{B}^p(r)} \sup_{\boldsymbol{u} \in \mathbb{S}^{p-1}} (\|\boldsymbol{z}_i \boldsymbol{u}\|_2 \cdot \|\boldsymbol{z}_i \boldsymbol{\delta}\|_2) \\ &\leq \frac{\kappa_u C_\varepsilon}{\tau(1-\tau) h_l} \sqrt{\frac{p}{M}} \cdot \frac{1}{m} \sum_{i \in \mathcal{I}_l} \sup_{\boldsymbol{\delta} \in \mathbb{B}^p(r)} (\|\boldsymbol{z}_i\|_2^2 \cdot \|\boldsymbol{\delta}\|_2) \\ &\leq \frac{\kappa_u C_\varepsilon r}{\tau(1-\tau) h_l} \sqrt{\frac{p}{M}} \cdot \frac{1}{m} \sum_{i \in \mathcal{I}_l} \|\boldsymbol{z}_i\|_2^2 = \frac{\kappa_u C_\varepsilon r}{\tau(1-\tau) h} \sqrt{\frac{p}{M}} \cdot \frac{1}{m} \sum_{i \in \mathcal{I}_l} \left\| \boldsymbol{\Sigma}^{-1/2} \boldsymbol{x}_i \right\|_2^2 \\ &\leq \frac{\kappa_u C_\varepsilon r}{\tau(1-\tau) h_l} \sqrt{\frac{p}{M}} \cdot \frac{1}{m} \sum_{i \in \mathcal{I}_l} \left\| \boldsymbol{\Sigma}^{-1/2} \right\|_2^2 \cdot \|\boldsymbol{x}_i\|_2^2 \leq \frac{\kappa_u C_\varepsilon r}{\tau(1-\tau) \xi_p h_l} \sqrt{\frac{p}{M}} \cdot \frac{1}{m} \sum_{i \in \mathcal{I}_l} \|\boldsymbol{x}_i\|_2^2 \\ &\leq \frac{\kappa_u C_\varepsilon r}{\tau(1-\tau) \xi_p h_l} \sqrt{\frac{p}{M}} \cdot n_u p B^2 \\ &= \frac{\kappa_u n_u B^2 C_\varepsilon r}{\tau(1-\tau) \xi_p h_l} \sqrt{\frac{p^3}{M}} = C_6 C_\varepsilon \frac{r}{h_l} \sqrt{\frac{p^3}{M}}. \end{aligned}$$

holds with probability at least $1 - \varepsilon$. \blacksquare

Lemma 9. For any $\gamma > 0$, $0 < r < h_l/(4\iota_{0.25})$ and $s \geq 0$, there exists $f_{l,l} \geq 0$ such that

$$\begin{aligned} & \inf_{\beta \in \mathbb{B}_{\Sigma}(r) \cap \mathbb{C}_{\Sigma}(d)} \frac{\bar{D}_{\tilde{\mathcal{L}}_{M,l}}^{(s)}(\beta, \beta_{\tau})}{\kappa_* C_m^{-1} \|\beta - \beta_{\tau}\|_{\Sigma}^2} \\ & \geq \frac{3n_l}{4} f_{l,l} - f_{u,l}^{1/2} n_u \left[5B \sqrt{\frac{2dh_l \log(2p)}{r^2 m}} - 3 \sqrt{\frac{2\gamma m_4}{h_l m}} \right] - \frac{13\gamma h_l n_u}{48r^2 m} \end{aligned}$$

holds with probability at least $1 - e^{-\gamma}$.

Proof. Define the parameter set $\mathcal{B}_0(r_1, r_2) = \{\zeta \in \mathbb{R}^p : \|\zeta\|_1 \leq r_1, \|\zeta\|_{\Sigma} \leq r_2\}$ for $r_1, r_2 > 0$. Let $\zeta = \beta - \beta_{\tau} \in \mathcal{B}_0(4d^{1/2}r, r)$ for $\beta \in \mathbb{B}_{\Sigma}(r) \cap \mathbb{C}_{\Sigma}(d)$. From the proof of Lemma 1, it's sufficient to derive the upper bound of

$$\begin{aligned} & E \left\{ \sup_{\zeta \in \mathcal{B}_0(4d^{1/2}r, r)} \left[\frac{1}{m} \sum_{i \in \mathcal{I}_l} Z_i \left(\sum_{k=1}^{n_i} \langle \zeta_{ik} \mathbf{x}_{ik}, \zeta / \|\zeta\|_{\Sigma} \rangle \right) \right] \right\} \\ & \leq 4d^{1/2} E \left\| \frac{1}{m} \sum_{i \in \mathcal{I}_l} Z_i \left(\sum_{k=1}^{n_i} \zeta_{ik} \mathbf{x}_{ik} \right) \right\|_{\infty} = 4d^{1/2} E \left\{ E_Z \left\| \frac{1}{m} \sum_{i \in \mathcal{I}_l} Z_i \left(\sum_{k=1}^{n_i} \zeta_{ik} \mathbf{x}_{ik} \right) \right\|_{\infty} \right\}, \end{aligned}$$

where E_Z stands for the (conditional) expectation over Z_1, \dots, Z_M given all the remaining random variables. Based on the Hoeffding's moment inequality, we have

$$\begin{aligned} E_Z \left\| \frac{1}{m} \sum_{i \in \mathcal{I}_l} Z_i \left(\sum_{k=1}^{n_i} \zeta_{ik} \mathbf{x}_{ik} \right) \right\|_{\infty} & \leq \max_{1 \leq j \leq p} \left\{ \frac{1}{m} \sum_{i \in \mathcal{I}_l} \left(\sum_{k=1}^{n_i} \zeta_{ik} x_{ik,j} \right)^2 \right\}^{1/2} \sqrt{\frac{2 \log(2p)}{m}} \\ & \leq \max_{1 \leq j \leq p} \left(\frac{n_u}{m} \sum_{i \in \mathcal{I}_l} \sum_{k=1}^{n_i} \zeta_{ik}^2 x_{ik,j}^2 \right)^{1/2} \sqrt{\frac{2 \log(2p)}{m}} \\ & \leq \left(\frac{n_u}{m} \sum_{i \in \mathcal{I}_l} \sum_{k=1}^{n_i} \zeta_{ik} \right)^{1/2} B \sqrt{\frac{2 \log(2p)}{m}}. \end{aligned}$$

Since $E(\zeta_{ik} | \mathbf{x}_{ik}) \leq f_{u,l} h_l$, we have

$$E \left\{ \sup_{\zeta \in \mathcal{B}_0(4d^{1/2}r, r)} \left[\frac{1}{m} \sum_{i \in \mathcal{I}_l} Z_i \left(\sum_{k=1}^{n_i} \langle \zeta_{ik} \mathbf{x}_{ik}, \zeta / \|\zeta\|_{\Sigma} \rangle \right) \right] \right\} \leq 4n_u f_{u,l}^{1/2} B \sqrt{\frac{2dh_l \log(2p)}{m}}.$$

After using the similar arguments in the rest proof as that in the proof of Lemma 1, we obtained the claimed bound. \blacksquare

Lemma 10. Assume that Conditions (A1)–(A7) hold. For any $\gamma > 0$ and $r > 0$,

$$\begin{aligned} \Xi_M(r) &= \sup_{\beta \in \mathbb{B}_{\Sigma}(r) \cap \mathbb{C}_{\Sigma}(d)} \left\| \wp_M(\beta) - E[\wp_M(\beta)] \right\|_{\infty} \\ &\leq \left[\frac{c_3}{h} \sqrt{\frac{2d \log(2p)}{M}} + c_4 \sqrt{\frac{\log(2p) + \gamma}{Mh}} + c_5 d^{1/2} \frac{\log(2p) + \gamma}{Mh} \right] \cdot r \end{aligned}$$

holds with probability at least $1 - e^{-\gamma}$, where $c_3 = 20 C_r^{-1} n_u \kappa_u B^2$, $c_4 = C_r^{-1} (2\kappa_u f_u \sigma_u)^{1/2} \mu_4^{1/4} n_u$ with $\sigma_u = \max_{1 \leq j \leq p} \sigma_{jj}$, and $c_5 = (52/3) C_r^{-1} n_u \kappa_u B^2$.

Proof. Note that $\mathbf{x}_{ik}^T \boldsymbol{\beta} - y_{ik} = \mathbf{x}_{ik}^T \boldsymbol{\zeta} - \epsilon_{ik}$, where $\epsilon_{ik} = y_{ik} - \mathbf{x}_{ik}^T \boldsymbol{\beta}_\tau$. Write $\mathbf{x}_{i,j} = (x_{i1,j}, \dots, x_{in_i,j})^T$, we have

$$\begin{aligned} & \sup_{\boldsymbol{\beta} \in \mathcal{B}(r_1, r_2)} \left\| \varphi_M(\boldsymbol{\beta}) - E[\varphi_M(\boldsymbol{\beta})] \right\|_\infty \\ &= \max_{1 \leq j \leq p} \sup_{\boldsymbol{\zeta} \in \mathcal{B}_0(r_1, r_2)} \left| \frac{1}{M} \sum_{i=1}^M (1 - \mathbb{E}) \left\{ \mathbf{x}_{i,j}^T \boldsymbol{\Omega}_i \left[\mathbf{K} \left(\frac{\mathbf{x}_i \boldsymbol{\zeta} - \boldsymbol{\epsilon}_i}{h} \right) - \mathbf{K} \left(\frac{-\boldsymbol{\epsilon}_i}{h} \right) \right] \right\} \right| \\ &\triangleq \max_{1 \leq j \leq p} \sup_{\boldsymbol{\zeta} \in \mathcal{B}_0(r_1, r_2)} \left| \frac{1}{M} \sum_{i=1}^M (1 - \mathbb{E}) \psi_{i,j}(\boldsymbol{\zeta}) \right| \\ &\triangleq \max_{1 \leq j \leq p} \Upsilon_{M,j}, \end{aligned}$$

where $\mathcal{B}(r_1, r_2) = \{ \boldsymbol{\beta} \in \mathbb{R}^p : \|\boldsymbol{\beta} - \boldsymbol{\beta}_\tau\|_1 \leq r_1, \|\boldsymbol{\beta} - \boldsymbol{\beta}_\tau\|_\Sigma \leq r_2 \}$, $(1 - \mathbb{E})\psi(\cdot) = \psi(\cdot) - E[\psi(\cdot)]$, $\mathbf{K}((\mathbf{x}_i \boldsymbol{\zeta} - \boldsymbol{\epsilon}_i)/h) = (K((\mathbf{x}_{i1}^T \boldsymbol{\zeta} - \epsilon_{i1})/h), \dots, K((\mathbf{x}_{in_i}^T \boldsymbol{\zeta} - \epsilon_{in_i})/h))^T$, and $\mathbf{K}(-\boldsymbol{\epsilon}_i/h) = (K(-\epsilon_{i1}/h), \dots, K(-\epsilon_{in_i}/h))^T$. At follows, we derive the upper bound of $\Upsilon_{M,j}$.

Since $k(\cdot) = K'(\cdot)$ is uniformly bounded, we have

$$\left| K \left(\frac{\mathbf{x}_{ik}^T \boldsymbol{\zeta} - \epsilon_{ik}}{h} \right) - K \left(\frac{-\epsilon_{ik}}{h} \right) \right| \leq \frac{\kappa_u}{h} |\mathbf{x}_{ik}^T \boldsymbol{\zeta}|.$$

Therefore, for $\boldsymbol{\zeta} \in \mathcal{B}_0(r_1, r_2)$, we have

$$\begin{aligned} \sup_{\boldsymbol{\zeta} \in \mathcal{B}_0(r_1, r_2)} |\psi_{i,j}(\boldsymbol{\zeta})| &\leq \sup_{\boldsymbol{\zeta} \in \mathcal{B}_0(r_1, r_2)} \left\{ \|\mathbf{x}_{i,j}\|_2 \cdot \|\boldsymbol{\Omega}_i\|_2 \cdot \left\| \mathbf{K} \left(\frac{\mathbf{x}_i \boldsymbol{\zeta} - \boldsymbol{\epsilon}_i}{h} \right) - \mathbf{K} \left(\frac{-\boldsymbol{\epsilon}_i}{h} \right) \right\|_2 \right\} \\ &\leq \sup_{\boldsymbol{\zeta} \in \mathcal{B}_0(r_1, r_2)} \left\{ \|\mathbf{x}_{i,j}\|_2 \cdot \|\boldsymbol{\Omega}_i\|_2 \cdot \sqrt{n_i} \frac{\kappa_u}{h} \cdot \|\mathbf{x}_{ik}\|_\infty \|\boldsymbol{\zeta}\|_1 \right\} \\ &\leq \sqrt{n_i} \max_{1 \leq k \leq n_i} |x_{ik,j}| \cdot \frac{1}{C_r} \cdot \sqrt{n_i} \frac{\kappa_u}{h} \cdot \max_{1 \leq j \leq p} |x_{ik,j}| r_1 \\ &\leq \frac{n_u \kappa_u B^2 r_1}{C_r h} \end{aligned}$$

and

$$\begin{aligned} \varsigma_{ik}(\boldsymbol{\zeta}) &= E_{\epsilon_{ik} | \mathbf{x}_{ik}} \left[K \left(\frac{\mathbf{x}_{ik}^T \boldsymbol{\zeta} - \epsilon_{ik}}{h} \right) - K \left(\frac{-\epsilon_{ik}}{h} \right) \right]^2 \\ &= \int_{-\infty}^{\infty} \left[K \left(\frac{\mathbf{x}_{ik}^T \boldsymbol{\zeta} - u}{h} \right) - K \left(\frac{-u}{h} \right) \right]^2 f_{\epsilon_{ik} | \mathbf{x}_{ik}}(u) du \\ &= h \int_{-\infty}^{\infty} \left[K \left(\frac{\mathbf{x}_{ik}^T \boldsymbol{\zeta}}{h} + v \right) - K(v) \right]^2 f_{\epsilon_{ik} | \mathbf{x}_{ik}}(-vh) dv \\ &= \frac{1}{h} (\mathbf{x}_{ik}^T \boldsymbol{\zeta})^2 \int_{-\infty}^{\infty} \left[\int_0^1 k \left(v + \frac{w \mathbf{x}_{ik}^T \boldsymbol{\zeta}}{h} \right) dw \right]^2 f_{\epsilon_{ik} | \mathbf{x}_{ik}}(-vh) dv \\ &\leq \frac{f_u}{h} (\mathbf{x}_{ik}^T \boldsymbol{\zeta})^2 \int_{-\infty}^{\infty} \left[\int_0^1 k \left(v + \frac{w \mathbf{x}_{ik}^T \boldsymbol{\zeta}}{h} \right) dw \right]^2 dv \\ &\leq \frac{f_u}{h} (\mathbf{x}_{ik}^T \boldsymbol{\zeta})^2 \left\{ \int_0^1 \left[\int_{-\infty}^{\infty} k^2 \left(v + \frac{w \mathbf{x}_{ik}^T \boldsymbol{\zeta}}{h} \right) dv \right]^{1/2} dw \right\}^2 \\ &\leq \frac{f_u}{h} (\mathbf{x}_{ik}^T \boldsymbol{\zeta})^2 \kappa_u. \end{aligned}$$

Denote $\mathbf{K}_i(\boldsymbol{\beta}) = \mathbf{K}((\mathbf{x}_i \boldsymbol{\zeta} - \boldsymbol{\epsilon}_i)/h)$ and $\mathbf{K}_i(\boldsymbol{\beta}_\tau) = \mathbf{K}(-\boldsymbol{\epsilon}_i/h)$ for the sake of notation, we have

$$\begin{aligned}
E[\psi_{i,j}^2(\boldsymbol{\zeta})] &= E\left[\mathbf{x}_{i,j}^T \boldsymbol{\Omega}_i(\boldsymbol{\alpha}) (\mathbf{K}_i(\boldsymbol{\beta}) - \mathbf{K}_i(\boldsymbol{\beta}_\tau)) (\mathbf{K}_i(\boldsymbol{\beta}) - \mathbf{K}_i(\boldsymbol{\beta}_\tau))^T \boldsymbol{\Omega}_i(\boldsymbol{\alpha}) \mathbf{x}_{i,j}\right] \\
&= E_{\mathbf{x}_i} \left\{ \mathbf{x}_{i,j}^T \boldsymbol{\Omega}_i(\boldsymbol{\alpha}) E_{\boldsymbol{\epsilon}_i | \mathbf{x}_i} \left[(\mathbf{K}_i(\boldsymbol{\beta}) - \mathbf{K}_i(\boldsymbol{\beta}_\tau)) (\mathbf{K}_i(\boldsymbol{\beta}) - \mathbf{K}_i(\boldsymbol{\beta}_\tau))^T \right] \boldsymbol{\Omega}_i(\boldsymbol{\alpha}) \mathbf{x}_{i,j} \right\} \\
&\leq E_{\mathbf{x}_i} \left\{ \mathbf{x}_{i,j}^T \boldsymbol{\Omega}_i(\boldsymbol{\alpha}) E_{\boldsymbol{\epsilon}_i | \mathbf{x}_i} \left[(\mathbf{K}_i(\boldsymbol{\beta}) - \mathbf{K}_i(\boldsymbol{\beta}_\tau))^T (\mathbf{K}_i(\boldsymbol{\beta}) - \mathbf{K}_i(\boldsymbol{\beta}_\tau)) \right] \mathbf{I}_{n_i} \boldsymbol{\Omega}_i(\boldsymbol{\alpha}) \mathbf{x}_{i,j} \right\} \\
&\leq \frac{1}{C_r^2} E_{\mathbf{x}_i} \left[\mathbf{x}_{i,j}^T \mathbf{x}_{i,j} \sum_{k=1}^{n_i} \zeta_{ik}(\boldsymbol{\zeta}) \right] \leq \frac{f_u \kappa_u}{h C_r^2} E_{\mathbf{x}_i} \left[\mathbf{x}_{i,j}^T \mathbf{x}_{i,j} \sum_{k=1}^{n_i} (\mathbf{x}_{ik}^T \boldsymbol{\zeta})^2 \right] \\
&= \frac{f_u \kappa_u}{h C_r^2} E_{\mathbf{x}_i} [\mathbf{x}_{i,j}^T \mathbf{x}_{i,j} \cdot \boldsymbol{\zeta}^T \mathbf{x}_i^T \mathbf{x}_i \boldsymbol{\zeta}] \leq \frac{f_u \kappa_u}{h C_r^2} [E(\mathbf{x}_{i,j}^T \mathbf{x}_{i,j})^2]^{1/2} [E(\boldsymbol{\zeta}^T \mathbf{x}_i^T \mathbf{x}_i \boldsymbol{\zeta})^2]^{1/2} \\
&\leq \frac{f_u \kappa_u n_u^2 \mu_4^{1/2} \sigma_{jj} r_2^2}{h C_r^2}, \tag{32}
\end{aligned}$$

where $E(\mathbf{x}_{i,j}^T \mathbf{x}_{i,j})^2 = E\|\mathbf{z}_i \boldsymbol{\Sigma}^{1/2} \mathbf{e}_j\|_2^4 \leq n_u^2 \mu_4 \|\boldsymbol{\Sigma}^{1/2} \mathbf{e}_j\|_2^4 = n_u^2 \mu_4 \sigma_{jj}^2$ with the j -th diagonal element σ_{jj} of $\boldsymbol{\Sigma}$, and $E(\boldsymbol{\zeta}^T \mathbf{x}_i^T \mathbf{x}_i \boldsymbol{\zeta})^2 \leq n_u^2 \|\boldsymbol{\Sigma}^{1/2} \boldsymbol{\zeta}\|_2^4 \leq n_u^2 r_2^4$.

According to the Bousquet's version of Talagrand's inequality in Bousquet (2003) [2], for any $\gamma > 0$, we have

$$\Upsilon_{M,j} \leq \frac{5}{4} E(\Upsilon_{M,j}) + \frac{f_u^{1/2} \mu_4^{1/4} \sigma_{jj}^{1/2} \kappa_u^{1/2} n_u r_2}{C_r} \sqrt{\frac{2\gamma}{Mh}} + \left(4 + \frac{1}{3}\right) \frac{n_u \kappa_u B^2 r_1 \gamma}{C_r Mh} \tag{33}$$

with probability at least $1 - e^{-\gamma}$.

At follows, we derive the upper bound of $E(\Upsilon_{M,j})$. Let Z_1, \dots, Z_M be i.i.d. Rademacher random variables. Based on the Rademacher symmetrization,

$$\begin{aligned}
E(\Upsilon_{M,j}) &\leq 2E \left\{ \sup_{\boldsymbol{\zeta} \in \mathcal{B}_0(r_1, r_2)} \left| \frac{1}{M} \sum_{i=1}^M Z_i \psi_{i,j}(\boldsymbol{\zeta}) \right| \right\} \\
&= 2E \left\{ E_Z \left[\sup_{\boldsymbol{\zeta} \in \mathcal{B}_0(r_1, r_2)} \left| \frac{1}{M} \sum_{i=1}^M Z_i \psi_{i,j}(\boldsymbol{\zeta}) \right| \right] \right\}, \tag{34}
\end{aligned}$$

where the expectation E_Z is taken with respect to Z_1, \dots, Z_M . Write $\psi_{i,j}(\boldsymbol{\zeta}) = \mathbf{x}_{i,j}^T \boldsymbol{\Omega}_i \boldsymbol{\varphi}_i(\mathbf{x}_i \boldsymbol{\zeta})$ with $\boldsymbol{\varphi}_i(\mathbf{x}_i \boldsymbol{\zeta}) = (\varphi_{i1}(\mathbf{x}_{i1}^T \boldsymbol{\zeta}), \dots, \varphi_{in_i}(\mathbf{x}_{in_i}^T \boldsymbol{\zeta}))^T$, where $\varphi_{ik}(\cdot)$ satisfies $\varphi_{ik}(0) = 0$ and $|\varphi_{ik}(u) - \varphi_{ik}(v)| \leq \kappa_u h^{-1} |u - v|$. According to the Talagrand's contraction principle in Ledoux and Talagrand (1991)[5], we have

$$\begin{aligned}
&E_Z \left\{ \sup_{\boldsymbol{\zeta} \in \mathcal{B}_0(r_1, r_2)} \left| \frac{1}{M} \sum_{i=1}^M Z_i \psi_{i,j}(\boldsymbol{\zeta}) \right| \right\} \\
&= E_Z \left\{ \sup_{\boldsymbol{\zeta} \in \mathcal{B}_0(r_1, r_2)} \left| \frac{1}{M} \sum_{i=1}^M Z_i [\mathbf{x}_{i,j}^T \boldsymbol{\Omega}_i \boldsymbol{\varphi}_i(\mathbf{x}_i \boldsymbol{\zeta})] \right| \right\} \\
&\leq \frac{2\kappa_u}{C_r h} \max_{1 \leq i \leq M, 1 \leq k \leq n_i} |x_{ik,j}| \cdot E_Z \left\{ \sup_{\boldsymbol{\zeta} \in \mathcal{B}_0(r_1, r_2)} \left| \frac{1}{M} \sum_{i=1}^M Z_i \left(\sum_{k=1}^{n_i} \mathbf{x}_{ik}^T \boldsymbol{\zeta} \right) \right| \right\} \\
&\leq \frac{2\kappa_u B r_1}{C_r h} E_Z \left\| \frac{1}{M} \sum_{i=1}^M Z_i \left(\sum_{k=1}^{n_i} \mathbf{x}_{ik} \right) \right\|_\infty. \tag{35}
\end{aligned}$$

Based on the Hoeffding's moment inequality,

$$\begin{aligned} E_Z \left\| \frac{1}{M} \sum_{i=1}^M Z_i \left(\sum_{k=1}^{n_i} \mathbf{x}_{ik} \right) \right\|_{\infty} &\leq \max_{1 \leq j \leq p} \left(\frac{1}{M} \sum_{i=1}^M \left(\sum_{k=1}^{n_i} x_{ik,j} \right)^2 \right)^{1/2} \sqrt{\frac{2 \log(2p)}{M}} \\ &\leq \max_{1 \leq j \leq p} \left(\frac{n_u^2}{M} \sum_{i=1}^M \left(\frac{1}{n_i} \sum_{k=1}^{n_i} x_{ik,j}^2 \right) \right)^{1/2} \sqrt{\frac{2 \log(2p)}{M}}. \end{aligned} \quad (36)$$

Together with (34)–(36), for any $j = 1, \dots, p$,

$$E(\Upsilon_{M,j}) \leq \frac{4n_u \kappa_u B^2 r_1}{C_r h} \sqrt{\frac{2 \log(2p)}{M}}. \quad (37)$$

Take $r_1 = 4d^{1/2}r$, $r_2 = r$, and $\gamma' = \log(2p) + \gamma$. Combine with (32), (33), and (37), we have the claimed bound. \blacksquare

3 Proofs of Main Results

3.1 Proof of Theorem 1

Theorem 1 (Restatement of Theorem 1 from main text). *Assume that Conditions (A1)–(A7) hold. Let $r_0 \gtrsim r_* > 0$. For any $\gamma, \varepsilon > 0$, suppose the bandwidths $h_l \geq h > 0$ satisfy $\max(r_0, \sqrt{(p+\gamma)/m}) \lesssim h_l \lesssim 1$ and $\sqrt{(p+\gamma)/M} \lesssim h$. Then, conditioned on the event $\mathcal{E}_0(r_0) \cap \mathcal{E}_*(\bar{r}_*) \cap \mathcal{E}_*(\bar{r}_*)$, there exist constants $C_{\varepsilon}, M_0 > 0$ such that for all $M \geq M_0$, the one-step distributed estimator $\hat{\beta}_l^{(1)}$ computed on the l -th machine satisfies*

$$\|\hat{\beta}_l^{(1)} - \beta_{\tau}\|_{\Sigma} \lesssim C \left(\sqrt{\frac{p+\gamma}{Mh}} + \sqrt{\frac{p+\gamma}{m}} + \frac{C_{\varepsilon}}{h_l} \sqrt{\frac{p^3}{M}} + h_l + 1 - L^{-1} \right) \cdot r_0 + r_*$$

with probability at least $1 - 3e^{-\gamma} - \varepsilon$, where $C > 0$ is a constant depending on $(\tau, n_u, f_u, \kappa_u, \mu_3, a_1, L_0, B, \xi_p, \xi_{\min})$.

Proof. Assume the event $\mathcal{E}_0(r_0) = \{\hat{\beta}^{(0)} \in \mathbb{B}_{\Sigma}(r_0)\}$ holds. Set $r_{\text{loc}} = h_l/(4\iota_{0.25})$. Let $\hat{\beta} = \hat{\beta}_l^{(1)}$ be the one-step estimator that minimizes $\tilde{\mathcal{L}}_{M,l}^{(0)}(\beta)$ with respect to β on the l th machine. Define an intermediate estimator $\hat{\beta}_v = \beta_{\tau} + v(\hat{\beta} - \beta_{\tau})$, where $v = \sup \{u \in [0, 1] : \beta_{\tau} + u(\hat{\beta} - \beta_{\tau}) \in \mathbb{B}_{\Sigma}(r_{\text{loc}})\}$ is the largest value of $u \in (0, 1]$ such that the convex combination of β_{τ} and $\hat{\beta}$: $(1-v)\beta_{\tau} + v\hat{\beta}$ falls into $\mathbb{B}_{\Sigma}(r_0)$. If $\hat{\beta} \in \mathbb{B}_{\Sigma}(r_{\text{loc}})$, $v = 1$, and $\hat{\beta}_v = \hat{\beta}$; otherwise, if $\hat{\beta} \notin \mathbb{B}_{\Sigma}(r_{\text{loc}})$, $v \in (0, 1)$, and $\hat{\beta}_v$ falls onto the boundary of $\mathbb{B}_{\Sigma}(r_{\text{loc}})$, that is, $\hat{\beta}_v \in \partial \mathbb{B}_{\Sigma}(r_{\text{loc}}) = \{\beta \in \mathbb{R}^p : \|\beta - \beta_{\tau}\|_{\Sigma} = r_{\text{loc}}\}$.

Based on Lemma F.2 in Fan et al. (2018) [3] and the first-order optimality condition $\nabla \tilde{\mathcal{L}}_{M,l}^{(0)}(\hat{\beta}) = \mathbf{0}$, we have

$$\begin{aligned} \bar{D}_{\tilde{\mathcal{L}}_{M,l}^{(0)}}(\hat{\beta}_v, \beta_{\tau}) &\leq v \bar{D}_{\tilde{\mathcal{L}}_{M,l}^{(0)}}(\hat{\beta}, \beta_{\tau}) = -v \left\langle \nabla \tilde{\mathcal{L}}_{M,l}^{(0)}(\beta_{\tau}), \hat{\beta} - \beta_{\tau} \right\rangle \\ &\leq \left\| \Sigma^{-1/2} \nabla \tilde{\mathcal{L}}_{M,l}^{(0)}(\beta_{\tau}) \right\|_2 \cdot \left\| \Sigma^{1/2} (\hat{\beta}_v - \beta_{\tau}) \right\|_2. \end{aligned} \quad (38)$$

Based on Lemma 2, given any $\gamma > 0$, as long as $(p + \gamma)/m \lesssim h_l \lesssim 1$,

$$\bar{D}_{\tilde{\mathcal{L}}_{M,l}}^{(0)}(\boldsymbol{\beta}, \boldsymbol{\beta}_\tau) \geq 0.5 C_m^{-1} \kappa_* n_l f_{l,l} \cdot \|\boldsymbol{\beta} - \boldsymbol{\beta}_\tau\|_{\Sigma}^2 \quad (39)$$

holds uniformly over all $\boldsymbol{\beta} \in \mathbb{B}_{\Sigma}(r_{\text{loc}})$ with probability at least $1 - e^{-\gamma}$.

Note that $\nabla \tilde{\mathcal{L}}_{M,l}^{(0)}(\boldsymbol{\beta}) = \nabla \mathcal{L}_{m,l}^{(0)}(\boldsymbol{\beta}) - \nabla \mathcal{L}_{m,l}^{(0)}(\widehat{\boldsymbol{\beta}}^{(0)}) + \nabla \mathcal{L}_M^{(0)}(\widehat{\boldsymbol{\beta}}^{(0)})$. Since

$$\nabla \mathcal{L}_{m,l}^{(0)}(\boldsymbol{\beta}_\tau) = \widehat{\mathbf{U}}_{m,l}(\widehat{\boldsymbol{\beta}}^{(0)}) - \widehat{\mathbf{D}}_{m,l}(\widehat{\boldsymbol{\beta}}^{(0)}) (\widehat{\boldsymbol{\beta}}^{(0)} - \boldsymbol{\beta}_\tau).$$

We can decompose $\nabla \tilde{\mathcal{L}}_{M,l}^{(0)}(\boldsymbol{\beta}_\tau)$ as

$$\begin{aligned} \nabla \tilde{\mathcal{L}}_{M,l}^{(0)}(\boldsymbol{\beta}_\tau) &= \widehat{\mathbf{U}}_M(\widehat{\boldsymbol{\beta}}^{(0)}) - \widehat{\mathbf{D}}_{m,l}(\widehat{\boldsymbol{\beta}}^{(0)}) (\widehat{\boldsymbol{\beta}}^{(0)} - \boldsymbol{\beta}_\tau) \\ &= \widehat{\mathbf{U}}_M(\widehat{\boldsymbol{\beta}}^{(0)}) - \mathbf{U}_M(\widehat{\boldsymbol{\beta}}^{(0)}) + \mathbf{U}_M(\widehat{\boldsymbol{\beta}}^{(0)}) - \mathbf{U}_M(\boldsymbol{\beta}_\tau) + \mathbf{U}_M(\boldsymbol{\beta}_\tau) \\ &\quad - \widehat{\mathbf{D}}_{m,l}(\widehat{\boldsymbol{\beta}}^{(0)}) (\widehat{\boldsymbol{\beta}}^{(0)} - \boldsymbol{\beta}_\tau) \\ &= \widehat{\mathbf{U}}_M(\widehat{\boldsymbol{\beta}}^{(0)}) - \mathbf{U}_M(\widehat{\boldsymbol{\beta}}^{(0)}) \\ &\quad + \mathbf{U}_M(\widehat{\boldsymbol{\beta}}^{(0)}) - \mathbf{U}_M(\boldsymbol{\beta}_\tau) - \mathbf{H}_M(\boldsymbol{\beta}_\tau) (\widehat{\boldsymbol{\beta}}^{(0)} - \boldsymbol{\beta}_\tau) \\ &\quad + \mathbf{H}_M(\boldsymbol{\beta}_\tau) - \mathbf{H}_M(\widehat{\boldsymbol{\beta}}^{(0)}) (\widehat{\boldsymbol{\beta}}^{(0)} - \boldsymbol{\beta}_\tau) \\ &\quad + \mathbf{H}_M(\widehat{\boldsymbol{\beta}}^{(0)}) - \mathbf{H}_{m,l}(\widehat{\boldsymbol{\beta}}^{(0)}) (\widehat{\boldsymbol{\beta}}^{(0)} - \boldsymbol{\beta}_\tau) \\ &\quad + \mathbf{H}_{m,l}(\widehat{\boldsymbol{\beta}}^{(0)}) - \mathbf{D}_{m,l}(\widehat{\boldsymbol{\beta}}^{(0)}) (\widehat{\boldsymbol{\beta}}^{(0)} - \boldsymbol{\beta}_\tau) \\ &\quad + \mathbf{D}_{m,l}(\widehat{\boldsymbol{\beta}}^{(0)}) - \widehat{\mathbf{D}}_{m,l}(\widehat{\boldsymbol{\beta}}^{(0)}) (\widehat{\boldsymbol{\beta}}^{(0)} - \boldsymbol{\beta}_\tau) \\ &\quad + \mathbf{U}_M(\boldsymbol{\beta}_\tau). \end{aligned}$$

According to Lemmas 2–8, as long as $h \gtrsim \sqrt{(p + \gamma)/M}$ and $m \gtrsim p + \gamma$,

$$\begin{aligned} \left\| \boldsymbol{\Sigma}^{-1/2} \nabla \tilde{\mathcal{L}}_{M,l}^{(0)}(\boldsymbol{\beta}_\tau) \right\|_2 &\leq \left\| \mathfrak{S}_M(\widehat{\boldsymbol{\beta}}^{(0)}) \right\|_2 + \left\| \Delta_M(\widehat{\boldsymbol{\beta}}^{(0)}) \right\|_2 + \left\| \mathfrak{T}_M(\boldsymbol{\beta}_\tau) \right\|_2 \\ &\quad + \left\| \mathfrak{F}_M(\widehat{\boldsymbol{\beta}}^{(0)}) \right\|_2 + \left\| \mathfrak{F}_{M,l}(\widehat{\boldsymbol{\beta}}^{(0)}) \right\|_2 \\ &\quad + \left\| \mathfrak{H}_{m,l}(\widehat{\boldsymbol{\beta}}^{(0)}) \right\|_2 + \left\| \mathfrak{E}_{m,l}(\widehat{\boldsymbol{\beta}}^{(0)}) \right\|_2 \\ &\lesssim \xi_p^{-1/2} C_0 C_\varepsilon \sqrt{\frac{p^2}{M}} + C_1 r \left(\sqrt{\frac{p + \gamma}{Mh}} + r \right) \\ &\quad + C_2 \left(\sqrt{\frac{p + \gamma}{M}} + h^2 \right) + C_3 r^2 + [C_4(1 - L^{-1}) + C_5|h_l - h|] r \\ &\quad + C_6 r \sqrt{\frac{p + \gamma}{m}} + C_7 C_\varepsilon \frac{r}{h_l} \sqrt{\frac{p^3}{M}} \end{aligned}$$

holds with probability at least $1 - 3e^{-\gamma} - 2\varepsilon$. Then, conditioned on the event $\mathcal{E}_0(r_0) \cap \mathcal{E}_*(\bar{r}_*) \cap \mathcal{E}_*(\tilde{r}_*)$, as long as $h_l \geq h > 0$ and $h_l \gtrsim r_0$,

$$\left\| \boldsymbol{\Sigma}^{-1/2} \nabla \tilde{\mathcal{L}}_{M,l}^{(0)}(\boldsymbol{\beta}_\tau) \right\|_2 \leq C \left(\sqrt{\frac{p + \gamma}{Mh}} + \sqrt{\frac{p + \gamma}{m}} + \frac{C_\varepsilon}{h_l} \sqrt{\frac{p^3}{M}} + h_l + 1 - L^{-1} \right) \cdot r_0 + r_*, \quad (40)$$

holds with probability at least $1 - 2e^{-\gamma} - \varepsilon$, where $r_* = O_p(p/\sqrt{M} + h^2)$.

Together with (38), (39), and (40), conditioned on the event $\mathcal{E}_0(r_0) \cap \mathcal{E}_*(\bar{r}_*) \cap \mathcal{E}_*(\tilde{r}_*)$,

$$\begin{aligned} \|\widehat{\boldsymbol{\beta}}_v - \boldsymbol{\beta}_\tau\|_{\boldsymbol{\Sigma}} &\leq 2 C_m (\kappa_* n_l f_{l,l})^{-1} \left\| \boldsymbol{\Sigma}^{-1/2} \nabla \widetilde{\mathcal{L}}_{M,l}^{(0)}(\boldsymbol{\beta}_\tau) \right\|_2 \\ &\leq 2 C_m (\kappa_* n_l f_{l,l})^{-1} \left\{ C \left(\sqrt{\frac{p+\gamma}{Mh}} + \sqrt{\frac{p+\gamma}{m}} + \frac{C_\varepsilon}{h_l} \sqrt{\frac{p^3}{M}} + h_l + 1 - L^{-1} \right) \cdot r_0 + r_* \right\} \end{aligned} \quad (41)$$

holds with probability at least $1 - 3e^{-\gamma} - \varepsilon$. Let the bandwidth $h_l \geq h > 0$ satisfy $1 \gtrsim h_l \gtrsim \max(r_0, r_*)$ and $\sqrt{(p+\gamma)/(Mh)} + \sqrt{(p+\gamma)/m} + C_\varepsilon h_l^{-1} \sqrt{p^3/M} + h_l + 1 - L^{-1} \lesssim 1$, so that the right hand side of (41) is strictly less than r_{loc} . Then, the intermediate estimator $\widehat{\boldsymbol{\beta}}_v$ falls into the interior of the local region $\mathbb{B}_{\boldsymbol{\Sigma}}(r_{\text{loc}})$ with high probability conditioned on the event $\mathcal{E}_0(r_0) \cap \mathcal{E}_*(\bar{r}_*) \cap \mathcal{E}_*(\tilde{r}_*)$. Note that if $\widehat{\boldsymbol{\beta}} \notin \mathbb{B}_{\boldsymbol{\Sigma}}(r_{\text{loc}})$, $\widehat{\boldsymbol{\beta}}_v$ lies on the boundary of $\mathbb{B}_{\boldsymbol{\Sigma}}(r_{\text{loc}})$, which is a contradiction to (41). Therefore, $\widehat{\boldsymbol{\beta}} = \widehat{\boldsymbol{\beta}}_v \in \mathbb{B}_{\boldsymbol{\Sigma}}(r_{\text{loc}})$ and the bound (41) also applies to $\widehat{\boldsymbol{\beta}}$. ■

3.2 Proof of Theorem 2

Theorem 2 (Restatement of Theorem 2 from main text). *Assume the conditions of Theorem 1 hold. For any $\gamma, \varepsilon > 0$, conditioned on the event $\mathcal{E}_0(r_0) \cap \mathcal{E}_*(\bar{r}_*) \cap \mathcal{E}_*(\tilde{r}_*)$, there exist constants $C_\varepsilon, M_0 > 0$ such that for all $M \geq M_0$, the S -step distributed estimator $\widehat{\boldsymbol{\beta}}_l^{(S)}$ computed on the l -th machine satisfies*

$$\|\widehat{\boldsymbol{\beta}}_l^{(S)} - \boldsymbol{\beta}_\tau\|_{\boldsymbol{\Sigma}} \lesssim \vartheta^S \cdot r_0 + r_* \lesssim r_*$$

with probability at least $1 - (2S+1)e^{-\gamma} - S\varepsilon$, provided that $\vartheta^{S-1} \cdot r_0 \lesssim r_*$. Here, $\vartheta = \vartheta(p, m, M, L, h_l, h, \gamma, C_\varepsilon) = C \left\{ \sqrt{(p+\gamma)/(Mh)} + \sqrt{(p+\gamma)/m} + C_\varepsilon h_l^{-1} \sqrt{p^3/M} + h_l + 1 - L^{-1} \right\}$, and the number of iterations satisfies $S \gtrsim \log(r_0/r_*)/\log(1/h_l)$.

Proof. Given the s -step ($s \geq 0$) estimator $\widehat{\boldsymbol{\beta}}_l^{(s)}$ of $\boldsymbol{\beta}$ on the l th machine and denote $\widehat{\boldsymbol{\beta}}_l^{(s)} = \widehat{\boldsymbol{\beta}}^{(s)}$, we have

$$\begin{aligned} \boldsymbol{\Sigma}^{-1/2} \nabla \widetilde{\mathcal{L}}_{M,l}^{(s)}(\boldsymbol{\beta}_\tau) &= \mathfrak{S}_M(\widehat{\boldsymbol{\beta}}^{(s)}) + \Delta_M(\widehat{\boldsymbol{\beta}}^{(s)}) - \mathfrak{F}_M(\widehat{\boldsymbol{\beta}}^{(s)}) \\ &\quad + \mathfrak{F}_{M,l}(\widehat{\boldsymbol{\beta}}^{(s)}) - \mathfrak{H}_{m,l}(\widehat{\boldsymbol{\beta}}^{(s)}) + \mathfrak{E}_{m,l}(\widehat{\boldsymbol{\beta}}^{(s)}) + \mathfrak{T}_M(\boldsymbol{\beta}_\tau). \end{aligned}$$

Therefore,

$$\begin{aligned} \left\| \boldsymbol{\Sigma}^{-1/2} \nabla \widetilde{\mathcal{L}}_{M,l}^{(s)}(\boldsymbol{\beta}_\tau) \right\|_2 &\leq \left\| \mathfrak{S}_M(\widehat{\boldsymbol{\beta}}^{(s)}) \right\|_2 + \left\| \Delta_M(\widehat{\boldsymbol{\beta}}^{(s)}) \right\|_2 + \left\| \mathfrak{F}_M(\widehat{\boldsymbol{\beta}}^{(s)}) \right\|_2 + \left\| \mathfrak{F}_{M,l}(\widehat{\boldsymbol{\beta}}^{(s)}) \right\|_2 \\ &\quad + \left\| \mathfrak{H}_{m,l}(\widehat{\boldsymbol{\beta}}^{(s)}) \right\|_2 + \left\| \mathfrak{E}_{m,l}(\widehat{\boldsymbol{\beta}}^{(s)}) \right\|_2 + \left\| \mathfrak{T}_M(\boldsymbol{\beta}_\tau) \right\|_2. \end{aligned} \quad (42)$$

Define the “good” events for the sequence of iterates $\{\widehat{\boldsymbol{\beta}}^{(s)}\}_{s=0}^S$:

$$\mathcal{E}_s(r_s) = \left\{ \widehat{\boldsymbol{\beta}}^{(s)} \in \mathbb{B}_{\boldsymbol{\Sigma}}(r_s) \right\}, \quad s = 0, 1, \dots, S,$$

where $r_0 \geq r_1 \geq \dots \geq r_s > 0$ are some sequence of radius to be determined. Let $r_{\text{loc}} = h_l/(4\gamma_{0.25})$ be the same local radius defined in the proof of Theorem 1. According to Lemma 1, as long as $(p + \gamma)/m \lesssim h_l \lesssim 1$,

$$\bar{D}_{\tilde{\mathcal{L}}_{M,l}}^{(s)}(\boldsymbol{\beta}, \boldsymbol{\beta}_\tau) \geq 0.5 C_m^{-1} \kappa_* n_l f_{l,l} \cdot \|\boldsymbol{\beta} - \boldsymbol{\beta}_\tau\|_{\boldsymbol{\Sigma}}^2 \quad (43)$$

holds uniformly over all $\boldsymbol{\beta} \in \mathbb{B}_{\boldsymbol{\Sigma}}(r_{\text{loc}})$ with probability at least $1 - e^{-\gamma}$.

Let $\widehat{\boldsymbol{\beta}}^{(s+1)} = \widehat{\boldsymbol{\beta}}_l^{(s+1)}$ be the update of $\boldsymbol{\beta}$ on the l th machine in the $(s+1)$ th iteration. Define an intermediate estimator $\widehat{\boldsymbol{\beta}}_v^{(s+1)} = \boldsymbol{\beta}_\tau + v(\widehat{\boldsymbol{\beta}}^{(s+1)} - \boldsymbol{\beta}_\tau)$ (a convex combination of $\widehat{\boldsymbol{\beta}}^{(s+1)}$ and $\boldsymbol{\beta}_\tau$). Assume that $\widehat{\boldsymbol{\beta}}_v^{(s+1)} \in \mathbb{B}_{\boldsymbol{\Sigma}}(r_{\text{loc}})$. Based on (38), (42), and (43), conditioned on the event $\mathcal{E}_0(r_0) \cap \mathcal{E}_*(\bar{r}_*) \cap \mathcal{E}_*(\tilde{r}_*)$,

$$\begin{aligned} \left\| \widehat{\boldsymbol{\beta}}_v^{(s+1)} - \boldsymbol{\beta}_\tau \right\|_{\boldsymbol{\Sigma}} &\leq \bar{\kappa}^{-1} \left\| \boldsymbol{\Sigma}^{-1/2} \nabla \tilde{\mathcal{L}}_{M,l}^{(s)}(\boldsymbol{\beta}_\tau) \right\|_2 \\ &\leq \bar{\kappa}^{-1} \left(\left\| \mathfrak{S}_M(\widehat{\boldsymbol{\beta}}^{(s)}) \right\|_2 + \left\| \Delta_M(\widehat{\boldsymbol{\beta}}^{(s)}) \right\|_2 + \left\| \mathfrak{F}_M(\widehat{\boldsymbol{\beta}}^{(s)}) \right\|_2 \right. \\ &\quad \left. + \left\| \mathfrak{F}_{M,l}(\widehat{\boldsymbol{\beta}}^{(s)}) \right\|_2 + \left\| \mathfrak{H}_{m,l}(\widehat{\boldsymbol{\beta}}^{(s)}) \right\|_2 + \left\| \mathfrak{E}_{m,l}(\widehat{\boldsymbol{\beta}}^{(s)}) \right\|_2 + \left\| \mathfrak{T}_M(\boldsymbol{\beta}_\tau) \right\|_2 \right) \\ &\leq \bar{\kappa}^{-1} \left(\left\| \Delta_M(\widehat{\boldsymbol{\beta}}^{(s)}) \right\|_2 + \left\| \mathfrak{F}_M(\widehat{\boldsymbol{\beta}}^{(s)}) \right\|_2 + \left\| \mathfrak{F}_{M,l}(\widehat{\boldsymbol{\beta}}^{(s)}) \right\|_2 \right. \\ &\quad \left. + \left\| \mathfrak{H}_{m,l}(\widehat{\boldsymbol{\beta}}^{(s)}) \right\|_2 + \left\| \mathfrak{E}_{m,l}(\widehat{\boldsymbol{\beta}}^{(s)}) \right\|_2 + r_* \right), \end{aligned} \quad (44)$$

where $\bar{\kappa} = 0.5 C_m^{-1} \kappa_* n_l f_{l,l}$. Define the event

$$\begin{aligned} \mathcal{F}(r) = \left\{ \sup_{\boldsymbol{\beta} \in \mathbb{B}_{\boldsymbol{\Sigma}}(r)} \left\{ \left\| \Delta_M(\boldsymbol{\beta}) \right\|_2 + \left\| \mathfrak{F}_M(\boldsymbol{\beta}) \right\|_2 + \left\| \mathfrak{F}_{M,l}(\boldsymbol{\beta}) \right\|_2 \right. \right. \\ \left. \left. + \left\| \mathfrak{H}_{m,l}(\boldsymbol{\beta}) \right\|_2 + \left\| \mathfrak{E}_{m,l}(\boldsymbol{\beta}) \right\|_2 \right\} \leq \vartheta(\gamma) \cdot r \right\}, \end{aligned}$$

where $\vartheta(\gamma) = C \left\{ \sqrt{(p + \gamma)/(Mh)} + \sqrt{(p + \gamma)/m} + C_\varepsilon h_l^{-1} \sqrt{p^3/M} + h_l + 1 - L^{-1} \right\}$ (for some $C > 0$), such that $\mathcal{F}(r)$ holds with probability at least $1 - 2e^{-\gamma} - \varepsilon$ for $0 < r \lesssim h_l$.

Let \mathcal{E}_{loc} be the event where the local strong convexity in (43) holds. From (44), at the first iteration, conditioned on the event $\mathcal{E}_0(r_0) \cap \mathcal{E}_*(\bar{r}_*) \cap \mathcal{E}_*(\tilde{r}_*) \cap \mathcal{E}_{\text{loc}} \cap \mathcal{F}(r_0)$,

$$\left\| \widehat{\boldsymbol{\beta}}_v^{(1)} - \boldsymbol{\beta}_\tau \right\|_{\boldsymbol{\Sigma}} \leq r_1 := \bar{\kappa}^{-1} \vartheta(\gamma) \cdot r_0 + \bar{\kappa}^{-1} r_*. \quad (45)$$

From the constraints on (h_l, h, r_0, r_*) , we have $\bar{\kappa}^{-1} \vartheta(\gamma) < 1$, $r_1 < r_{\text{loc}} \asymp h_l$, and $r_1 \leq r_0$. This implies $\widehat{\boldsymbol{\beta}}^{(1)} = \widehat{\boldsymbol{\beta}}_v^{(1)} \in \mathbb{B}_{\boldsymbol{\Sigma}}(r_{\text{loc}})$, which in turn certifies the event $\mathcal{E}_1(r_1) = \left\{ \widehat{\boldsymbol{\beta}}^{(1)} \in \mathbb{B}_{\boldsymbol{\Sigma}}(r_1) \right\}$.

Next, we assume that for some $s \geq 1$, $\widehat{\boldsymbol{\beta}}^{(s)} \in \mathbb{B}_{\boldsymbol{\Sigma}}(r_s)$, where $r_s := \bar{\kappa}^{-1} \vartheta(\gamma) \cdot r_{s-1} + \bar{\kappa}^{-1} r_* \leq r_{s-1}$ and $r_s < r_{\text{loc}}$ for all $\iota = 1, \dots, s$. According to (44), at the $(s+1)$ th-iteration, conditioned on the event $\mathcal{E}_s(r_s) \cap \mathcal{E}_*(\bar{r}_*) \cap \mathcal{E}_*(\tilde{r}_*) \cap \mathcal{E}_{\text{loc}} \cap \mathcal{F}(r_s)$,

$$\left\| \widehat{\boldsymbol{\beta}}_v^{(s+1)} - \boldsymbol{\beta}_\tau \right\|_{\boldsymbol{\Sigma}} \leq r_{s+1} := \bar{\kappa}^{-1} \vartheta(\gamma) \cdot r_s + \bar{\kappa}^{-1} r_*. \quad (46)$$

Note that $r_{s+1} \leq \bar{\kappa}^{-1}\vartheta(\gamma) \cdot r_{s-1} + \bar{\kappa}^{-1}r_* = r_s < r_{\text{loc}}$. Therefore, $\widehat{\boldsymbol{\beta}}_v^{(s+1)}$ falls into the interior of $\mathbb{B}_{\Sigma}(r_{\text{loc}})$, which implies $\widehat{\boldsymbol{\beta}}^{(s+1)} = \widehat{\boldsymbol{\beta}}_v^{(s+1)} \in \mathbb{B}_{\Sigma}(r_{\text{loc}})$ and certifies the event $\mathcal{E}_{s+1}(r_{s+1}) = \left\{ \widehat{\boldsymbol{\beta}}^{(s+1)} \in \mathbb{B}_{\Sigma}(r_{s+1}) \right\}$. Consequently, $\widehat{\boldsymbol{\beta}}^{(s+1)} \in \mathbb{B}_{\Sigma}(r_{s+1}) \subset \mathbb{B}_{\Sigma}(r_s)$ and the bound (46) also applies to $\widehat{\boldsymbol{\beta}}^{(s+1)}$ with $r_{s+1} \leq r_s$.

Repeat the above arguments until $s = S \geq 1$. Since for every $1 \leq s \leq S$, $\mathcal{E}_s(r_s)$ holds under the event $\mathcal{E}_{s-1}(r_{s-1}) \cap \mathcal{E}_*(\bar{r}_*) \cap \mathcal{E}_*(\tilde{r}_*) \cap \mathcal{E}_{\text{loc}} \cap \mathcal{F}(r_{s-1})$. Conditioned on the event $\mathcal{E}_0(r_0) \cap \mathcal{E}_*(\bar{r}_*) \cap \mathcal{E}_*(\tilde{r}_*) \cap \mathcal{E}_{\text{loc}} \cap \left\{ \cap_{s=0}^{S-1} \mathcal{F}(r_{s-1}) \right\}$, $\widehat{\boldsymbol{\beta}}^{(S)}$ satisfies the bounds

$$\left\| \widehat{\boldsymbol{\beta}}^{(S)} - \boldsymbol{\beta}_\tau \right\|_{\Sigma} \leq \bar{\kappa}^{-1}\vartheta(\gamma) \cdot r_{S-1} + \bar{\kappa}^{-1}r_* = r_S \leq r_{S-1}. \quad (47)$$

Since $r_s = \{\bar{\kappa}^{-1}\vartheta(\gamma)\}^s r_0 + [1 - \{\bar{\kappa}^{-1}\vartheta(\gamma)\}^s] / [1 - \bar{\kappa}^{-1}\vartheta(\gamma)] \bar{\kappa}^{-1}r_*$ for $s = 1, \dots, S$. Then $S = \lceil \log(r_0/r_*) / \log(\bar{\kappa}/\vartheta(\gamma)) \rceil + 1$ is the smallest integer such that $\{\bar{\kappa}^{-1}\vartheta(\gamma)\}^{S-1} r_0 \leq r_*$.

Finally, together with (43) and (45)–(47), conditioned on the event $\mathcal{E}_0(r_0) \cap \mathcal{E}_*(\bar{r}_*) \cap \mathcal{E}_*(\tilde{r}_*)$,

$$\left\| \widehat{\boldsymbol{\beta}}^{(S)} - \boldsymbol{\beta}_\tau \right\|_{\Sigma} \leq \bar{\kappa}^{-1}\vartheta(\gamma) \cdot r_* + \frac{1}{\bar{\kappa} - \vartheta(\gamma)} r_* \lesssim r_*$$

holds with probability at least $1 - (2S+1)e^{-\gamma} - S\varepsilon$. This completes the proof. \blacksquare

3.3 Proof of Theorem 3

Theorem 3 (Restatement of Theorem 3 from main text). *Assume that Conditions (A1)–(A7) hold, and $r_0, \lambda_* > 0$. For any $\gamma, \varepsilon > 0$, there exists a constant $C_\varepsilon > 0$ such that the bandwidths $h_l \geq h > 0$ and the regularization parameter $\lambda = 2.5(\lambda_* + \varsigma) > 0$ satisfy $d^{1/2}\lambda \lesssim h_l \lesssim 1$, and*

$$\varsigma \asymp \max \left\{ \frac{r_0}{h} \sqrt{\frac{d(\log p + \gamma)}{M}}, d^{-1/2} \left(\sqrt{\frac{p + \gamma}{m}} + \frac{C_\varepsilon}{h_l} \sqrt{\frac{p^3}{M}} + h_l + 1 - L^{-1} \right) r_0 + d^{-1/2} h^2 \right\}.$$

Then, conditioned on the event $\mathcal{E}_0(r_0) \cap \mathcal{E}_*(\bar{\lambda}_*) \cap \mathcal{E}_*(\tilde{\lambda}_*)$, there exists a constant $M_0 > 0$ such that for all $M \geq M_0$, the one-step regularized estimator computed on the l -th machine satisfies $\widetilde{\boldsymbol{\beta}}_l^{(1)} \in \mathbb{C}_{\Sigma}(d)$, and with probability at least $1 - 3e^{-\gamma} - \varepsilon$,

$$\left\| \widetilde{\boldsymbol{\beta}}_l^{(1)} - \boldsymbol{\beta}_\tau \right\|_{\Sigma} \lesssim C \left(\frac{d}{h} \sqrt{\frac{\log p + \gamma}{M}} + \sqrt{\frac{p + \gamma}{m}} + \frac{C_\varepsilon}{h_l} \sqrt{\frac{p^3}{M}} + h_l + 1 - L^{-1} \right) r_0 + d^{1/2}\lambda_* + h^2,$$

where $C > 0$ is a constant depending on $(\tau, n_u, f_u, \kappa_u, \mu_3, a_1, B, \xi_p, \xi_{\min})$.

Proof. Denote $\widetilde{\boldsymbol{\beta}} = \widetilde{\boldsymbol{\beta}}_l^{(1)}$ and $\widetilde{\boldsymbol{\zeta}} = \widetilde{\boldsymbol{\beta}} - \boldsymbol{\beta}_\tau$. Based on the first-order optimality condition, there exists a subgradient $\widetilde{\mathbf{g}} \in \partial \|\widetilde{\boldsymbol{\beta}}\|_1$ such that $\nabla \widetilde{\mathcal{L}}_{M,l}^{(0)}(\widetilde{\boldsymbol{\beta}}) + \lambda \cdot \widetilde{\mathbf{g}} = \mathbf{0}$ and $\widetilde{\mathbf{g}}^T \widetilde{\boldsymbol{\beta}} = \|\widetilde{\boldsymbol{\beta}}\|_1$. Therefore,

$$\langle \widetilde{\mathbf{g}}, \boldsymbol{\beta}_\tau - \widetilde{\boldsymbol{\beta}} \rangle \leq \|\boldsymbol{\beta}_\tau\|_1 - \|\widetilde{\boldsymbol{\beta}}\|_1 = \|\boldsymbol{\beta}_{\tau,\mathcal{A}}\|_1 - \|\widetilde{\boldsymbol{\zeta}}_{\mathcal{A}^c}\|_1 - \|\widetilde{\boldsymbol{\zeta}}_{\mathcal{A}} + \boldsymbol{\beta}_{\tau,\mathcal{A}}\|_1 \leq \|\widetilde{\boldsymbol{\zeta}}_{\mathcal{A}}\|_1 - \|\widetilde{\boldsymbol{\zeta}}_{\mathcal{A}^c}\|_1.$$

This implies that

$$\begin{aligned} 0 &\leq \bar{D}_{\widetilde{\mathcal{L}}_{M,l}}^{(0)}(\widetilde{\boldsymbol{\beta}}, \boldsymbol{\beta}_\tau) = \left\langle \nabla \widetilde{\mathcal{L}}_{M,l}^{(0)}(\widetilde{\boldsymbol{\beta}}) - \nabla \widetilde{\mathcal{L}}_{M,l}^{(0)}(\boldsymbol{\beta}_\tau), \widetilde{\boldsymbol{\beta}} - \boldsymbol{\beta}_\tau \right\rangle \\ &= \lambda \cdot \langle \widetilde{\mathbf{g}}, \boldsymbol{\beta}_\tau - \widetilde{\boldsymbol{\beta}} \rangle - \langle \nabla \widetilde{\mathcal{L}}_{M,l}^{(0)}(\boldsymbol{\beta}_\tau), \widetilde{\boldsymbol{\zeta}} \rangle \\ &\leq \lambda \cdot (\|\widetilde{\boldsymbol{\zeta}}_{\mathcal{A}}\|_1 - \|\widetilde{\boldsymbol{\zeta}}_{\mathcal{A}^c}\|_1) - \langle \nabla \widetilde{\mathcal{L}}_{M,l}^{(0)}(\boldsymbol{\beta}_\tau), \widetilde{\boldsymbol{\zeta}} \rangle, \end{aligned} \quad (48)$$

where $\nabla \tilde{\mathcal{L}}_{M,l}^{(0)}(\boldsymbol{\beta}_\tau) = \nabla \mathcal{L}_{m,l}^{(0)}(\boldsymbol{\beta}_\tau) - \nabla \mathcal{L}_{m,l}^{(0)}(\tilde{\boldsymbol{\beta}}^{(0)}) + \nabla \mathcal{L}_M^{(0)}(\tilde{\boldsymbol{\beta}}^{(0)})$. Decompose $\nabla \tilde{\mathcal{L}}_{M,l}^{(0)}(\boldsymbol{\beta}_\tau)$ as

$$\begin{aligned}
& \nabla \tilde{\mathcal{L}}_{M,l}^{(0)}(\boldsymbol{\beta}_\tau) \\
&= \widehat{\mathbf{U}}_M(\tilde{\boldsymbol{\beta}}^{(0)}) - \widehat{\mathbf{D}}_{m,l}(\tilde{\boldsymbol{\beta}}^{(0)})(\tilde{\boldsymbol{\beta}}^{(0)} - \boldsymbol{\beta}_\tau) \\
&= \left\{ \widehat{\mathbf{U}}_M(\tilde{\boldsymbol{\beta}}^{(0)}) - \mathbf{U}_M(\tilde{\boldsymbol{\beta}}^{(0)}) \right\} + \left\{ \wp_M(\tilde{\boldsymbol{\beta}}^{(0)}) - \mathfrak{S}_M(\tilde{\boldsymbol{\beta}}^{(0)}) \right\} \\
&\quad + \left\{ \mathbf{U}_M(\boldsymbol{\beta}_\tau) - \mathbf{J}_M(\boldsymbol{\beta}_\tau) \right\} + \mathbf{J}_M(\boldsymbol{\beta}_\tau) + \left\{ \mathbf{J}_M(\tilde{\boldsymbol{\beta}}^{(0)}) - \mathbf{J}_M(\boldsymbol{\beta}_\tau) - \mathbf{H}_M(\boldsymbol{\beta}_\tau)(\tilde{\boldsymbol{\beta}}^{(0)} - \boldsymbol{\beta}_\tau) \right\} \\
&\quad + \left\{ \mathbf{H}_M(\boldsymbol{\beta}_\tau) - \mathbf{H}_M(\tilde{\boldsymbol{\beta}}^{(0)}) \right\}(\tilde{\boldsymbol{\beta}}^{(0)} - \boldsymbol{\beta}_\tau) + \left\{ \mathbf{H}_M(\tilde{\boldsymbol{\beta}}^{(0)}) - \mathbf{H}_{m,l}(\tilde{\boldsymbol{\beta}}^{(0)}) \right\}(\tilde{\boldsymbol{\beta}}^{(0)} - \boldsymbol{\beta}_\tau) \\
&\quad + \left\{ \mathbf{H}_{m,l}(\tilde{\boldsymbol{\beta}}^{(0)}) - \mathbf{D}_{m,l}(\tilde{\boldsymbol{\beta}}^{(0)}) \right\}(\tilde{\boldsymbol{\beta}}^{(0)} - \boldsymbol{\beta}_\tau) + \left\{ \mathbf{D}_{m,l}(\tilde{\boldsymbol{\beta}}^{(0)}) - \widehat{\mathbf{D}}_{m,l}(\tilde{\boldsymbol{\beta}}^{(0)}) \right\}(\tilde{\boldsymbol{\beta}}^{(0)} - \boldsymbol{\beta}_\tau).
\end{aligned}$$

For $r > 0$, define

$$\begin{aligned}
\mathfrak{I}_M(r) &= \sup_{\boldsymbol{\beta} \in \mathbb{B}_\Sigma(r)} \|\mathbf{E}[\Delta_M(\boldsymbol{\beta})]\|_2, \quad \mathfrak{H}_M(r) = \sup_{\boldsymbol{\beta} \in \mathbb{B}_\Sigma(r)} \|\mathfrak{F}_M(\boldsymbol{\beta})\|_2, \\
\mathfrak{H}_{M,l}(r) &= \sup_{\boldsymbol{\beta} \in \mathbb{B}_\Sigma(r)} \|\mathfrak{F}_{M,l}(\boldsymbol{\beta})\|_2, \quad \mathfrak{G}_{m,l}(r) = \sup_{\boldsymbol{\beta} \in \mathbb{B}_\Sigma(r)} \|\mathfrak{H}_{m,l}(\boldsymbol{\beta})\|_2, \\
\mathfrak{D}_{m,l}(r) &= \sup_{\boldsymbol{\beta} \in \mathbb{B}_\Sigma(r)} \|\mathfrak{E}_{m,l}(\boldsymbol{\beta})\|_2.
\end{aligned}$$

Based on the Hölder's inequality, under the condition of the event $\mathcal{E}_*(\bar{\lambda}_*) \cap \mathcal{E}_*(\tilde{\lambda}_*) \cap \mathcal{E}_0(r_0)$,

$$\begin{aligned}
\left| \langle \nabla \tilde{\mathcal{L}}_{M,l}^{(0)}(\boldsymbol{\beta}_\tau), \tilde{\boldsymbol{\zeta}} \rangle \right| &\leq \{\Xi_M(r_0) + \lambda_*\} \cdot \|\tilde{\boldsymbol{\zeta}}\|_1 \\
&\quad + \{\mathfrak{I}_M(r_0) + \omega_M^* + \mathfrak{H}_M(r_0) + \mathfrak{H}_{M,l}(r_0) \\
&\quad \quad + \mathfrak{G}_{m,l}(r_0) + \mathfrak{D}_{m,l}(r_0)\} \cdot \|\tilde{\boldsymbol{\zeta}}\|_\Sigma. \tag{49}
\end{aligned}$$

Take $\lambda = 2.5(\lambda_* + \varsigma)$ with ς satisfying

$$\varsigma \geq \max \left\{ \Xi_M(r_0), [\mathfrak{I}_M(r_0) + \omega_M^* + \mathfrak{H}_M(r_0) + \mathfrak{H}_{M,l}(r_0) + \mathfrak{G}_{m,l}(r_0) + \mathfrak{D}_{m,l}(r_0)] d^{-1/2} \right\}, \tag{50}$$

so that

$$\begin{aligned}
\Xi_M(r_0) + \lambda_* &\leq 0.4 \lambda, \\
\mathfrak{I}_M(r_0) + \omega_M^* + \mathfrak{H}_M(r_0) + \mathfrak{H}_{M,l}(r_0) + \mathfrak{G}_{m,l}(r_0) + \mathfrak{D}_{m,l}(r_0) &\leq 0.4 d^{1/2} \lambda. \tag{51}
\end{aligned}$$

Together with (48), (49), and (51), we have

$$0 \leq 1.4 \|\tilde{\boldsymbol{\zeta}}_{\mathcal{A}}\|_1 - 0.6 \|\tilde{\boldsymbol{\zeta}}_{\mathcal{A}^c}\|_1 + 0.4 d^{1/2} \|\tilde{\boldsymbol{\zeta}}\|_\Sigma.$$

Therefore,

$$\|\tilde{\boldsymbol{\zeta}}\|_1 \leq \frac{10}{3} \|\tilde{\boldsymbol{\zeta}}_{\mathcal{A}}\|_1 + \frac{2}{3} d^{1/2} \|\tilde{\boldsymbol{\zeta}}\|_\Sigma \leq 4 d^{1/2} \|\tilde{\boldsymbol{\zeta}}\|_\Sigma.$$

This implies that $\tilde{\boldsymbol{\beta}} \in \mathbb{C}_\Sigma(d)$.

Assume the event $\mathcal{E}_*(\bar{\lambda}_*) \cap \mathcal{E}_*(\tilde{\lambda}_*) \cap \mathcal{E}_0(\lambda_0)$ occurs. Define $\tilde{\boldsymbol{\beta}}_v = \boldsymbol{\beta}_\tau + v(\tilde{\boldsymbol{\beta}} - \boldsymbol{\beta}_\tau)$ with $0 < v \leq 1$. For $r_{\text{loc}} = h_l/(4\iota_{0.25})$, we have $\tilde{\boldsymbol{\beta}}_v \in \mathbb{B}_\Sigma(r_{\text{loc}}) \cap \mathbb{C}_\Sigma(d)$ under the requirement (50) on ς . Based on (48), we have

$$\begin{aligned}
\bar{D}_{\tilde{\mathcal{L}}_{M,l}}^{(0)}(\tilde{\boldsymbol{\beta}}_v, \boldsymbol{\beta}_\tau) &\leq v \cdot \bar{D}_{\tilde{\mathcal{L}}_{M,l}}^{(0)}(\tilde{\boldsymbol{\beta}}, \boldsymbol{\beta}_\tau) \leq v \left(1.4 \lambda \|\tilde{\boldsymbol{\zeta}}_{\mathcal{A}}\|_1 + 0.4 d^{1/2} \lambda \|\tilde{\boldsymbol{\zeta}}\|_\Sigma \right) \\
&\leq 1.8 d^{1/2} \lambda \|\tilde{\boldsymbol{\beta}}_v - \boldsymbol{\beta}_\tau\|_\Sigma.
\end{aligned}$$

From Lemma 9, as long as $(d \log p + \gamma)/m \lesssim h_l \lesssim 1$,

$$\bar{D}_{\tilde{\mathcal{L}}_{M,l}}^{(0)}(\tilde{\boldsymbol{\beta}}_v, \boldsymbol{\beta}_\tau) \geq 0.5\kappa_* n_l f_{l,l} C_m^{-1} \|\tilde{\boldsymbol{\beta}}_v - \boldsymbol{\beta}_\tau\|_{\boldsymbol{\Sigma}}^2$$

holds with probability at least $1 - e^{-\gamma}$. Therefore,

$$\|\tilde{\boldsymbol{\beta}}_v - \boldsymbol{\beta}_\tau\|_{\boldsymbol{\Sigma}} \leq 3.6C_m(\kappa_* n_l f_{l,l})^{-1} d^{1/2} \lambda. \quad (52)$$

At follows, we choose a sufficiently large λ (or ς) satisfying (50).

According to Lemma 10,

$$\Xi_M(r_0) \lesssim \frac{r_0}{h} \sqrt{\frac{d(\log p + \gamma)}{M}}$$

holds with probability at least $1 - e^{-\gamma}$. Based on Lemmas 3–8, as long as $r_0 \lesssim h_l$ and $h_l \geq h$,

$$\begin{aligned} & \mathfrak{I}_M(r_0) + \omega_M^* + \mathfrak{H}_M(r_0) + \mathfrak{H}_{M,l}(r_0) + \mathfrak{G}_{m,l}(r_0) + \mathfrak{D}_{m,l}(r_0) \\ & \lesssim C_1 r_0^2 + C_2 h^2 + C_3 r_0^2 + [C_4(1 - L^{-1}) + C_5|h_l - h|] r_0 \\ & \quad + C_6 r_0 \sqrt{\frac{p + \gamma}{m}} + C_7 r_0 \frac{C_\varepsilon}{h_l} \sqrt{\frac{p^3}{M}} \\ & \lesssim C \left(\sqrt{\frac{p + \gamma}{m}} + \frac{C_\varepsilon}{h_l} \sqrt{\frac{p^3}{M}} + h_l + 1 - L^{-1} \right) r_0 + C' h^2 \end{aligned}$$

holds with probability at least $1 - e^{-\gamma} - \varepsilon$ (for some constants $C, C' > 0$). Therefore, after choosing a sufficiently large ς , which is of the order

$$\varsigma \asymp \max \left\{ \frac{r_0}{h} \sqrt{\frac{d(\log p + \gamma)}{M}}, d^{-1/2} \left(\sqrt{\frac{p + \gamma}{m}} + \frac{C_\varepsilon}{h_l} \sqrt{\frac{p^3}{M}} + h_l + 1 - L^{-1} \right) r_0 + d^{-1/2} h^2 \right\},$$

(50) holds with high probability. Then, conditioned on the event $\mathcal{E}_*(\bar{\lambda}_*) \cap \mathcal{E}_*(\tilde{\lambda}_*) \cap \mathcal{E}_0(\lambda_0)$, $\tilde{\boldsymbol{\beta}}_v$ satisfies (52) with probability at least $1 - 3e^{-\gamma} - \varepsilon$. Based on the above choice of ς , the right-hand side of (52) is strictly less than r_{loc} provided that $h_l > 14.4\iota_{0.25}(\kappa_* n_l f_{l,l})^{-1} C_m d^{1/2} \lambda$. This implies that $\tilde{\boldsymbol{\beta}} = \tilde{\boldsymbol{\beta}}_v \in \mathbb{B}_{\boldsymbol{\Sigma}}(r_{\text{loc}})$; and $\tilde{\boldsymbol{\beta}}$ satisfies the bound (52). \blacksquare

3.4 Proof of Theorem 4

Theorem 4 (Restatement of Theorem 4 from main text). *Assume the Conditions in Theorem 3 hold. For any $\gamma, \varepsilon > 0$ and a constant $C_\varepsilon > 0$, choose the local and global bandwidths as $h_l \asymp (C_\varepsilon^2 p^3/M)^{1/4}$ and $h \asymp \{d(\log p + \gamma)/M\}^{1/4}$. For $r_0, \lambda_* > 0$, let $r_* = d^{1/2} \lambda_*$ and $\lambda_s = 2.5(\lambda_* + \varsigma_s) > 0$ for $s \geq 2$ with*

$$\varsigma_s \asymp \max \left\{ \vartheta^s d^{-1/2} r_0 + \vartheta d^{-1/2} (r_* + h^2), \sqrt{\frac{\log p + \gamma}{M}} \right\},$$

where $\vartheta \asymp C \max \{d^3(\log p + \gamma)/M, C_\varepsilon^2 p^3/M\}^{1/4} + \sqrt{(p + \gamma)/m} + 1 - L^{-1}$. Assume $m \gtrsim p + \gamma$, $M \gtrsim \max \{d^3(\log p + \gamma), C_\varepsilon^2 p^3\}$, $r_0 \lesssim \min \{1, (C_\varepsilon^2 p^3/M)^{1/4}\}$, and $r_* \lesssim h_l \lesssim 1$.

Then, conditioned on the event $\mathcal{E}_0(r_0) \cap \mathcal{E}_*(\bar{\lambda}_*) \cap \mathcal{E}_*(\tilde{\lambda}_*)$, there exist a constant $M_0 > 0$ such that for all $M \geq M_0$, the S -step regularized estimator $\tilde{\beta}_l^{(S)}$ computed on the l -th machine satisfies

$$\|\tilde{\beta}_l^{(S)} - \beta_\tau\|_{\Sigma} \lesssim d^{1/2}\lambda_* + h^2 \quad \text{and} \quad \|\tilde{\beta}_l^{(S)} - \beta_\tau\|_1 \lesssim d\lambda_* + d^{1/2}h^2$$

with probability at least $1 - 3Se^{-\gamma} - S\varepsilon$, provided that the number of iterations satisfies $S \gtrsim \log(r_0/r_*)/\log(1/\vartheta)$.

Proof. We carry out the whole proof under the condition of the event $\mathcal{E}_0(\lambda_0) \cap \mathcal{E}_*(\bar{\lambda}_*) \cap \mathcal{E}_*(\tilde{\lambda}_*)$ for some prespecified $r_0, \lambda_* > 0$; and write $r_* = d^{1/2}\lambda_*$. Recall that in the proof of Theorem 3, the regularization parameter λ_1 needs to be sufficiently large to obtain the desired error bound for the first iterate $\tilde{\beta}^{(1)} = \tilde{\beta}_l^{(1)}$ on the l th machine. Given $\gamma > 0$, let $\lambda_1 = 2.5(\lambda_* + \varsigma_1)$, where $\varsigma_1 > 0$ is of the order

$$\varsigma_1 \asymp \max \left\{ \frac{r_0}{h} \sqrt{\frac{d(\log p + \gamma)}{M}}, d^{-1/2} \left(\sqrt{\frac{p+\gamma}{m}} + \frac{C_\varepsilon}{h_l} \sqrt{\frac{p^3}{M}} + h_l + 1 - L^{-1} \right) r_0 + d^{-1/2}h^2 \right\}.$$

As long as the bandwidth $h_l \gtrsim \max(r_0, r_*) > 0$ satisfy

$$r_* + \max \left\{ \frac{dr_0}{h} \sqrt{\frac{\log p + \gamma}{M}}, \left(\sqrt{\frac{p+\gamma}{m}} + \frac{C_\varepsilon}{h_l} \sqrt{\frac{p^3}{M}} + h_l + 1 - L^{-1} \right) r_0 + h^2 \right\} \lesssim h_l \lesssim 1,$$

the first iterate $\tilde{\beta}^{(1)}$ satisfies $\tilde{\beta}^{(1)} \in \mathbb{C}_{\Sigma}(d)$; and with probability at least $1 - 2e^{-\gamma} - \varepsilon$,

$$\begin{aligned} \|\tilde{\beta}^{(1)} - \beta_\tau\|_{\Sigma} &\leq C \left(\frac{d}{h} \sqrt{\frac{\log p + \gamma}{M}} + \sqrt{\frac{p+\gamma}{m}} + \frac{C_\varepsilon}{h_l} \sqrt{\frac{p^3}{M}} + h_l + 1 - L^{-1} \right) r_0 \\ &\quad + C' (r_* + h^2) = r_1. \end{aligned}$$

Let

$$\begin{aligned} \vartheta &= \vartheta(d, p, m, M, L, h_l, h, \gamma, C_\varepsilon) \\ &= C \left\{ \frac{d}{h} \sqrt{\frac{\log p + \gamma}{M}} + \sqrt{\frac{p+\gamma}{m}} + \frac{C_\varepsilon}{h_l} \sqrt{\frac{p^3}{M}} + h_l + 1 - L \right\} \end{aligned}$$

be the contraction factor. After setting $h_l \asymp (C_\varepsilon^2 p^3/M)^{1/4}$ and $h \asymp \{d(\log p + \gamma)/M\}^{1/4}$, we have

$$\vartheta \asymp C \left\{ d^{3/4} \left(\frac{\log p + \gamma}{M} \right)^{1/4} + \left(\frac{C_\varepsilon^2 p^3}{M} \right)^{1/4} + \sqrt{\frac{p+\gamma}{m}} + 1 - L \right\}$$

and

$$\varsigma_1 \asymp \max \left\{ \vartheta d^{-1/2} r_0, \sqrt{\frac{\log p + \gamma}{M}} \right\}.$$

Therefore, if $r_0 \lesssim \min\{1, (C_\varepsilon^2 p^3/M)^{1/4}\}$, $d^{1/2}\varsigma_1 \lesssim h_l$. To ensure the contraction factor ϑ strictly less than 1, we need $m \gtrsim p + \gamma$ and $M \gtrsim \max\{d^3(\log p + \gamma), C_\varepsilon^2 p^3\}$. Then, the one-step estimator reduces the estimation error of $\tilde{\beta}^{(0)}$ by a factor of ϑ .

For $s \geq 2$, define the events $\mathcal{E}_s(r_s) := \{\tilde{\beta}^{(s)} \in \mathbb{B}_{\Sigma}(r_s) \cap \mathbb{C}_{\Sigma}(d)\}$, where

$$r_s := \vartheta r_{s-1} + C'(r_* + h^2) = \vartheta^s r_0 + C' \frac{1 - \vartheta^s}{1 - \vartheta} (r_* + h^2). \quad (53)$$

Set $\lambda_s = 3 \zeta_s$ at iteration $s \geq 2$ with

$$\zeta_s \asymp \max \left\{ \vartheta d^{-1/2} r_{s-1}, \sqrt{\frac{\log p + \gamma}{M}} \right\}. \quad (54)$$

Then, based on (53) and (54), for $s \geq 2$,

$$\zeta_s \asymp \max \left\{ \vartheta^s d^{-1/2} r_0 + \vartheta d^{-1/2} (r_* + h^2), \sqrt{\frac{\log p + \gamma}{M}} \right\}.$$

Note that under the conditions on r_0 and (m, M) , $d^{1/2} \zeta_s \lesssim h_l$ for $s \geq 2$. According to Theorem 3, conditioned on the event $\mathcal{E}_{s-1}(r_{s-1}) \cap \mathcal{E}_*(\bar{\lambda}_*) \cap \mathcal{E}_*(\tilde{\lambda}_*)$, the s -step iterate $\tilde{\beta}^{(s)}$ satisfies $\tilde{\beta}^{(s)} \in \mathbb{C}_{\Sigma}(d)$; and with probability at least $1 - 3e^{-\gamma} - \varepsilon$,

$$\|\tilde{\beta}^{(s)} - \beta_{\tau}\|_{\Sigma} \leq \vartheta r_{s-1} + C'(r_* + h^2) = r_s = \vartheta^s r_0 + C' \frac{1 - \vartheta^s}{1 - \vartheta} (r_* + h^2).$$

Let $S = \lceil \log(r_0/r_*) / \log(1/\vartheta) \rceil$ be the smallest integer such that $\vartheta^S r_0 \leq r_*$. Under the condition $\mathcal{E}_0(\lambda_0) \cap \mathcal{E}_*(\bar{\lambda}_*) \cap \mathcal{E}_*(\tilde{\lambda}_*)$, the S th iterate $\tilde{\beta}^{(S)}$ satisfies the error bounds

$$\|\tilde{\beta}^{(S)} - \beta_{\tau}\|_{\Sigma} \lesssim d^{1/2} \lambda^* + h^2 \quad \text{and} \quad \|\tilde{\beta}^{(S)} - \beta_{\tau}\|_1 \lesssim d \lambda^* + d^{1/2} h^2$$

with probability at least $1 - 3Se^{-\gamma} - S\varepsilon$ based on the union bound over $s = 1, 2, \dots, S$. This completes the proof of the theorem. \blacksquare

References

- [1] S. Boucheron, G. Lugosi, and P. Massart. *Concentration Inequalities: A Nonasymptotic Theory of Independence*. Oxford Univ. Press, 2013.
- [2] O. Bousquet. Concentration inequalities for sub-additive functions using the entropy method. In *Stochastic Inequalities and Applications. Progress in Probability*, volume 56, pages 213–247, Birkhäuser, Basel, 2003.
- [3] Jianqing Fan, Han Liu, Qiang Sun, and Tong Zhang. I-LAMM for sparse learning: Simultaneous control of algorithmic complexity and statistical error. *The Annals of Statistics*, 46(2):814–841, 2018.
- [4] Xuming He, Xiaou Pan, Kean Ming Tan, and Wen-Xin Zhou. Smoothed quantile regression with large-scale inference. *Journal of Econometrics*, 232(2):367–388, 2023.
- [5] M. Ledoux and M. Talagrand. *Probability in Banach Spaces: Isoperimetry and Processes*. Springer-Verlag, 1991.

- [6] Yanan Song, Haohui Han, Liya Fu, and Ting Wang. Penalized weighted smoothed quantile regression for high-dimensional longitudinal data. *Statistics in Medicine*, 43(10):2007–2042, 2024.
- [7] V. Spokoiny. Parametric estimation. Finite sample theory. *The Annals of Statistics*, 40:2877–2909, 2012.
- [8] V. Spokoiny. Bernstein-von mises theorem for growing parameter dimension. *Available at arXiv:1302.3430*, 2013.