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This document contains supplementary material for “Penalized communication-efficient
algorithm for quantile regression with high-dimensional and large-scale longitudinal data”.
Section 1 provides additional definitions and technical preliminaries. Section 2 presents
supporting lemmas and their proofs. Section 3 contains detailed proofs of the main results
from the article.

1 Preliminary Definitions and Notation

We begin by establishing key notations and definitions used throughout the supplemen-
tary material. We denote the global estimating function and its derivative as

UM(β) =
1

M

M∑
i=1

U i(β), DM(β) =
1

M

M∑
i=1

Di(β),

where for 1 ≤ i ≤M ,

U i(β) = xT
i A

−1/2
i R−1i (α)A

−1/2
i

[
Kh

(
− εi(β)

)
− 1ni

· τ
]
,

Di(β) =
∂U i(β)

∂β
= xT

i A
−1/2
i R−1i (α)A

−1/2
i Λi(β)xi.

For each subset Il (with l = 1, . . . , L), we denote their local counterparts as

Um,l(β) =
1

m

∑
i∈Il

U i(β), Dm,l(β) =
1

m

∑
i∈Il

Di(β).

Let J i(β) = E
[
U i(β)

]
and H i(β) = E

[
Di(β)

]
be the expected estimating function and

its derivative for the i-th subject, respectively. We define their global averages as

JM(β) = E
[
UM(β)

]
=

1

M

M∑
i=1

J i(β), HM(β) = E
[
DM(β)

]
=

1

M

M∑
i=1

H i(β),
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and their local averages as

Jm,l(β) = E
[
Um,l(β)

]
=

1

m

∑
i∈Il

J i(β), Hm,l(β) = E
[
Dm,l(β)

]
=

1

m

∑
i∈Il

H i(β).

We further define the centered expected estimating function as

=i(β) = J i(β)− J i(βτ ), =M(β) =
1

M

M∑
i=1

=i(β).

Finally, we introduce the stochastic process as

℘M(β) = UM(β)−UM(βτ ),

which satisfies:
E
[
℘M(β)

]
= JM(β)− JM(βτ ) = =M(β).

2 Technical Lemmas

This section contains technical lemmas that support the proofs of the main theorems.

Lemma 1. Following He et al. (2023)[4], for δ ∈ (0, 1], define ιδ ≥ 0 as:

ιδ = inf
{
ι > 0 : E{〈z,u〉2I(|〈z,u〉| > ι)} ≤ δ for all u ∈ Sp−1

}
, (1)

where z = Σ−1/2x satisfying E(zzT) = Ip×p and u ∈ Sp−1 satisfying E〈u, z〉2 = 1. For
any γ > 0, 0 < r < hl/(4ι0.25) and s ≥ 0, there exists fl,l ≥ 0 such that

inf
β∈BΣ(r)

D̄
(s)

L̃M,l
(β,βτ )

κ∗C−1m ‖β − βτ‖2Σ
≥ 3nl

4
fl,l −

5nu
4r

√
pfu,lhl
m

− 3nu

√
2γµ4fu,l
hlm

− 13γhlnu
48r2m

holds with probability at least 1−e−γ, where Cm = τ(1−τ)ξmax and κ∗ = min|u|≤1 k(u) > 0.

Proof. Define the symmetrized Bregman divergence for the surrogate loss functions L̃(s)
M,l(β)

on the lth machine at s-th iteration as

D̄
(s)

L̃M,l
(β,βτ ) =

〈
∇L̃(s)

M,l(β)−∇L̃(s)
M,l(βτ ),β − βτ

〉
=
〈
∇L(s)

m,l(β)−∇L(s)
m,l(βτ ),β − βτ

〉
= D̄

(s)
Lm,l

(β,βτ ).

For εik = yik − xT
ikβτ , i = 1, . . . ,M , k = 1, . . . , ni, define the event

Eik =

{
|εik| ≤

hl
2

}
∩
{
|〈xik,β − βτ 〉|
‖β − βτ‖Σ

≤ hl
2r

}
.

Recall that BΣ(r) = {β ∈ Rp : ‖β − βτ‖Σ ≤ r} is a local neighborhood of βτ under
‖ · ‖Σ-norm. For any β ∈ BΣ(r), we have |yik−xT

ikβ| ≤ hl on Eik. Therefore, conditioned
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on the event Eik, we have

D̄
(s)
Lm,l

(β,βτ ) =

〈
1

m

∑
i∈Il

xT
i W

(s)
i xi(β − βτ ),β − βτ

〉

=
1

m

∑
i∈Il

(β − βτ )TxT
i

(
V̂

(s)

i

)−1
Λ

(s)
i xi(β − βτ )

≥ κ∗
mhl

1

τ(1− τ)ξmax

∑
i∈Il

ni∑
k=1

〈xik,β − βτ 〉2I(Eik)

=
κ∗
mhl

1

τ(1− τ)ξmax

∑
i∈Il

ni∑
k=1

〈xik,β − βτ 〉2ςikI
(
|δik,v| ≤

hl
2r

)
for any β ∈ BΣ(r), where ςik = I(|εik| ≤ hl/2) and δik,v = 〈zik,v〉 with zik = Σ−1/2xik,
v = Σ1/2ζ/‖ζ‖Σ ∈ Sp−1 and ζ = β − βτ . Note that E(δ2ik,v) = 1.

Following the prove of Lemma C.3 in He et al. (2023)[4], we have

〈zik,v〉2I
(∣∣〈zik,v〉∣∣ ≤ hl

2r

)
≥ ϕhl/(2r)

(
〈zik,v〉

)
≥ 〈zik,v〉2I

(∣∣〈zik,v〉∣∣ ≤ hl
4r

)
,

where ϕR(u) = u2I(|u| ≤ R/2) +
[
u sign(u)− R

]2
I(R/2 < |u| ≤ R) satisfying u2I(|u| ≤

R/2) ≤ ϕR(u) ≤ u2I(|u| ≤ R), ϕ0(u) = 0, and ϕsR(su) = s2ϕR(u) for any s > 0 and
R > 0. Define

D0(v) =
1

mhl

∑
i∈Il

ni∑
k=1

ςikϕhl/(2r)
(
〈zik,v〉

)
=

1

m

∑
i∈Il

ni∑
k=1

ℵik(zik,v), (2)

where ℵik(zik,v) = h−1l ςikϕhl/(2r)
(
〈zik,v〉

)
. At follows, we drive the lower bound of D0(v)

uniformly over v ∈ Sp−1.
According to Condition (A5), there exist some constants fu,l ≥ fl,l ≥ 0 such that

fl,l ≤ min|u|≤hl/2 fε|x(u) ≤ max|u|≤hl/2 fε|x(u) ≤ fu,l almost surely (over x) as long as hl is
sufficiently small. Then, we have

fl,lhl ≤ E(ςik|xik) =

∫ hl/2

−hl/2
fε|x(u)du ≤ fu,lhl (3)

almost surely (over x). For r ≤ hl/(4ι1/4) with ι1/4 defined in (1), we have

E
[
ςikϕhl/(2r)(δik,v)

]
≥ E

[
ςikδ

2
ik,vI

(
|δik,v| ≤

hl
4r

)]
≥ fl,lhl

{
1− E

[
δ2ik,vI

(
|δik,v| >

hl
4r

)]}
≥ fl,lhl

{
1− sup

u∈Sp−1

E
[
〈z,u〉2I(|〈z,u〉| ≥ ι1/4)

]}
≥ 3

4
fl,lhl. (4)

Together with (2) and (4),

inf
β∈BΣ(r)

E
[
D0(v)

]
≥ 3

4
nlfl,l. (5)
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Let Nε ⊆ Sp−1 be an ε-net of Sp−1, which is a finite set satisfying that: for any
u ∈ Sp−1, there exists u′ ∈ Nε such that ‖u− u′‖2 ≤ ε. Define

Π(v) = sup
v∈Nε

{
E
[
D0(v)

]
−D0(v)

}
= sup
v∈Nε

{
1

m

∑
i∈Il

ni∑
k=1

E
[
ℵik(zik,v)

]
− ℵik(zik,v)

}
.

Next, we derive the upper bound of Π(v).
Since 0 ≤ ϕR(u) ≤ (R/2)2 for all u ∈ R. We have 0 ≤ ℵik(zik,v) ≤ hl/(4r)

2. For
ςik ∈ {0, 1}, based on (3), we have E [ℵ2ik(zik,v)] ≤ h−1l µ4fu,l. Define the function

gi(zi,v) =
(4r)2

hlnu

ni∑
k=1

E
[
ℵik
(
〈zik,v〉

)]
− ℵik

(
〈zik,v〉

)
,

where zi = (zi1, . . . ,zini
)T. Let G be a countable set of functions from Z to R, and

assume that all functions gi (i ∈ Il) in G are measurable, square-integrable and satisfy
E
[
gi(zi,v)

]
= 0. We have supgi∈G gi ≤ 1 and

sup
gi∈G

E
[
g2i (zi,v)

]
=

(4r)4n2
i

(hlnu)2
E

{
1

ni

ni∑
k=1

E
[
ℵik
(
〈zik,v〉

)]
− ℵik

(
〈zik,v〉

)}2

≤ (4r)4

h2l
· 1

ni

ni∑
k=1

E
{
E
[
ℵik
(
〈zik,v〉

)]
− ℵik

(
〈zik,v〉

)}2

≤ fu,l(4r)
4µ4

h3l
= Chl .

Therefore, supgi∈G
∑

i∈Il E
[
g2i (zi,v)

]
≤ mChl . Since

sup
gi∈G

∑
i∈Il

gi(zi,v) =
(4r)2

hlnu
sup
v∈Nε

∑
i∈Il

ni∑
k=1

E
[
ℵik
(
〈zik,v〉

)
− ℵik

(
〈zik,v〉

)
=

(4r)2m

hlnu
sup
v∈Nε

{
E
[
D0(v)

]
−D0(v)

}
=

(4r)2m

hlnu
Π(v).

According to a refined Talagrand’s inequality in Theorem 7.3 of Bousquet (2003) [2] and
the elementary inequality ab ≤ a2/4 + b2 for all a, b ∈ R,

Π(v) ≤ E
[
Π(v)

]
+

hlnu
(4r)2m

√
2γ

[
m
fu,l(4r)4µ4

h3l
+ 2

(4r)2m

hlnu
E
[
Π(v)

]]
+
γ

3

hlnu
(4r)2m

≤ E
[
Π(v)

]
+ nu

√
2γ
µ4fu,l
hlm

+

√
4γhlnuE

[
Π(v)

]
(4r)2m

+
γhlnu

3(4r)2m

≤ E
[
Π(v)

]
+ nu

√
2γµ4fu,l
hlm

+
1

4
E
[
Π(v)

]
+
γhlnu
4r2m

+
γhlnu
48r2m

≤ 5

4
E
[
Π(v)

]
+ nu

√
2γµ4fu,l
hlm

+
13γhlnu
48r2m

(6)

holds with probability at least 1− e−γ for any γ > 0.
Now, we derive the upper bound of E

[
Π(v)

]
. Since ςik = I(|εik| ≤ hl/2) ∈ {0, 1},

we have ςikϕhl/(2r)(δik,v) = ς2ikϕhl/(2r)(δik,v) = ϕςikhl/(2r)(ςikδik,v) = ϕhl/(2r)(ςikδik,v). Write
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ℵik
(
z̄ik,v

)
= h−1l ϕhl/(2r)

(
〈z̄ik,v〉

)
with z̄ik = ςikzik. Since ϕR(·) is R-Lipschitz continu-

ous, h−1ϕhl/(2r)
(
z̄ik,v

)
is (2r)−1-Lipschitz continuous, that is, for any v, v′ ∈ Rp,

1

hl

∣∣∣ϕhl/(2r)(〈z̄ik,v〉)− ϕhl/(2r)(〈z̄ik,v′〉)∣∣∣ ≤ 1

2r

∣∣∣〈z̄ik,v〉 − 〈z̄ik,v′〉∣∣∣. (7)

Moreover, for any v such that 〈z̄ik,v〉 = 0, we have ℵik
(
z̄ik,v

)
= 0.

Suppose that Z1, . . . , Zm are m independent Rademacher random variables. Accord-
ing to Rademacher symmetrization, we have

E
[
Π(v)

]
≤ 2E

[
sup
v∈Nε

(
1

m

∑
i∈Il

Ziℵi
(
〈z̄i,v〉

))]
, (8)

where ℵi
(
〈z̄i,v〉

)
=
∑ni

k=1 ℵik
(
〈z̄ik,v〉

)
and z̄i = (z̄i1, . . . , z̄ini

)T. Define the subset
Vl ⊆ RNl (Nl =

∑
i∈Il ni) as

Vl =
{
ν = (νT

1 , . . . ,ν
T
m)T,νi = (νi1, . . . , νini

)T :

νik = 〈z̄ik,v〉, i = 1, . . . ,m, k = 1, . . . , ni, v ∈ Nε
}
.

Let φik(νik) = (2r/hl) · ϕhl/(2r)(νik). Then, φik is a convex function on its segment value
ranges and ℵik

(
〈z̄ik,v〉

)
= h−1l ϕhl/(2r)(νik) = (1/2r)φik(νik). Based on (7), we have

|φ(ν)− φ(ν ′)| ≤ |ν − ν ′| for ν, ν ′ ∈ R. According to the Talagrand’s contraction principle
(4.20) of Theorem 4.12 in Ledoux and Talagrand (1991) [5],

2E

[
sup
v∈Nε

(
1

m

∑
i∈Il

Ziℵi
(
〈z̄i,v〉

))]
≤ 1

r
E

{
sup
ν∈Vl

[
1

m

∑
i∈Il

Zi

(
ni∑
k=1

φik(νik)

)]}

≤ 1

r
E

{
sup
ν∈Vl

[
1

m

∑
i∈Il

Zi

(
ni∑
k=1

νik

)]}

=
1

r
E

{
sup
v∈Nε

[
1

m

∑
i∈Il

Zi

(
ni∑
k=1

〈z̄ik,v〉

)]}

≤ 1

r
E

∥∥∥∥∥ 1

m

∑
i∈Il

Zi

(
ni∑
k=1

ςikzik

)∥∥∥∥∥
2

. (9)

Let ~j = m−1
∑

i∈Il Zi
∑ni

k=1 ςikzik,j. Note that E
(
Zi
∑ni

k=1 ςikzik,j
)

= 0. Based on (3),

E
(
~2j
)

= E

[
1

m

∑
i∈Il

Zi

(
ni∑
k=1

ςikzik,j

)]2
=

1

m2

∑
i∈Il

E

Z2
i n

2
i

(
1

ni

ni∑
k=1

ςikzik,j

)2


≤ 1

m2

∑
i∈Il

ni

ni∑
k=1

E
[
(ςikzik,j)

2
]
≤ fu,lhln

2
u

m

for j = 1, . . . , p. Then,

E

∥∥∥∥∥ 1

m

∑
i∈Il

Zi

(
ni∑
k=1

ςikzik

)∥∥∥∥∥
2

≤

√√√√ p∑
j=1

E
(
~2j
)
≤ nu

√
pfu,lhl
m

. (10)
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Together with (6) and (8)–(10),

sup
v∈Nε

{
E
[
D0(v)

]
−D0(v)

}
≤ 5nu

4r

√
pfu,lhl
m

+ nu

√
2γµ4fu,l
hlm

+
13γhlnu
48r2m

(11)

holds with probability at least 1− e−γ. Since for any v ∈ Sp−1, there exists v′ ∈ Nε such
that

sup
v∈Sp−1

{
E
[
D0(v)

]
−D0(v)

}
= sup
v∈Sp−1, v′∈Nε

{
E
[
D0(v

′)
]
−D0(v

′) + E
[
D0(v)

]
− E

[
D0(v

′)
]

+D0(v
′)−D0(v)

}
≤ sup
v′∈Nε

{
E
[
D0(v

′)
]
−D0(v

′)
}

(12)

as ε→ 0. Together with (5), (11) and (12),

inf
v∈Sp−1

D0(v) = inf
v∈Sp−1

{
D0(v)− E

[
D0(v)

]
+ E

[
D0(v)

]}
≥ inf
v∈Sp−1

E
[
D0(v)

]
+ inf
v∈Sp−1

{
D0(v)− E

[
D0(v)

]}
= inf
v∈Sp−1

E
[
D0(v)

]
− sup
v∈Sp−1

{
−D0(v) + E

[
D0(v)

]}
≥ 3nl

4
fl,l −

5nu
4r

√
pfu,lhl
m

− nu
√

2γµ4fu,l
hlm

− 13γhlnu
48r2m

holds with probability at least 1− e−γ. Consequently,

inf
β∈BΣ(r)

D̄
(s)
Lm,l

(β,βτ ) ≥
κ∗‖ζ‖2Σ

τ(1− τ)ξmax

inf
v∈Sp−1

D0(v)

≥ κ∗‖ζ‖2Σ
τ(1− τ)ξmax

(
3nl
4
fl,l −

5nu
4r

√
pfu,lhl
m

− 3nu

√
2γµ4fu,l
hlm

− 13γhlnu
48r2m

)
.

�

Lemma 2. Given an estimator β̂ of β, denote R̂i as the estimator of Ri = Ri(α) based

on β̂. Let τ̄ = max(1 − τ, τ). Under Conditions (A1)–(A4), for any ε > 0, there exist
constants Cε,M0 > 0 such that for every M ≥M0, the following hold simultaneously with
probability at least 1− ε:

(i) ∥∥∥ÛM(β)−UM(β)
∥∥∥
∞
≤ C0Cε

√
p

M
,

where C0 = (1− τ̄)−1nuB is independent of M and p.

(ii)

‖SM(β)‖2 =
∥∥∥Σ−1/2 {ÛM(β)−UM(β)

}∥∥∥
2
≤ ξ−1/2p C0Cε

p√
M
,

where ξp > 0 is the smallest eigenvalue of Σ = E(xxT).
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Proof. Under Conditions (A1)–(A4), with probability at least 1− ε:

UM =
∥∥∥ÛM(β)−UM(β)

∥∥∥
∞

= max
1≤j≤p

∣∣∣∣∣ 1

M

M∑
i=1

xT
i,jA

−1/2
i

(
R̂
−1
i −R−1i

)
A
−1/2
i

[
Kh

(
− εi(β)

)
− 1ni

· τ
]∣∣∣∣∣

≤ max
1≤j≤p

1

M

M∑
i=1

‖xi,j‖2 ·
∥∥∥A−1/2i

(
R̂
−1
i −R−1i

)
A
−1/2
i

∥∥∥
2
·
∥∥∥∥K (

−yi − xiβ
h

)
− 1ni

· τ
∥∥∥∥
2

≤ 1

τ(1− τ)
· 1

M

M∑
i=1

‖xi,j‖2 ·
∥∥∥R̂−1i −R−1i ∥∥∥

2
·
√
nu max

i,k

∣∣∣∣K (−yik − xT
ikβ

h

)
− τ
∣∣∣∣

≤ 1

τ(1− τ)
· 1

M

M∑
i=1

√
nu max

i,k,j
|xik,j| · Cε

√
p

M
·
√
nu · τ̄

≤ (1− τ̄)−1nuBCε

√
p

M
= C0Cε

√
p

M
,

where the identity τ−1(1− τ)−1τ̄ = (1− τ̄)−1 follows from the definition of τ̄ . With the
same probability, we have

‖SM(β)‖2 =
∥∥∥Σ−1/2 (ÛM(β)−UM(β)

)∥∥∥
2
≤ ξ−1/2p

∥∥∥ÛM(β)−UM(β)
∥∥∥
2

≤ ξ−1/2p

√
p
∥∥∥ÛM(β)−UM(β)

∥∥∥
∞
≤ ξ−1/2p C0Cε

√
p2

M
.

�

Lemma 3. Assume that Conditions (A2)–(A7) hold. For any γ > 0, as long as h &√
(p+ γ)/M ,

sup
β∈BΣ(r)

∥∥∆M(β)
∥∥
2

= sup
β∈BΣ(r)

∥∥∥Σ−1/2{UM(β)−UM(βτ )−HM(βτ )(β − βτ )
}∥∥∥

2

. C1r

(√
p+ γ

Mh
+ r

)
holds with probability at least 1−e−γ, where C1 > 0 is a constant depending on (τ, L0, nu, fu,
κu, a1, µ3, ξmin).

Proof. Similar to the proof of Proposition S5 in Song et al. (2024) [6], we just need to
derive the upper bound of

sup
β∈BΣ(r)

∥∥∥∆M(β)
∥∥∥
2
≤ sup
β∈BΣ(r)

∥∥∥E[∆M(β)
]∥∥∥

2
+ sup
β∈BΣ(r)

∥∥∥∆M(β)− E
[
∆M(β)

]∥∥∥
2
. (13)

According to the mean-value theorem of vector-valued functions, for ζ = β − βτ with
β ∈ BΣ(r),

E
[
∆M(β)

]
= Σ−1/2

〈∫ 1

0

HM

(
βτ + tζ

)
dt, ζ

〉
−Σ−1/2HM(βτ ) · ζ

=

〈
Σ−1/2

∫ 1

0

HM

(
βτ + tζ

)
dt · Σ−1/2 −Σ−1/2HM(βτ ) ·Σ−1/2, Σ1/2ζ

〉
.

(14)
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Denote zi = xiΣ
−1/2 and δ = Σ1/2ζ, we have

Σ−1/2HM(βτ ) ·Σ−1/2 =
1

M

M∑
i=1

E
{
zTi A

−1/2
i R−1i A

−1/2
i Λi(βτ )zi

}
. (15)

Since for zik (1 ≤ i ≤M, 1 ≤ k ≤ ni),

E
{
zikΛik(βτ + tζ)zTik

}
=

1

h
E

{
k

(
zTikδ · t− εik

h

)
· zikzTik

}
= E

[∫ +∞

−∞
k(u)fε|x

(
zTδ · t− hu

)
du · zzT

]
, (16)

where Λik(·) is the kth diagonal element of Λi(·) and z = Σ−1/2x. According to (15) and
(16), For δ which satisfies ‖δ‖2 ≤ r,∥∥∥∥Σ−1/2HM(βτ + tζ) ·Σ−1/2 −Σ−1/2HM(βτ ) ·Σ−1/2

∥∥∥∥
2

=

∥∥∥∥∥ 1

M

M∑
i=1

E
{
zTi A

−1/2
i R−1i A

−1/2
i

[
Λi(βτ + tζ)−Λi(βτ )

]
zi

}∥∥∥∥∥
2

≤ 1

τ(1− τ)ξmin

∥∥∥∥∥ 1

M

M∑
i=1

ni∑
k=1

E
{
zik
[
Λik(βτ + tζ)− Λik(βτ )

]
zTik

}∥∥∥∥∥
2

≤ nu
τ(1− τ)ξmin

E

∥∥∥∥∫ +∞

−∞
k(u)

[
fε|x
(
zTδ · t− hu

)
− fε|x(−hu)

]
du · zzT

∥∥∥∥
2

≤ nuL0t

Cr
sup
‖u‖2=1

{
E
(
〈z,u〉2|〈z,v〉|

)}
· ‖δ‖2

≤ nuµ3L0rt

Cr
, (17)

where Cr = τ(1− τ)ξmin. Together with (14) and (17),

sup
β∈BΣ(r)

∥∥∥E[∆M(β)
]∥∥∥

2
≤ 0.5 C−1r L0nuµ3r

2. (18)

At follows, we derive the upper bound of supβ∈BΣ(r)

∥∥∆M(β)− E
[
∆M(β)

]∥∥
2
. Define

the centralized gradient process

ΨM(β) = Σ−1/2
[
UM(β)− JM(β)

]
such that ∆M(β)− E

[
∆M(β)

]
= ΨM(β)−ΨM(βτ ). For δ which satisfies ‖δ‖2 ≤ r,

sup
β∈BΣ(r)

∥∥∥∆M(β)− E
[
∆M(β)

]∥∥∥
2

= sup
β∈BΣ(r)

∥∥∥ΨM(β)−ΨM(βτ )
∥∥∥
2

= sup
‖δ‖2≤r

∥∥∥ΨM

(
βτ + Σ−1/2δ

)
−ΨM(βτ )

∥∥∥
2
.

Let ∆M,0(δ) = ΨM

(
βτ + Σ−1/2δ

)
− ΨM(βτ ), then ∆M,0(0) = 0 and E

[
∆M,0(δ)

]
= 0.

We now drive the upper bound of sup‖δ‖2≤r ∆M,0(δ) based on Theorem A.3 in Spokoiny
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(2012) [7]. Take the first-order derivative of ∆M,0(δ) with respect to δ, we have

∇∆M,0(δ) = Σ−1/2
[
DM

(
βτ + Σ−1/2δ

)
−HM

(
βτ + Σ−1/2δ

)]
·Σ−1/2

≤ 1

Cr

1

M

M∑
i=1

{
zTi Λi

(
βτ + Σ−1/2δ

)
zi − E

[
zTi Λi

(
βτ + Σ−1/2δ

)
zi
]}

=
1

Cr

1

M

M∑
i=1

ni∑
k=1

{
zikΛik

(
βτ + Σ−1/2δ

)
zTik − E

[
zikΛik

(
βτ + Σ−1/2δ

)
zTik
]}

=
1

Cr

1

M

M∑
i=1

ni∑
k=1

{
kh
(
zTikδ − εik

)
zikz

T
ik − E

[
kh
(
zTikδ − εik

)
zikz

T
ik

]}
,

where kh(·) = (1/h)k(·). Write kik,δ = kh(z
T
ikδ − εik), then 0 ≤ kik,δ ≤ κu/h. According

to the proof of Proposition S5 in the supplementary of Song et al. (2024) [6] and the
elementary inequality |eu − 1− u| ≤ u2e|u|/2, for any u,u′ ∈ Sp−1 and λ ∈ R,

E
[

exp
{
λ
√
M〈u,∇∆M,0(δ)u′〉/a21

}]
≤ E

[
exp

{
λ
√
M

a21Cr

〈
u,

1

M

M∑
i=1

ni∑
k=1

{
kik,δzikz

T
ik − E

(
kik,δzikz

T
ik

)}
u′
〉}]

=
M∏
i=1

E

[
exp

{
λ
√
M

a21CrM

ni∑
k=1

〈
u,
{
kik,δzikz

T
ik − E

(
kik,δzikz

T
ik

)}
u′
〉}]

≤
M∏
i=1

{
1 + E

[
λ
√
M

a21CrM

ni∑
k=1

〈
u,
{
kik,δzikz

T
ik − E

(
kik,δzikz

T
ik

)}
u′
〉]

+
λ2M

2a41C
2
rM

2
E

[( ni∑
k=1

〈
u,
{
kik,δzikz

T
ik − E

(
kik,δzikz

T
ik

)}
u′
〉)2

× exp

{∣∣∣∣ λ
√
M

a21CrM

ni∑
k=1

〈
u,
{
kik,δzikz

T
ik − E

(
kik,δzikz

T
ik

)}
u′
〉∣∣∣∣}

]}

≤
M∏
i=1

{
1 +

λ2Mn2
i

2a41C
2
rM

2
E

[
1

ni

ni∑
k=1

{
kik,δ〈zik,u〉〈zik,u′〉 − E

(
kik,δ〈zik,u〉〈zik,u′〉

)}2

× exp

{
κu|λ|

√
Mnu

ha21CrM

1

ni

ni∑
k=1

∣∣〈zik,u〉〈zik,u′〉∣∣} exp

{
fu|λ|

√
Mnu

a21CrM

∣∣∣E[〈zik,u〉〈zik,u′〉]∣∣∣}]}

≤
M∏
i=1

{
1 +

λ2Mn2
u

2a41C
2
rM

2
E

[
1

ni

ni∑
k=1

{
kik,δ〈zik,u〉〈zik,u′〉 − E

(
kik,δ〈zik,u〉〈zik,u′〉

)}2

× exp

{
κu|λ|

√
Mnu

ha21CrM

∣∣〈zik′ ,u〉〈zik′ ,u′〉∣∣} exp

{
fu|λ|

√
Mnu

a21CrM

}]}
,

where k′ = argmax1≤k≤ni

∣∣〈zik,u〉〈zik,u′〉∣∣. Let |λ| ≤ min
{
h/(4nuκu

√
M), 1/(nufu

√
M)
}
CrM ,

9



then κu|λ|
√
Mnu/(hCrM) ≤ 1/4 and fu|λ|

√
Mnu/(a

2
1CrM) ≤ 1. Consequently,

E
[

exp
{
λ
√
M〈u,∇∆M,0(δ)u′〉/a21

}]
≤

M∏
i=1

{
1 +

λ2Mn2
ue

2a41C
2
rM

2
E

[
1

ni

ni∑
k=1

{
kik,δ〈zik,u〉〈zik,u′〉 − E

(
kik,δ〈zik,u〉〈zik,u′〉

)}2

× exp
{∣∣〈zik′ ,u〉〈zik′ ,u′〉∣∣/(4a21)}]

}

≤
M∏
i=1

{
1 +

λ2Mn2
ue

a41C
2
rM

2
E

[
1

ni

ni∑
k=1

{(
kik,δ〈zik,u〉〈zik,u′〉

)2
+
[
E
(
kik,δ〈zik,u〉〈zik,u′〉

)]2}
× exp

{∣∣〈zik′ ,u〉〈zik′ ,u′〉∣∣/(4a21)}]
}

=
M∏
i=1

{
1 +

λ2Mn2
ue

a41C
2
rM

2
E

{
1

ni

ni∑
k=1

(
kik,δ〈zik,u〉〈zik,u′〉

)2
e|〈zik′ ,u〉〈zik′ ,u

′〉|/(4a21)
}

+
λ2Mn2

ue

a41C
2
rM

2

{
E
(
kik,δ〈zik,u〉〈zik,u′〉

)}2

E
[
e|〈zik′ ,u〉〈zik′ ,u

′〉|/(4a21)
]}

≤
M∏
i=1

{
1 +

λ2Mn2
ue

a41C
2
rM

2

1

ni

ni∑
k=1

E
{(
kik,δ〈zik,u〉〈zik,u′〉

)2
e|〈zik′ ,u〉〈zik′ ,u

′〉|/(4a21)
}

+
λ2Mn2

ue

a41C
2
rM

2
fuE

[
e〈zik′ ,u〉

2/(2·4a21)+〈zik′ ,u′〉2/(2·4a21)
]}

≤
M∏
i=1

{
1 +

λ2Mn2
ueκu

a41C
2
rM

2h
E
{(
〈zik′ ,u〉〈zik′ ,u′〉

)2
e|〈zik′ ,u〉〈zik′ ,u

′〉|/(4a21)
}

+ 3
λ2Mn2

uefu
a41C

2
rM

2

}

≤
M∏
i=1

{
1 +

λ2Mn2
ue

a41C
2
rM

2

κu
h

[
E〈zik′ ,u〉4e〈zik′ ,u〉

2/(4a21)
]1/2[

E〈zik′ ,u′〉4e〈zik′ ,u
′〉2/(4a21)

]1/2
+ 3

λ2Mn2
uefu

a41C
2
rM

2

}
≤

M∏
i=1

{
1 + 8

λ2Mn2
ueκu

a41C
2
rM

2h
16a41 + 3

λ2Mn2
uefu

a41C
2
rM

2

}
≤

M∏
i=1

{
1 +

C2Mn2
uλ

2

2C2
rM

2h

}

≤
M∏
i=1

exp

{
C2n2

uλ
2

2C2
rMh

}
= exp

{
C2n2

uλ
2

2C2
rh

}
,

where C > 0 depends on (fu, κu).
Let v0 = CnuC

−1
r h−1/2 and g = min

{
h/(4nuκu), 1/(nufu)

}
Cr
√
M/2. After applying

Theorem A.3 of Spokoiny (2013) [8] to the process
{√

M∆M,0(δ)/a21, δ ∈ Bp(r)} with
Bp(r) = {δ ∈ Rp : ‖δ‖2 ≤ r

}
, we have

sup
β∈BΣ(r)

∥∥∥∆M(β)− E
[
∆M(β)

]∥∥∥
2
≤ 6 C−1r Cnura

2
1

√
4p+ 2γ

Mh
(19)

with probability at least 1 − e−γ for any γ ≥ 0 as long as h ≥ 8 C−1r κunu
√

(2p+ γ)/M
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and M ≥ 4 C−2r f 2
un

2
u(2p+ γ). Together with (13), (18) and (19), for any γ ≥ 0,

sup
β∈BΣ(r)

∥∥∥∆M(β)
∥∥∥
2
≤ 0.5 C−1r nuµ3L0r

2 + 6 C−1r Cnua
2
1r

√
4p+ 2γ

Mh

holds with probability at least 1− e−γ.
�

Lemma 4. Assume that Conditions (A2)–(A7) hold. For any γ > 0, as long as M &
p+ γ, ∥∥TM(βτ )

∥∥
2

=
∥∥∥Σ−1/2UM(βτ )

∥∥∥
2
. C2

(√
p+ γ

M
+ h2

)
holds with probability at least 1−e−γ, where C2 > 0 is a constant depending on (τ, L0, nu, κ2,
a1, h, ξmin).

Proof. Assume that xik (1 ≤ i ≤ M, 1 ≤ k ≤ ni) satisfies Condition (A7). Let $ik =
K
(
− (yik − xT

ikβτ )/h
)
− τ and $i = ($i1, . . . , $ini

)T = K
(
− (yi − xiβτ )/h

)
− 1ni

· τ .

Denote Ωi = A
−1/2
i R−1i A

−1/2
i . According to He et al. (2023)[4], for any ε ∈ (0, 1), there

exists an ε-net Nε of the unit sphere Sp−1 with cardinality |Nε| ≤ (1 + 2/ε)p such that

∥∥∥Σ−1/2{UM(βτ )− E
[
UM(βτ )

]}∥∥∥
2

=

∥∥∥∥∥ 1

M

M∑
i=1

{
zTi Ωi$i − E

[
zTi Ωi$i

]}∥∥∥∥∥
2

≤ (1− ε)−1 max
u∈Nε

〈
u,

1

M

M∑
i=1

{
zTi Ωi$i − E

[
zTi Ωi$i

]}〉
.

Let Xu,i = uTzTi Ωi$i for each direction u ∈ Nε, we have

M∑
i=1

E
(
Xu,i

)2
=

M∑
i=1

E
(
uTzTi Ωi$i

)2 ≤ 1

C2
r

M∑
i=1

E
(
uTzTi $i

)2
≤ 1

C2
r

M∑
i=1

E

(
ni∑
k=1

〈u, zik$ik〉

)2

≤ n2
u

C2
r

M∑
i=1

E
[
〈u, z〉2$2

]
,

where $ = K(−ε/h) − τ with ε the random variable of εik = yik − xT
ikβτ . At follows,

we derive the upper bound for E($2|x), which involves calculating E
[
K2(−ε/h)|x

]
and

E
[
K(−ε/h)|x

]
. Note that

E

[
K2

(
−ε
h

) ∣∣∣∣x] =

∫ +∞

−∞
K2

(
−t
h

)
fε|x(t)dt = h

∫ +∞

−∞
K2(u)fε|x (−uh) du

= −
∫ +∞

−∞
K2(u)dFε|x (−uh) = 2

∫ +∞

−∞
K(u)k(u)Fε|x (−uh) du. (20)

Let

0 < uk =

∫ +∞

−∞
uk(u)K(u)du =

∫ +∞

0

k(u)(1− k(u))du ≤ κ1. (21)

11



Since Fε|x(0) = P (ε ≤ 0|x) = τ and

Fε|x(−uh) = Fε|x(0) +

∫ −uh
0

fε|x(t)dt

= τ + (−uh) fε|x(0) +

∫ −uh
0

[
fε|x(t)− fε|x(0)

]
dt. (22)

Based on (20)–(22) and Conditions (A5) and (A6), we have

E

[
K2
(
− ε
h

) ∣∣∣∣x] = 2τ

∫ +∞

−∞
k(u)K(u)du− 2hfε|x(0)

∫ +∞

−∞
uk(u)K(u)du

+ 2

∫ +∞

−∞
k(u)K(u)

∫ −uh
0

[fε|x(t)− fε|x(0)]dtdu

≤ τ − 2hfε|x(0)uk + L0h
2

∫ +∞

−∞
u2k(u)K(u)du

≤ τ + L0κ2h
2. (23)

Similarly to (22),

E

[
K

(
−ε
h

) ∣∣∣∣x] = τ +

∫ +∞

−∞
k(u)

∫ −uh
0

[
fε|x(t)− fε|x(0)

]
dtdu.

Based on the Lipschitz condition of fε|x(·),∣∣∣∣E [K (−εh
) ∣∣∣∣x]− τ ∣∣∣∣ ≤ 0.5L0κ2h

2.

Therefore,

τ − 0.5L0κ2h
2 ≤ E

[
K

(
−ε
h

) ∣∣∣∣x] ≤ τ + 0.5L0κ2h
2. (24)

Together with (23) and (24),

E($2|x) = E

[
K2

(
−ε
h

) ∣∣∣∣x]− 2τE

[
K

(
−ε
h

) ∣∣∣∣x]+ τ 2

≤ τ + L0κ2h
2 − 2τ

(
τ − 0.5L0κ2h

2
)

+ τ 2

= τ(1− τ) + (τ + 1)L0κ2h
2 = C2

τ .

Therefore,
∑M

i=1E
(
Xu,i

)2 ≤ C−2r Mn2
uC

2
τ . Since |$| ≤ max(1 − τ, τ) = τ̄ . Based on

Condition (A7), for ι ≥ 3, we have P (|xj| ≥ a0σ
1/2
jj γ) ≤ e−γ, where a0 is a constant

depending on a1. Therefore, for all γ ≥ 0,

E|$xj|ι = Ex
[
|xj|ιE

(
|$|ι|x

)]
≤ τ̄ ι−2Ex

[
|xj|ιE($2|x)

]
≤ τ̄ ι−2C2

τa
ι
0σ

ι/2
jj

∫ +∞

0

ιγι−1P (|xj| ≥ a0σ
1/2
jj γ)dγ

≤ τ̄ ι−2C2
τa

ι
0σ

ι/2
jj ι

∫ +∞

0

γι−1e−γdγ = τ̄ ι−2C2
τa

ι
0σ

ι/2
jj ι!

≤ ι!

2
C2
τa

2
0σjj

[
2τ̄ a0σ

1/2
jj

]ι−2
.
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Thus, E
(∣∣〈u, zik$ik〉

∣∣ι) ≤ (ι!/2)C2
τa

2
0(2τ̄ a0)

ι−2 for ι ≥ 3. This implies that for all integers
ι ≥ 3,

M∑
i=1

E
(
|Xu,i|ι

)
=

M∑
i=1

E
(∣∣uTzTi Ωi$i

∣∣ι) ≤ 1

Cι
r

M∑
i=1

E

(∣∣∣∣ ni∑
k=1

〈u, zik$ik〉
∣∣∣∣ι)

≤ ι!

2
MC−2r n2

uC
2
τa

2
0(2τ̄ a0nuC

−1
r )ι−2.

According to the Bernstein’s inequality in Theorem 2.10 of Boucheron (2013) [1], for all
γ > 0,

max
u∈Nε

〈
u,

1

M

M∑
i=1

{
zTi Ωi$i − E

[
zTi Ωi$i

]}〉
≤ C−1r a0nu

[
Cτ

√
2γ

M
+ τ̄

2γ

M

]

holds with probability at least 1− e−γ. Applying a union bound over all vectors u ∈ Nε,∥∥∥Σ−1/2{UM(βτ )− E
[
UM(βτ )

]}∥∥∥
2
≤ a0nu

(1− ε)Cr

[
Cτ

√
2γ

M
+ τ̄

2γ

M

]

holds with probability at least 1−elog(1+2/ε)p−γ. After taking ε = 2/(e2−1) and replacing
γ by 2p+ γ, we have∥∥∥Σ−1/2{UM(βτ )− E

[
UM(βτ )

]}∥∥∥
2
≤ 1.46 C−1r a0nu

[
Cτ

√
4p+ 2γ

M
+ τ̄

4p+ 2γ

M

]
(25)

with probability at least1− e−γ. Also because

ω∗M =
∥∥∥Σ−1/2E[UM(βτ )

]∥∥∥
2

=

∥∥∥∥∥ 1

M

M∑
i=1

E
[
zTi Ωi$i

]∥∥∥∥∥
2

≤ sup
u∈Sp−1

∣∣∣∣∣ 1

M

M∑
i=1

nu
Cr
E
{[
K(−ε/h)− τ

]〈
z,u

〉}∣∣∣∣∣
≤ nu
Cr

sup
u∈Sp−1

{
Ez

∣∣∣∣∫ +∞

−∞
k(u)

∫ −hu
0

[
fε|x(t)− fε|x(0)

]
dt · du · zTu

∣∣∣∣}
≤ 0.5 C−1r nuL0κ2h

2. (26)

Together with (25) and (26), as long as M & p+ γ,∥∥∥Σ−1/2UM(βτ )
∥∥∥
2
≤
∥∥∥Σ−1/2{UM(βτ )− E

[
UM(βτ )

]}∥∥∥
2

+
∥∥∥Σ−1/2E[UM(βτ )

]∥∥∥
2

≤ 1.46 C−1r a0nu

[
Cτ

√
4p+ 2γ

M
+ τ̄

4p+ 2γ

M

]
+ 0.5 C−1r nuL0κ2h

2

. C2

(√
p+ γ

M
+ h2

)

holds with probability at least 1 − e−γ, where C2 > 0 is a constant depending on
(τ, L0, nu, κ2, a1, h, ξmin). This completes the proof. �
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Lemma 5. Under Conditions (A2)–(A6),

sup
β∈BΣ(r)

∥∥FM(β)
∥∥
2

= sup
β∈BΣ(r)

∥∥∥Σ−1/2[HM(β)−HM(βτ )
]
(β − βτ )

∥∥∥
2
≤ C3r

2,

where C3 > 0 is a constant depending only on (τ, L0, nu, µ3, ξmin).

Proof. For ζ = β − βτ , δ = Σ1/2ζ, and v = δ/‖δ‖2, we have

sup
β∈BΣ(r)

∥∥∥Σ−1/2[HM(β)−HM(βτ )
]
ζ
∥∥∥
2

= sup
β∈BΣ(r)

∥∥∥∥∥ 1

M

M∑
i=1

E
{

Σ−1/2xT
i Ωi

[
Λi(β)−Λi(βτ )

]
xiΣ

−1/2Σ1/2ζ
}∥∥∥∥∥

2

= sup
δ∈Bp(r)

sup
u∈Sp−1

∣∣∣∣∣ 1

M

M∑
i=1

E

[
uTzTi Ωidiag

(
1

h

{
k

(
zTikδ − εik

h

)
− k

(
−εik
h

)}ni

k=1

)
ziδ

]∣∣∣∣∣
≤ sup
δ∈Bp(r)

sup
u∈Sp−1

1

M

M∑
i=1

1

Cr

ni∑
k=1

E

∣∣∣∣uTzik

∫ ∞
−∞

k(u)
[
fε|x(zTikδ − hu)− fε|x(−hu)

]
du · zTikδ

∣∣∣∣
≤ nuL0

Cr
sup

δ∈Bp(r)

sup
u,v∈Sp−1

E
(
|〈z,u〉|〈z,v〉2

)
· ‖δ‖22 (by Conditions (A5) and (A6))

≤ nuL0

Cr
µ3 · r2 = C3r

2.

�

Lemma 6. Under Conditions (A2)–(A6),

sup
β∈BΣ(r)

‖FM,l(β)‖2 = sup
β∈BΣ(r)

∥∥∥Σ−1/2 [HM(β)−Hm,l(β)] (β − βτ )
∥∥∥
2

≤
[
C4(1− L−1) + C5|hl − h|

]
r,

where C4 > 0 is a constant depending only on (τ, nu, fu, ξmin), C5 > 0 is a constant
depending only on (τ, nu, L0, κ1, ξmin).

Proof. Define H i,h(β) = E
[
xT
i ΩiΛi(β)xi

]
, where the kth diagonal element of Λi(β) is

k
(
(zTikδ − εik)/h

)
/h. Then, we have the decomposition:∥∥∥Σ−1/2[HM(β)−Hm,l(β)

]
(β − βτ )

∥∥∥
2

≤

∥∥∥∥∥Σ−1/2
[

1

M

M∑
i=1

H i,h(β)− 1

m

∑
i∈Il

H i,h(β)

]
(β − βτ )

∥∥∥∥∥
2

+

∥∥∥∥∥Σ−1/2 1

m

∑
i∈Il

[
H i,h(β)−H i,hl(β)

]
(β − βτ )

∥∥∥∥∥
2

. (27)

Define the coefficients ai,l = 1/M − 1/m for i ∈ Il and ai,l = 1/M for i /∈ Il. Then,∑M
i=1 ai,l = 0 and

∑M
i=1 |ai,l| =

∑
i∈Il(1/m− 1/M) +

∑
i/∈Il 1/M = 2(1−m/M). Thus,

1

M

M∑
i=1

H i,h(β)− 1

m

∑
i∈Il

H i,h(β) =
M∑
i=1

ai,lH i,h(β). (28)
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Next, we bound the norm of each term in (27). First,

sup
β∈BΣ(r)

∥∥∥Σ−1/2H i,h(β)(β − βτ )
∥∥∥
2

= sup
δ∈Bp(r)

sup
u∈Sp−1

∣∣∣∣E [uTzTi Ωidiag

({
1

h
k

(
zTikδ − εik

h

)}ni

k=1

)
zi

]
δ

∣∣∣∣
≤ sup
δ∈Bp(r)

sup
u∈Sp−1

∣∣∣∣∣ 1

Cr

ni∑
k=1

E

[
uTzik

∫ ∞
−∞

k(u)fε|x(zTikδ − hu) du · zTikδ
]∣∣∣∣∣

≤ funu
Cr

sup
δ∈Bp(r)

sup
u,v∈Sp−1

E (|〈z,u〉〈z,v〉|) · ‖δ‖2 ≤
funur

Cr
. (29)

From (28) and (29), we obtain:

sup
β∈BΣ(r)

∥∥∥∥∥Σ−1/2
[

1

M

M∑
i=1

H i,h(β)− 1

m

∑
i∈Il

H i,h(β)

]
(β − βτ )

∥∥∥∥∥
2

≤
M∑
i=1

|ai,l| sup
β∈BΣ(r)

∥∥∥Σ−1/2H i,h(β)(β − βτ )
∥∥∥
2

≤ 2
(

1− m

M

) funur
Cr

= C4

(
1− m

M

)
r, (30)

where C4 = 2 C−1r funu.
For the second term in (27), we have:

sup
β∈BΣ(r)

∥∥∥∥∥Σ−1/2 1

m

∑
i∈Il

[
H i,h(β)−H i,hl(β)

]
(β − βτ )

∥∥∥∥∥
2

≤ sup
δ∈Bp(r)

sup
u∈Sp−1

∣∣∣∣∣ 1

m

∑
i∈Il

1

Cr

ni∑
k=1

E

[
uTzik

∫ ∞
−∞

k(u)
[
fε|x(zTikδ − hu)

− fε|x(zTikδ − hlu)
]
du · zTikδ

]∣∣∣∣∣
≤ nu
Cr
L0

∫ ∞
−∞
|u|k(u) du · |hl − h| sup

δ∈Bp(r)

sup
u,v∈Sp−1

E
(
|〈z,u〉〈z,v〉|

)
· ‖δ‖2

≤ C−1r nuL0κ1|hl − h|r = C5 |hl − h|r, (31)

where C5 = C−1r nuL0κ1. Combining (30) and (31), we conclude that

sup
β∈BΣ(r)

∥∥∥Σ−1/2[HM(β)−Hm,l(β)
]
(β − βτ )

∥∥∥
2
≤
[
C4(1− L−1) + C5|hl − h|

]
r.

�

Lemma 7. Assume that Conditions (A2)–(A7) hold. For any γ > 0, as long as m & p+γ,

sup
β∈BΣ(r)

∥∥Hm,l(β)
∥∥
2

= sup
β∈BΣ(r)

∥∥∥Σ−1/2[Dm,l(β)−Hm,l(β)
]
(β − βτ )

∥∥∥
2
. C6 r

√
p+ γ

m

holds with probability at least 1−e−γ, where C6 > 0 is a constant depending on (τ, nu, fu,
a1, ξmin).
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Proof. The proof is similar to that of Lemma 4. For any ε ∈ (0, 1), consider an ε-net Nε
of the unit sphere Sp−1 with cardinality |Nε| ≤ (1 + 2/ε)p. Then,∥∥∥Σ−1/2[Dm,l(β)−Hm,l(β)

]
(β − βτ )

∥∥∥
2

=

∥∥∥∥∥ 1

m

∑
i∈Il

{
zTi ΩiΛi(β)zi − E

[
zTi ΩiΛi(β)zi

] }
δ

∥∥∥∥∥
2

≤ (1− ε)−1 max
u∈Nε

〈
u,

1

m

∑
i∈Il

{
zTi ΩiΛi(β)zi − E

[
zTi ΩiΛi(β)zi

] }
δ

〉
.

From Condition (A7), P (|zj| ≥ a0γ) ≤ e−γ, where zj is the jth component of z and a0 is
a constant depending on a1. Thus, for any integer ι ≥ 2,

E (|zj|ι) = aι0

∫ ∞
0

ιγι−1P (|zj| ≥ a0γ) dγ ≤ aι0

∫ ∞
0

ιγι−1e−γ dγ = aι0ι!,

which implies that for any u ∈ Nε, E (|〈z,u〉|ι) ≤ aι0ι!.
Define Xu,i = uTzTi ΩiΛi(β)ziδ for each direction u ∈ Nε. We bound the second

moment:

max
u∈Nε

∑
i∈Il

E (Xu,i)2 ≤ sup
δ∈Bp(r)

max
u∈Nε

∑
i∈Il

E
[
uTzTi ΩiΛi(β)ziδ

]2
≤ 1

C2
r

sup
δ∈Bp(r)

max
u∈Nε

∑
i∈Il

E
[
uTzTi Λi(β)ziδ

]2
≤ 1

C2
r

∑
i∈Il

sup
δ∈Bp(r)

max
u∈Nε

E

[
ni∑
k=1

uTzik

∫ ∞
−∞

k(u)fε|x(zTikδ − hlu) du · zTikδ

]2

≤ mf 2
un

2
u

C2
r

sup
δ∈Bp(r)

max
u,v∈Nε

E
(
〈z,u〉〈z,v〉

)2 · ‖δ‖22
≤ mf 2

un
2
ur

2

C2
r

· 4! a40.

For ι ≥ 3, the ιth moment is bounded by:

max
u∈Nε

∑
i∈Il

E (Xu,i)ι ≤ sup
δ∈Bp(r)

max
u∈Nε

∑
i∈Il

E
[
uTzTi ΩiΛi(β)ziδ

]ι
≤ 1

Cι
r

∑
i∈Il

sup
δ∈Bp(r)

max
u∈Nε

E

[
ni∑
k=1

uTzik

∫ ∞
−∞

k(u)fε|x(zTikδ − hlu) du · zTikδ

]ι
≤ mf ιun

ι
u

Cι
r

sup
δ∈Bp(r)

max
u,v∈Nε

E
(
|〈z,u〉〈z,v〉|ι

)
· ‖δ‖ι2

≤ mf ιun
ι
ur
ι

Cι
r

(2ι)! a2ι0

≤ ι!

2
· mf

2
un

2
ur

24!a40
C2
r

[
funura

2
0

Cr

(
(2ι)!

12ι!

)1/(ι−2)
]ι−2

.
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Applying Bernstein’s inequality [1], we obtain that with probability at least 1− e−γ,

sup
δ∈Bp(r)

max
u∈Nε

〈
u,

1

m

∑
i∈Il

{
zTi ΩiΛi(β)zi − E

[
zTi ΩiΛi(β)zi

] }
δ

〉

≤ funua
2
0r

Cr

[
4

√
3γ

m
+

(
(2ι)!

12ι!

)1/(ι−2)
γ

m

]
. Cr

(√
γ

m
+
γ

m

)
.

Following the proof of Lemma 4, after choosing an appropriate ε, we can conclude that

sup
β∈BΣ(r)

∥∥∥Σ−1/2[Dm,l(β)−Hm,l(β)
]
(β − βτ )

∥∥∥
2
. C6r

√
p+ γ

m

holds with probability at least 1 − e−γ, where C6 > 0 is a constant depending on
(τ, nu, fu, a1, ξmin). �

Lemma 8. Assume that Conditions (A1)–(A4) and (A6) hold. For any ε > 0, there
exist constants Cε,M0 > 0 such that for every M ≥M0,

sup
β∈BΣ(r)

∥∥Em,l(β)
∥∥
2

= sup
β∈BΣ(r)

∥∥∥Σ−1/2 [D̂m,l(β)−Dm,l(β)
]

(β − βτ )
∥∥∥
2
≤ C7Cε

r

hl

√
p3

M

holds with probability at least 1− ε, where C7 = τ−1(1− τ)−1ξ−1p κunuB
2.

Proof. Under Conditions (A1)–(A4) and (A6),

sup
β∈BΣ(r)

∥∥∥Σ−1/2 [D̂m,l(β)−Dm,l(β)
]

(β − βτ )
∥∥∥
2

= sup
δ∈Bp(r)

sup
u∈Sp−1

∣∣∣∣∣ 1

m

∑
i∈Il

uTzTi A
−1/2
i

[
R̂
−1
i −R−1i

]
A
−1/2
i Λi(β)ziδ

∣∣∣∣∣
≤ 1

m

∑
i∈Il

1

τ(1− τ)
sup

δ∈Bp(r)

sup
u∈Sp−1

∣∣∣∣uTzTi

[
R̂
−1
i −R−1i

]
diag

({
1

hl
k

(
−yik − x

T
ikβ

hl

)}ni

k=1

)
ziδ

∣∣∣∣
≤ 1

τ(1− τ)

1

m

∑
i∈Il

sup
δ∈Bp(r)

sup
u∈Sp−1

{
‖ziu‖2 ·

∥∥∥R̂−1i −R−1i ∥∥∥
2
· κu
hl
· ‖ziδ‖2

}

≤ κuCε
τ(1− τ)hl

√
p

M
· 1

m

∑
i∈Il

sup
δ∈Bp(r)

sup
u∈Sp−1

(
‖ziu‖2 · ‖ziδ‖2

)
≤ κuCε
τ(1− τ)hl

√
p

M
· 1

m

∑
i∈Il

sup
δ∈Bp(r)

(
‖zi‖22 · ‖δ‖2

)
≤ κuCεr

τ(1− τ)hl

√
p

M
· 1

m

∑
i∈Il

‖zi‖22 =
κuCεr

τ(1− τ)h

√
p

M
· 1

m

∑
i∈Il

∥∥∥Σ−1/2xi∥∥∥2
2

≤ κuCεr

τ(1− τ)hl

√
p

M
· 1

m

∑
i∈Il

∥∥∥Σ−1/2∥∥∥2
2
· ‖xi‖22 ≤

κuCεr

τ(1− τ)ξphl

√
p

M
· 1

m

∑
i∈Il

‖xi‖22

≤ κuCεr

τ(1− τ)ξphl

√
p

M
· nup B2

=
κunuB

2Cεr

τ(1− τ)ξphl

√
p3

M
= C6Cε

r

hl

√
p3

M
.

holds with probability at least 1− ε. �
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Lemma 9. For any γ > 0, 0 < r < hl/(4ι0.25) and s ≥ 0, there exists fl,l ≥ 0 such that

inf
β∈BΣ(r)∩CΣ(d)

D̄
(s)

L̃M,l
(β,βτ )

κ∗C−1m ‖β − βτ‖2Σ

≥ 3nl
4
fl,l − f 1/2

u,l nu

[
5B

√
2dhl log(2p)

r2m
− 3

√
2γm4

hlm

]
− 13γhlnu

48r2m

holds with probability at least 1− e−γ.

Proof. Define the parameter set B0(r1, r2) =
{
ζ ∈ Rp : ‖ζ‖1 ≤ r1, ‖ζ‖Σ ≤ r2

}
for

r1, r2 > 0. Let ζ = β − βτ ∈ B0(4d1/2r, r) for β ∈ BΣ(r) ∩ CΣ(d). From the proof of
Lemma 1, it’s sufficient to derive the upper bound of

E

{
sup

ζ∈B0(4d1/2r, r)

[
1

m

∑
i∈Il

Zi

(
ni∑
k=1

〈ςikxik, ζ/‖ζ‖Σ〉

)]}

≤ 4d1/2E

∥∥∥∥∥ 1

m

∑
i∈Il

Zi

(
ni∑
k=1

ςikxik

)∥∥∥∥∥
∞

= 4d1/2E

EZ
∥∥∥∥∥ 1

m

∑
i∈Il

Zi

(
ni∑
k=1

ςikxik

)∥∥∥∥∥
∞

 ,

where EZ stands for the (conditional) expectation over Z1, . . . , ZM given all the remaining
random variables. Based on the Hoeffding’s moment inequality, we have

EZ

∥∥∥∥∥ 1

m

∑
i∈Il

Zi

(
ni∑
k=1

ςikxik

)∥∥∥∥∥
∞

≤ max
1≤j≤p

 1

m

∑
i∈Il

(
ni∑
k=1

ςikxik,j

)2


1/2√
2 log(2p)

m

≤ max
1≤j≤p

(
nu
m

∑
i∈Il

ni∑
k=1

ς2ikx
2
ik,j

)1/2√
2 log(2p)

m

≤

(
nu
m

∑
i∈Il

ni∑
k=1

ςik

)1/2

B

√
2 log(2p)

m
.

Since E(ςik|xik) ≤ fu,lhl, we have

E

{
sup

ζ∈B0(4d1/2r, r)

[
1

m

∑
i∈Il

Zi

(
ni∑
k=1

〈ςikxik, ζ/‖ζ‖Σ〉

)]}
≤ 4nuf

1/2
u,l B

√
2dhl log(2p)

m
.

After using the similar arguments in the rest proof as that in the proof of Lemma 1, we
obtained the claimed bound. �

Lemma 10. Assume that Conditions (A1)–(A7) hold. For any γ > 0 and r > 0,

ΞM(r) = sup
β∈BΣ(r)∩CΣ(d)

∥∥∥℘M(β)− E
[
℘M(β)

]∥∥∥
∞

≤

[
c3
h

√
2d log (2p)

M
+ c4

√
log (2p) + γ

Mh
+ c5d

1/2 log (2p) + γ

Mh

]
· r

holds with probability at least 1−e−γ, where c3 = 20 C−1r nuκuB
2, c4 = C−1r (2κufuσu)

1/2µ
1/4
4 nu

with σu = max1≤j≤p σjj, and c5 = (52/3)C−1r nuκuB
2.
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Proof. Note that xT
ikβ − yik = xT

ikζ − εik, where εik = yik − xT
ikβτ . Write xi,j =

(xi1,j, . . . , xini,j)
T, we have

sup
β∈B(r1,r2)

∥∥∥℘M(β)− E
[
℘M(β)

]∥∥∥
∞

= max
1≤j≤p

sup
ζ∈B0(r1,r2)

∣∣∣∣∣ 1

M

M∑
i=1

(1− E)

{
xT
i,jΩi

[
K

(
xiζ − εi

h

)
−K

(
−εi
h

)]}∣∣∣∣∣
, max

1≤j≤p
sup

ζ∈B0(r1,r2)

∣∣∣∣∣ 1

M

M∑
i=1

(1− E)ψi,j(ζ)

∣∣∣∣∣
, max

1≤j≤p
ΥM,j,

where B(r1, r2) =
{
β ∈ Rp : ‖β−βτ‖1 ≤ r1, ‖β−βτ‖Σ ≤ r2

}
, (1−E)ψ(·) = ψ(·)−E[ψ(·)],

K
(
(xiζ − εi)/h

)
=
(
K
(
(xT

i1ζ − εi1)/h
)
, . . . , K

(
(xT

ini
ζ − εini

)/h
))T

, and K(−εi/h) =

(K (−εi1/h) , . . . , K (−εini
/h))T. At follows, we derive the upper bound of ΥM,j.

Since k(·) = K ′(·) is uniformly bounded, we have∣∣∣∣K (xT
ikζ − εik
h

)
−K

(
−εik
h

)∣∣∣∣ ≤ κu
h

∣∣xT
ikζ
∣∣ .

Therefore, for ζ ∈ B0(r1, r2), we have

sup
ζ∈B0(r1,r2)

∣∣ψi,j(ζ)
∣∣ ≤ sup

ζ∈B0(r1,r2)

{
‖xi,j‖2 · ‖Ωi‖2 ·

∥∥∥∥K (
xiζ − εi

h

)
−K

(
−εi
h

)∥∥∥∥
2

}
≤ sup
ζ∈B0(r1,r2)

{
‖xi,j‖2 · ‖Ωi‖2 ·

√
ni
κu
h
· ‖xik‖∞‖ζ‖1

}
≤
√
ni max

1≤k≤ni

|xik,j| ·
1

Cr
·
√
ni
κu
h
· max
1≤j≤p

|xik,j|r1

≤ nuκuB
2r1

Crh

and

ςik(ζ) = Eεik|xik

[
K

(
xT
ikζ − εik
h

)
−K

(
−εik
h

)]2
=

∫ ∞
−∞

[
K

(
xT
ikζ − u
h

)
−K

(
−u
h

)]2
fεik|xik

(u)du

= h

∫ ∞
−∞

[
K

(
xT
ikζ

h
+ v

)
−K (v)

]2
fεik|xik

(−vh)dv

=
1

h
(xT

ikζ)2
∫ ∞
−∞

[∫ 1

0

k

(
v +

wxT
ikζ

h

)
dw

]2
fεik|xik

(−vh)dv

≤ fu
h

(xT
ikζ)2

∫ ∞
−∞

[∫ 1

0

k

(
v +

wxT
ikζ

h

)
dw

]2
dv

≤ fu
h

(xT
ikζ)2

{∫ 1

0

[∫ ∞
−∞

k2
(
v +

wxT
ikζ

h

)
dv

]1/2
dw

}2

≤ fu
h

(xT
ikζ)2κu.
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Denote Ki(β) = K
(
(xiζ− εi)/h

)
and Ki(βτ ) = K (−εi/h) for the sake of notation, we

have

E
[
ψ2
i,j(ζ)

]
= E

[
xT
i,jΩi(α)

(
Ki(β)−Ki(βτ )

)(
Ki(β)−Ki(βτ )

)T
Ωi(α)xi,j

]
= Exi

{
xT
i,jΩi(α)Eεi|xi

[(
Ki(β)−Ki(βτ )

)(
Ki(β)−Ki(βτ )

)T]
Ωi(α)xi,j

}
≤ Exi

{
xT
i,jΩi(α)Eεi|xi

[(
Ki(β)−Ki(βτ )

)T(
Ki(β)−Ki(βτ )

)]
Ini

Ωi(α)xi,j

}
≤ 1

C2
r

Exi

[
xT
i,jxi,j

ni∑
k=1

ςik(ζ)

]
≤ fuκu
hC2

r

Exi

[
xT
i,jxi,j

ni∑
k=1

(xT
ikζ)2

]

=
fuκu
hC2

r

Exi

[
xT
i,jxi,j · ζTxT

i xiζ
]
≤ fuκu
hC2

r

[
E(xT

i,jxi,j)
2
]1/2 [

E(ζTxT
i xiζ)2

]1/2
≤ fuκun

2
uµ

1/2
4 σjjr

2
2

hC2
r

, (32)

where E(xT
i,jxi,j)

2 = E
∥∥ziΣ1/2ej

∥∥4
2
≤ n2

uµ4

∥∥Σ1/2ej
∥∥4
2

= n2
uµ4σ

2
jj with the j-th diagonal

element σjj of Σ, and E(ζTxT
i xiζ)2 ≤ n2

u‖Σ1/2ζ‖42 ≤ n2
ur

4
2.

According to the Bousquet’s version of Talagrand’s inequality in Bousquet (2003) [2],
for any γ > 0, we have

ΥM,j ≤
5

4
E(ΥM,j) +

f
1/2
u µ

1/4
4 σ

1/2
jj κ

1/2
u nur2

Cr

√
2γ

Mh
+

(
4 +

1

3

)
nuκuB

2r1γ

CrMh
(33)

with probability at least 1− e−γ.
At follows, we derive the upper bound of E(ΥM,j). Let Z1, . . . , ZM be i.i.d. Rademacher

random variables. Based on the Rademacher symmetrization,

E(ΥM,j) ≤ 2E

{
sup

ζ∈B0(r1,r2)

∣∣∣∣∣ 1

M

M∑
i=1

Ziψi,j(ζ)

∣∣∣∣∣
}

= 2E

{
EZ

[
sup

ζ∈B0(r1,r2)

∣∣∣∣∣ 1

M

M∑
i=1

Ziψi,j(ζ)

∣∣∣∣∣
]}

, (34)

where the expectation EZ is taken with respect to Z1, . . . , ZM . Write ψij(ζ) = xT
i,jΩiϕi(xiζ)

withϕi(xiζ) =
(
ϕi1(x

T
i1ζ), . . . , ϕini

(xT
ini
ζ)
)T

,where ϕik(·) satisfies ϕik(0) = 0 and |ϕik(u)−
ϕik(v)| ≤ κuh

−1|u − v|. According to the Talagrand’s contraction principle in Ledoux
and Talagrand (1991)[5], we have

EZ

{
sup

ζ∈B0(r1,r2)

∣∣∣∣∣ 1

M

M∑
i=1

Ziψi,j(ζ)

∣∣∣∣∣
}

= EZ

{
sup

ζ∈B0(r1,r2)

∣∣∣∣∣ 1

M

M∑
i=1

Zi

[
xT
i,jΩiϕi(xiζ)

]∣∣∣∣∣
}

≤ 2κu
Crh

max
1≤i≤M,1≤k≤ni

|xik,j| · EZ

{
sup

ζ∈B0(r1,r2)

∣∣∣∣∣ 1

M

M∑
i=1

Zi

(
ni∑
k=1

xT
ikζ

)∣∣∣∣∣
}

≤ 2κuBr1
Crh

EZ

∥∥∥∥∥ 1

M

M∑
i=1

Zi

(
ni∑
k=1

xik

)∥∥∥∥∥
∞

. (35)
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Based on the Hoeffding’s moment inequality,

EZ

∥∥∥∥∥ 1

M

M∑
i=1

Zi

(
ni∑
k=1

xik

)∥∥∥∥∥
∞

≤ max
1≤j≤p

 1

M

M∑
i=1

(
ni∑
k=1

xik,j

)2
1/2√

2 log(2p)

M

≤ max
1≤j≤p

(
n2
u

M

M∑
i=1

(
1

ni

ni∑
k=1

x2ik,j

))1/2√
2 log(2p)

M
. (36)

Together with (34)–(36), for any j = 1, . . . , p,

E(ΥM,j) ≤
4nuκuB

2r1
Crh

√
2 log(2p)

M
. (37)

Take r1 = 4d1/2r, r2 = r, and γ′ = log(2p) + γ. Combine with (32), (33), and (37), we
have the claimed bound. �

3 Proofs of Main Results

3.1 Proof of Theorem 1

Theorem 1 (Restatement of Theorem 1 from main text). Assume that Conditions (A1)–
(A7) hold. Let r0 & r∗ > 0. For any γ, ε > 0, suppose the bandwidths hl ≥ h > 0 satisfy
max(r0,

√
(p+ γ)/m) . hl . 1 and

√
(p+ γ)/M . h. Then, conditioned on the event

E0(r0) ∩ E∗(r̄∗) ∩ E∗(r̃∗), there exist constants Cε,M0 > 0 such that for all M ≥ M0, the

one-step distributed estimator β̂
(1)

l computed on the l-th machine satisfies

∥∥β̂(1)

l − βτ
∥∥
Σ
. C

(√
p+ γ

Mh
+

√
p+ γ

m
+
Cε
hl

√
p3

M
+ hl + 1− L−1

)
· r0 + r∗

with probability at least 1−3e−γ−ε, where C > 0 is a constant depending on (τ, nu, fu, κu, µ3,
a1, L0, B, ξp, ξmin).

Proof. Assume the event E0(r0) =
{
β̂

(0)
∈ BΣ(r0)

}
holds. Set rloc = hl/(4ι0.25). Let

β̂ = β̂
(1)

l be the one-step estimator that minimizes L̃(0)
M,l(β) with respect to β on the lth

machine. Define an intermediate estimator β̂υ = βτ + υ(β̂ − βτ ), where υ = sup
{
u ∈

[0, 1] : βτ + u (β̂ − βτ ) ∈ BΣ(rloc)
}

is the largest value of u ∈ (0, 1] such that the convex

combination of βτ and β̂: (1− υ)βτ + υβ̂ falls into BΣ(r0). If β̂ ∈ BΣ(rloc), υ = 1, and

β̂υ = β̂; otherwise, if β̂ /∈ BΣ(rloc), υ ∈ (0, 1), and β̂υ falls onto the boundary of BΣ(rloc),

that is, β̂υ ∈ ∂BΣ(rloc) = {β ∈ Rp : ‖β − βτ‖Σ = rloc}.
Based on Lemma F.2 in Fan et al. (2018) [3] and the first-order optimality condition

∇L̃(0)
M,l(β̂) = 0, we have

D̄
(0)

L̃M,l
(β̂υ,βτ ) ≤ υD̄

(0)

L̃M,l
(β̂,βτ ) = −υ

〈
∇L̃(0)

M,l(βτ ), β̂ − βτ
〉

≤
∥∥∥Σ−1/2∇L̃(0)

M,l(βτ )
∥∥∥
2
·
∥∥∥Σ1/2(β̂υ − βτ )

∥∥∥
2
. (38)
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Based on Lemma 2, given any γ > 0, as long as (p+ γ)/m . hl . 1,

D̄
(0)

L̃M,l
(β,βτ ) ≥ 0.5 C−1m κ∗nlfl,l · ‖β − βτ‖2Σ (39)

holds uniformly over all β ∈ BΣ(rloc) with probability at least 1− e−γ.
Note that ∇L̃(0)

M,l(β) = ∇L(0)
m,l(β)−∇L(0)

m,l

(
β̂

(0))
+∇L(0)

M

(
β̂

(0))
. Since

∇L(0)
m,l(βτ ) = Ûm,l

(
β̂

(0))
− D̂m,l

(
β̂

(0))(
β̂

(0)
− βτ

)
.

We can decompose ∇L̃(0)
M,l(βτ ) as

∇L̃(0)
M,l(βτ ) = ÛM

(
β̂

(0))
− D̂m,l

(
β̂

(0))(
β̂

(0)
− βτ

)
= ÛM

(
β̂

(0))
−UM

(
β̂

(0))
+UM

(
β̂

(0))
−UM(βτ ) +UM(βτ )

− D̂m,l

(
β̂

(0))(
β̂

(0)
− βτ

)
= ÛM

(
β̂

(0))
−UM

(
β̂

(0))
+UM

(
β̂

(0))
−UM

(
βτ
)
−HM

(
βτ
)(
β̂

(0)
− βτ

)
+HM

(
βτ
)
−HM

(
β̂

(0))(
β̂

(0)
− βτ

)
+HM

(
β̂

(0))
−Hm,l

(
β̂

(0))(
β̂

(0)
− βτ

)
+Hm,l

(
β̂

(0))
−Dm,l

(
β̂

(0))(
β̂

(0)
− βτ

)
+Dm,l

(
β̂

(0))
− D̂m,l

(
β̂

(0))(
β̂

(0)
− βτ

)
+UM(βτ ).

According to Lemmas 2–8, as long as h &
√

(p+ γ)/M and m & p+ γ,∥∥∥Σ−1/2∇L̃(0)
M,l(βτ )

∥∥∥
2
≤
∥∥∥SM

(
β̂

(0))∥∥∥
2

+
∥∥∥∆M

(
β̂

(0))∥∥∥
2

+
∥∥TM(βτ )

∥∥
2

+
∥∥∥FM(β̂(0))∥∥∥

2
+
∥∥∥FM,l

(
β̂

(0))∥∥∥
2

+
∥∥∥Hm,l

(
β̂

(0))∥∥∥
2

+
∥∥∥Em,l(β̂(0))∥∥∥

2

. ξ−1/2p C0Cε

√
p2

M
+ C1 r

(√
p+ γ

Mh
+ r

)

+ C2

(√
p+ γ

M
+ h2

)
+ C3 r

2 +
[
C4(1− L−1) + C5|hl − h|

]
r

+ C6 r

√
p+ γ

m
+ C7Cε

r

hl

√
p3

M

holds with probability at least 1 − 3e−γ − 2ε. Then, conditioned on the event E0(r0) ∩
E∗(r̄∗) ∩ E∗(r̃∗), as long as hl ≥ h > 0 and hl & r0,∥∥∥Σ−1/2∇L̃(0)

M,l(βτ )
∥∥∥
2
≤ C

(√
p+ γ

Mh
+

√
p+ γ

m
+
Cε
hl

√
p3

M
+ hl + 1− L−1

)
· r0 + r∗,

(40)
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holds with probability at least 1− 2e−γ − ε, where r∗ = Op(p/
√
M + h2).

Together with (38), (39), and (40), conditioned on the event E0(r0) ∩ E∗(r̄∗) ∩ E∗(r̃∗),∥∥∥β̂υ − βτ∥∥∥
Σ
≤ 2 Cm(κ∗nlfl,l)

−1
∥∥∥Σ−1/2∇L̃(0)

M,l(βτ )
∥∥∥
2

≤ 2 Cm(κ∗nlfl,l)
−1

{
C

(√
p+ γ

Mh
+

√
p+ γ

m
+
Cε
hl

√
p3

M
+ hl + 1− L−1

)
· r0 + r∗

}
(41)

holds with probability at least 1 − 3e−γ − ε. Let the bandwidth hl ≥ h > 0 satisfy
1 & hl & max(r0, r∗) and

√
(p+ γ)/(Mh)+

√
(p+ γ)/m+Cεh

−1
l

√
p3/M+hl+1−L−1 . 1,

so that the right hand side of (41) is strictly less than rloc. Then, the intermediate

estimator β̂υ falls into the interior of the local region BΣ(rloc) with high probability

conditioned on the event E0(r0) ∩ E∗(r̄∗) ∩ E∗(r̃∗). Note that if β̂ /∈ BΣ(rloc), β̂υ lies on

the boundary of BΣ(rloc), which is a contradiction to (41). Therefore, β̂ = β̂υ ∈ BΣ(rloc)

and the bound (41) also applies to β̂.
�

3.2 Proof of Theorem 2

Theorem 2 (Restatement of Theorem 2 from main text). Assume the conditions of
Theorem 1 hold. For any γ, ε > 0, conditioned on the event E0(r0)∩E∗(r̄∗)∩E∗(r̃∗), there
exist constants Cε,M0 > 0 such that for all M ≥ M0, the S-step distributed estimator

β̂
(S)

l computed on the l-th machine satisfies∥∥β̂(S)

l − βτ
∥∥
Σ
. ϑS · r0 + r∗ . r∗

with probability at least 1 − (2S + 1)e−γ − Sε, provided that ϑS−1 · r0 . r∗. Here, ϑ =
ϑ(p,m,M,L, hl, h, γ, Cε) = C

{√
(p+ γ)/(Mh) +

√
(p+ γ)/m+Cεh

−1
l

√
p3/M +hl + 1−

L−1
}

, and the number of iterations satisfies S & log(r0/r∗)/ log(1/hl).

Proof. Given the s-step (s ≥ 0) estimator β̂
(s)

l of β on the lth machine and denote

β̂
(s)

l = β̂
(s)

, we have

Σ−1/2∇L̃(s)
M,l(βτ ) = SM

(
β̂

(s))
+ ∆M

(
β̂

(s))
− FM

(
β̂

(s))
+ FM,l

(
β̂

(s))
− Hm,l

(
β̂

(s))
+ Em,l

(
β̂

(s))
+ TM(βτ ).

Therefore,∥∥∥Σ−1/2∇L̃(s)
M,l(βτ )

∥∥∥
2
≤
∥∥∥SM

(
β̂

(s))∥∥∥
2

+
∥∥∥∆M

(
β̂

(s))∥∥∥
2

+
∥∥∥FM(β̂(s))∥∥∥

2
+
∥∥∥FM,l

(
β̂

(s))∥∥∥
2

+
∥∥∥Hm,l

(
β̂

(s))∥∥∥
2

+
∥∥∥Em,l(β̂(s))∥∥∥

2
+
∥∥TM(βτ )

∥∥
2
. (42)

Define the “good” events for the sequence of iterates {β̂
(s)
}Ss=0:

Es(rs) =
{
β̂

(s)
∈ BΣ(rs)

}
, s = 0, 1, . . . , S,
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where r0 ≥ r1 ≥ · · · ≥ rS > 0 are some sequence of radius to be determined. Let
rloc = hl/(4γ0.25) be the same local radius defined in the proof of Theorem 1. According
to Lemma 1, as long as (p+ γ)/m . hl . 1,

D̄
(s)

L̃M,l
(β,βτ ) ≥ 0.5 C−1m κ∗nlfl,l · ‖β − βτ‖2Σ (43)

holds uniformly over all β ∈ BΣ(rloc) with probability at least 1− e−γ.
Let β̂

(s+1)
= β̂

(s+1)

l be the update of β on the lth machine in the (s+ 1)th iteration.

Define an intermediate estimator β̂
(s+1)

υ = βτ + υ(β̂
(s+1)

− βτ ) (a convex combination of

β̂
(s+1)

and βτ ). Assume that β̂
(s)

υ ∈ BΣ(rloc). Based on (38), (42), and (43), conditioned
on the event E0(r0) ∩ E∗(r̄∗) ∩ E∗(r̃∗),∥∥∥β̂(s+1)

υ − βτ
∥∥∥
Σ
≤ κ̄−1

∥∥∥Σ−1/2∇L̃(s)
M,l(βτ )

∥∥∥
2

≤ κ̄−1
(∥∥∥SM

(
β̂

(s))∥∥∥
2

+
∥∥∥∆M

(
β̂

(s))∥∥∥
2

+
∥∥∥FM(β̂(s))∥∥∥

2

+
∥∥∥FM,l

(
β̂

(s))∥∥∥
2

+
∥∥∥Hm,l

(
β̂

(s))∥∥∥
2

+
∥∥∥Em,l(β̂(s))∥∥∥

2
+
∥∥TM(βτ )

∥∥
2

)
≤ κ̄−1

(∥∥∥∆M

(
β̂

(s))∥∥∥
2

+
∥∥∥FM(β̂(s))∥∥∥

2
+
∥∥∥FM,l

(
β̂

(s))∥∥∥
2

+
∥∥∥Hm,l

(
β̂

(s))∥∥∥
2

+
∥∥∥Em,l(β̂(s))∥∥∥

2
+ r∗

)
, (44)

where κ̄ = 0.5 C−1m κ∗nlfl,l. Define the event

F(r) =

{
sup

β∈BΣ(r)

{∥∥∆M(β)
∥∥
2

+
∥∥FM(β)

∥∥
2

+
∥∥FM,l(β)

∥∥
2

+
∥∥Hm,l(β)

∥∥
2

+
∥∥Em,l(β)

∥∥
2

}
≤ ϑ(γ) · r

}
,

where ϑ(γ) = C
{√

(p+ γ)/(Mh) +
√

(p+ γ)/m + Cεh
−1
l

√
p3/M + hl + 1 − L−1

}
(for

some C > 0), such that F(r) holds with probability at least 1− 2e−γ − ε for 0 < r . hl.
Let Eloc be the event where the local strong convexity in (43) holds. From (44), at

the first iteration, conditioned on the event E0(r0) ∩ E∗(r̄∗) ∩ E∗(r̃∗) ∩ Eloc ∩ F(r0),∥∥∥β̂(1)

υ − βτ
∥∥∥
Σ
≤ r1 := κ̄−1ϑ(γ) · r0 + κ̄−1r∗. (45)

From the constraints on (hl, h, r0, r∗), we have κ̄−1ϑ(γ) < 1, r1 < rloc � hl, and r1 ≤
r0. This implies β̂

(1)
= β̂

(1)

υ ∈ BΣ(rloc), which in turn certifies the event E1(r1) ={
β̂

(1)
∈ BΣ(r1)

}
.

Next, we assume that for some s ≥ 1, β̂
(s)
∈ BΣ(rs), where rs := κ̄−1ϑ(γ) · rs−1 +

κ̄−1r∗ ≤ rs−1 and rι < rloc for all ι = 1, . . . , s. According to (44), at the (s+1)th-iteration,
conditioned on the event Es(rs) ∩ E∗(r̄∗) ∩ E∗(r̃∗) ∩ Eloc ∩ F(rs),∥∥∥β̂(s+1)

υ − βτ )
∥∥∥
Σ
≤ rs+1 := κ̄−1ϑ(γ) · rs + κ̄−1r∗. (46)
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Note that rs+1 ≤ κ̄−1ϑ(γ) · rs−1 + κ̄−1r∗ = rs < rloc. Therefore, β̂
(s+1)

υ falls into the

interior of BΣ(rloc), which implies β̂
(s+1)

= β̂
(s+1)

υ ∈ BΣ(rloc) and certificates the event

Es+1(rs+1) =
{
β̂

(s+1)
∈ BΣ(rs+1)

}
. Consequently, β̂

(s+1)
∈ BΣ(rs+1) ⊂ BΣ(rs) and the

bound (46) also applies to β̂
(s+1)

with rs+1 ≤ rs.
Repeat the above arguments until s = S ≥ 1. Since for every 1 ≤ s ≤ S, Es(rs) holds

under the event Es−1(rs−1) ∩ E∗(r̄∗) ∩ E∗(r̃∗) ∩ Eloc ∩ F(rs−1). Conditioned on the event

E0(r0) ∩ E∗(r̄∗) ∩ E∗(r̃∗) ∩ Eloc ∩
{
∩S−1s=0 F(rs−1)

}
, β̂

(S)
satisfies the bounds∥∥∥β̂(S)

− βτ
∥∥∥
Σ
≤ κ̄−1ϑ(γ) · rS−1 + κ̄−1r∗ = rS ≤ rS−1. (47)

Since rs = {κ̄−1ϑ(γ)}sr0 + [1− {κ̄−1ϑ(γ)}s] / [1− κ̄−1ϑ(γ)] κ̄−1r∗ for s = 1, . . . , S. Then
S = dlog(r0/r∗)/ log(κ̄/ϑ(γ))e+ 1 is the smallest integer such that {κ̄−1ϑ(γ)}S−1r0 ≤ r∗.

Finally, together with (43) and (45)–(47), conditioned on the event E0(r0) ∩ E∗(r̄∗) ∩
E∗(r̃∗), ∥∥∥β̂(S)

− βτ
∥∥∥
Σ
≤ κ̄−1ϑ(γ) · r∗ +

1

κ̄− ϑ(γ)
r∗ . r∗

holds with probability at least 1− (2S + 1)e−γ − Sε. This completes the proof. �

3.3 Proof of Theorem 3

Theorem 3 (Restatement of Theorem 3 from main text). Assume that Conditions (A1)–
(A7) hold, and r0, λ∗ > 0. For any γ, ε > 0, there exists a constant Cε > 0 such that
the bandwidths hl ≥ h > 0 and the regularization parameter λ = 2.5(λ∗ + ς) > 0 satisfy
d1/2λ . hl . 1, and

ς � max

{
r0
h

√
d (log p+ γ)

M
,d−1/2

(√
p+ γ

m
+
Cε
hl

√
p3

M
+ hl + 1− L−1

)
r0 + d−1/2h2

}
.

Then, conditioned on the event E0(r0)∩E∗(λ̄∗)∩E∗(λ̃∗), there exists a constant M0 > 0 such
that for all M ≥ M0, the one-step regularized estimator computed on the l-th machine

satisfies β̃
(1)

l ∈ CΣ(d), and with probability at least 1− 3e−γ − ε,∥∥β̃(1)

l −βτ
∥∥
Σ
. C

(
d

h

√
log p+ γ

M
+

√
p+ γ

m
+
Cε
hl

√
p3

M
+ hl + 1− L−1

)
r0+d1/2λ∗+h

2,

where C > 0 is a constant depending on (τ, nu, fu, κu, µ3, a1, B, ξp, ξmin).

Proof. Denote β̃ = β̃
(1)

l and ζ̃ = β̃ − βτ . Based on the first-order optimality condition,

there exists a subgradient g̃ ∈ ∂
∥∥β̃∥∥

1
such that ∇L̃(0)

M,l(β̃) + λ · g̃ = 0 and g̃Tβ̃ = ‖β̃‖1.
Therefore,〈
g̃,βτ − β̃

〉
≤
∥∥βτ∥∥1 − ∥∥β̃∥∥1 =

∥∥βτ,A∥∥1 − ∥∥ζ̃Ac

∥∥
1
−
∥∥ζ̃A + βτ,A

∥∥
1
≤
∥∥ζ̃A∥∥1 − ∥∥ζ̃Ac

∥∥
1
.

This implies that

0 ≤ D̄
(0)

L̃M,l

(
β̃,βτ

)
=
〈
∇L̃(0)

M,l

(
β̃
)
−∇L̃(0)

M,l

(
βτ
)
, β̃ − βτ

〉
= λ ·

〈
g̃, βτ − β̃

〉
− 〈∇L̃(0)

M,l(βτ ), ζ̃〉

≤ λ ·
(∥∥ζ̃A∥∥1 − ∥∥ζ̃Ac

∥∥
1

)
−
〈
∇L̃(0)

M,l(βτ ), ζ̃
〉
, (48)
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where ∇L̃(0)
M,l(βτ ) = ∇L(0)

m,l(βτ )−∇L
(0)
m,l

(
β̃

(0))
+∇L(0)

M

(
β̃

(0))
. Decompose ∇L̃(0)

M,l(βτ ) as

∇L̃(0)
M,l(βτ )

= ÛM

(
β̃

(0))
− D̂m,l

(
β̃

(0))(
β̃

(0)
− βτ

)
=
{
ÛM

(
β̃

(0))
−UM

(
β̃

(0))}
+
{
℘M
(
β̃

(0))
−=M

(
β̃

(0))}
+
{
UM(βτ )− JM(βτ )

}
+ JM(βτ ) +

{
JM
(
β̃

(0))
− JM(βτ )−HM(βτ )

(
β̃

(0)
− βτ

)}
+
{
HM(βτ )−HM

(
β̃

(0))}(
β̃

(0)
− βτ

)
+
{
HM

(
β̃

(0))
−Hm,l

(
β̃

(0))}(
β̃

(0)
− βτ

)
+
{
Hm,l

(
β̃

(0))
−Dm,l

(
β̃

(0))}(
β̃

(0)
− βτ

)
+
{
Dm,l

(
β̃

(0))
− D̂m,l

(
β̃

(0))}(
β̃

(0)
− βτ

)
.

For r > 0, define

IM(r) = sup
β∈BΣ(r)

∥∥E[∆M(β)]
∥∥
2
, HM(r) = sup

β∈BΣ(r)

∥∥FM(β)
∥∥
2
,

HM,l(r) = sup
β∈BΣ(r)

∥∥FM,l(β)
∥∥
2
, Gm,l(r) = sup

β∈BΣ(r)

∥∥Hm,l(β)
∥∥
2
,

Dm,l(r) = sup
β∈BΣ(r)

∥∥Em,l(β)
∥∥
2
.

Based on the Hölder’s inequality, under the condition of the event E∗(λ̄∗)∩E∗(λ̃∗)∩E0(r0),∣∣∣〈∇L̃(0)
M,l(βτ ), ζ̃

〉∣∣∣ ≤ {ΞM(r0) + λ∗
}
·
∥∥ζ̃∥∥

1

+
{
IM(r0) + ω∗M + HM(r0) + HM,l(r0)

+ Gm,l(r0) + Dm,l(r0)
}
·
∥∥ζ̃∥∥

Σ
. (49)

Take λ = 2.5 (λ∗ + ς) with ς satisfying

ς ≥ max
{
ΞM(r0),

[
IM(r0)+ω∗M +HM(r0)+HM,l(r0)+Gm,l(r0)+Dm,l(r0)

]
d−1/2

}
, (50)

so that

ΞM(r0) + λ∗ ≤ 0.4 λ,

IM(r0) + ω∗M + HM(r0) + HM,l(r0) + Gm,l(r0) + Dm,l(r0) ≤ 0.4 d1/2λ. (51)

Together with (48), (49), and (51), we have

0 ≤ 1.4
∥∥ζ̃A∥∥1 − 0.6

∥∥ζ̃Ac

∥∥
1

+ 0.4 d1/2
∥∥ζ̃∥∥

Σ
.

Therefore, ∥∥ζ̃∥∥
1
≤ 10

3

∥∥ζ̃A∥∥1 +
2

3
d1/2

∥∥ζ̃∥∥
Σ
≤ 4 d1/2

∥∥ζ̃∥∥
Σ
.

This implies that β̃ ∈ CΣ(d).

Assume the event E∗(λ̄∗) ∩ E∗(λ̃∗) ∩ E0(λ0) occurs. Define β̃υ = βτ + υ(β̃ − βτ ) with

0 < υ ≤ 1. For rloc = hl/(4ι0.25), we have β̃υ ∈ BΣ(rloc) ∩ CΣ(d) under the requirement
(50) on ς. Based on (48), we have

D̄
(0)

L̃M,l

(
β̃υ,βτ

)
≤ υ · D̄(0)

L̃M,l

(
β̃,βτ

)
≤ υ

(
1.4 λ

∥∥ζ̃A∥∥1 + 0.4 d1/2λ
∥∥ζ̃∥∥

Σ

)
≤ 1.8 d1/2λ

∥∥β̃υ − βτ∥∥Σ.
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From Lemma 9, as long as (d log p+ γ)/m . hl . 1,

D̄
(0)

L̃M,l
(β̃υ,βτ ) ≥ 0.5κ∗nlfl,lC

−1
m

∥∥β̃υ − βτ∥∥2Σ
holds with probability at least 1− e−γ. Therefore,∥∥β̃υ − βτ∥∥Σ ≤ 3.6Cm(κ∗nlfl,l)

−1d1/2λ. (52)

At follows, we choose a sufficiently large λ (or ς) satisfying (50).
According to Lemma 10,

ΞM(r0) .
r0
h

√
d (log p+ γ)

M

holds with probability at least 1 − e−γ. Based on Lemmas 3–8, as long as r0 . hl and
hl ≥ h,

IM(r0) + ω∗M + HM(r0) + HM,l(r0) + Gm,l(r0) + Dm,l(r0)

. C1 r
2
0 + C2 h

2 + C3 r
2
0 +

[
C4(1− L−1) + C5|hl − h|

]
r0

+ C6 r0

√
p+ γ

m
+ C7 r0

Cε
hl

√
p3

M

. C

(√
p+ γ

m
+
Cε
hl

√
p3

M
+ hl + 1− L−1

)
r0 + C ′h2

holds with probability at least 1 − e−γ − ε (for some constants C,C ′ > 0). Therefore,
after choosing a sufficiently large ς, which is of the order

ς � max

{
r0
h

√
d (log p+ γ)

M
,d−1/2

(√
p+ γ

m
+
Cε
hl

√
p3

M
+ hl + 1− L−1

)
r0 + d−1/2h2

}
,

(50) holds with high probability. Then, conditioned on the event E∗(λ̄∗) ∩ E∗(λ̃∗) ∩
E0(λ0), β̃υ satisfies (52) with probability at least 1 − 3e−γ − ε. Based on the above
choice of ς, the right-hand side of (52) is strictly less than rloc provided that hl >

14.4ι0.25(κ∗nlfl,l)
−1Cmd

1/2λ. This implies that β̃ = β̃υ ∈ BΣ(rloc); and β̃ satisfies the
bound (52). �

3.4 Proof of Theorem 4

Theorem 4 (Restatement of Theorem 4 from main text). Assume the Conditions in
Theorem 3 hold. For any γ, ε > 0 and a constant Cε > 0, choose the local and global
bandwidths as hl � (C2

εp
3/M)1/4 and h � {d (log p + γ)/M}1/4. For r0, λ∗ > 0, let

r∗ = d1/2λ∗ and λs = 2.5(λ∗ + ςs) > 0 for s ≥ 2 with

ςs � max

{
ϑsd−1/2r0 + ϑd−1/2(r∗ + h2),

√
log p+ γ

M

}
,

where ϑ � C max {d3(log p+ γ)/M,C2
εp

3/M}1/4 +
√

(p+ γ)/m + 1 − L−1. Assume
m & p+γ, M & max {d3(log p+ γ), C2

εp
3}, r0 . min

{
1, (C2

εp
3/M)1/4

}
, and r∗ . hl . 1.
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Then, conditioned on the event E0(r0) ∩ E∗(λ̄∗) ∩ E∗(λ̃∗), there exist a constant M0 > 0

such that for all M ≥ M0, the S-step regularized estimator β̃
(S)

l computed on the l-th
machine satisfies∥∥β̃(S)

l − βτ
∥∥
Σ
. d1/2λ∗ + h2 and ‖β̃

(S)

l − βτ‖1 . dλ∗ + d1/2h2

with probability at least 1 − 3Se−γ − Sε, provided that the number of iterations satisfies
S & log(r0/r∗)/ log(1/ϑ).

Proof. We carry out the whole proof under the condition of the event E0(λ0) ∩ E∗(λ̄∗) ∩
E∗(λ̃∗) for some prespecified r0, λ∗ > 0; and write r∗ = d1/2λ∗. Recall that in the proof of
Theorem 3, the regularization parameter λ1 needs to be sufficiently large to obtain the

desired error bound for the first iterate β̃
(1)

= β̃
(1)

l on the lth machine. Given γ > 0, let
λ1 = 2.5 (λ∗ + ς1), where ς1 > 0 is of the order

ς1 � max

{
r0
h

√
d (log p+ γ)

M
,d−1/2

(√
p+ γ

m
+
Cε
hl

√
p3

M
+ hl + 1− L−1

)
r0 + d−1/2h2

}
.

As long as the bandwidth hl & max(r0, r∗) > 0 satisfy

r∗ + max

{
dr0
h

√
log p+ γ

M
,

(√
p+ γ

m
+
Cε
hl

√
p3

M
+ hl + 1− L−1

)
r0 + h2

}
. hl . 1,

the first iterate β̃
(1)

satisfies β̃
(1)
∈ CΣ(d); and with probability at least 1− 2e−γ − ε,

∥∥β̃(1)
− βτ

∥∥
Σ
≤ C

(
d

h

√
log p+ γ

M
+

√
p+ γ

m
+
Cε
hl

√
p3

M
+ hl + 1− L−1

)
r0

+ C ′
(
r∗ + h2

)
= r1.

Let

ϑ = ϑ (d, p,m,M,L, hl, h, γ, Cε)

= C

{
d

h

√
log p+ γ

M
+

√
p+ γ

m
+
Cε
hl

√
p3

M
+ hl + 1− L

}

be the contraction factor. After setting hl � (C2
ε p

3/M)
1/4

and h � {d (log p+ γ)/M}1/4,
we have

ϑ � C

{
d3/4

(
log p+ γ

M

)1/4

+

(
C2
ε p

3

M

)1/4

+

√
p+ γ

m
+ 1− L

}
and

ς1 � max

{
ϑd−1/2r0,

√
log p+ γ

M

}
.

Therefore, if r0 . min{1, (C2
εp

3/M)1/4}, d1/2ς1 . hl. To ensure the contraction factor ϑ
strictly less than 1, we need m & p+ γ and M & max {d3(log p+ γ), C2

εp
3}. Then, the

one-step estimator reduces the estimation error of β̃
(0)

by a factor of ϑ.
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For s ≥ 2, define the events Es(rs) :=
{
β̃

(s)
∈ BΣ(rs) ∩ CΣ(d)

}
, where

rs := ϑrs−1 + C ′(r∗ + h2) = ϑsr0 + C ′
1− ϑs

1− ϑ
(r∗ + h2). (53)

Set λs = 3 ςs at iteration s ≥ 2 with

ςs � max

{
ϑd−1/2rs−1,

√
log p+ γ

M

}
. (54)

Then, based on (53) and (54), for s ≥ 2,

ςs � max

{
ϑsd−1/2r0 + ϑd−1/2(r∗ + h2),

√
log p+ γ

M

}
.

Note that under the conditions on r0 and (m,M), d1/2ςs . hl for s ≥ 2. According to

Theorem 3, conditioned on the event Es−1(rs−1) ∩ E∗(λ̄∗) ∩ E∗(λ̃∗), the s-step iterate β̃
(s)

satisfies β̃
(s)
∈ CΣ(d); and with probability at least 1− 3e−γ − ε,∥∥β̃(s)
− βτ

∥∥
Σ
≤ ϑrs−1 + C ′(r∗ + h2) = rs = ϑsr0 + C ′

1− ϑs

1− ϑ
(r∗ + h2).

Let S = dlog(r0/r∗)/ log(1/ϑ)e be the smallest integer such that ϑSr0 ≤ r∗. Under

the condition E0(λ0) ∩ E∗(λ̄∗) ∩ E∗(λ̃∗), the Sth iterate β̃
(S)

satisfies the error bounds∥∥β̃(S)
− βτ

∥∥
Σ
. d1/2λ∗ + h2 and

∥∥β̂(S)
− βτ

∥∥
1
. dλ∗ + d1/2h2

with probability at least 1− 3Se−γ − Sε based on the union bound over s = 1, 2, . . . , S.
This completes the proof of the theorem. �
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