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This document contains supplementary material for “Penalized communication-efficient
algorithm for quantile regression with high-dimensional and large-scale longitudinal data”.
Section 1 provides additional definitions and technical preliminaries. Section 2 presents
supporting lemmas and their proofs. Section 3 contains detailed proofs of the main results
from the article.

1 Preliminary Definitions and Notation

We begin by establishing key notations and definitions used throughout the supplemen-
tary material. We denote the global estimating function and its derivative as

1
ZU ), Du(B) = MZDz‘(ﬁ),
where for 1 <17 < M,

Ui(B) = 2l A, PR @) AT K~ () — L, 7]

ou, _ _
Dy(8) = ag(ﬁ) =2/ A7 PR (@) AT A (B
For each subset Z; (with [ = 1,..., L), we denote their local counterparts as

Uni(B) = = UB). Dui(8) = - 3" Dilp)

1€1; 1€,

Let J;(8) = E[U;(8)] and H;(8) = E[D;(8)] be the expected estimating function and
its derivative for the i-th subject, respectively. We define their global averages as

Tu(8) = E[U ZJ ) Hu(B)= B[Du(®)] = 57 > Hi()
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and their local averages as

Tni(B) = E[Uni(B)] = % > JiB). Hui(B)=E[Dni(B)] = — HiB).

‘ m <
1€1; 1€1;

We further define the centered expected estimating function as

M
1
3(B) = Ji(B) = i(B,), Su(B) = 5; Z 3(8).
Finally, we introduce the stochastic process as

om(B) =Un(B) —Un(B,),

which satisfies:

Elpm(B)] = Ju(B) — Ju(B,) = Su(B).

2 Technical Lemmas
This section contains technical lemmas that support the proofs of the main theorems.
Lemma 1. Following He et al. (2023)[4], for 6 € (0,1], define ts > 0 as:

s =inf {o > 0: E{(z,u)’I(|(z,u)| > )} <& for allu € S" '}, (1)

where z = X% satisfying E(z2") = I,x, and w € SP~' satisfying E(u,z)? = 1. For

any v >0, 0 <1 < hy/(4o25) and s > 0, there exists fi; > 0 such that

A (s)
inf DZM”(B’BT) > %f _ony [pfuihi RT /27M4fu,l ~ Byhun,
pebs(r) kOB — B, [1% — 4 My m " hym 48r2m,

holds with probability at least 1—e™7, where Cp, = T(1—T)&max and K, = minp, <3 k(u) > 0.

Proof. Define the symmetrized Bregman divergence for the surrogate loss functions Eg\j{l(ﬂ)
on the [th machine at s-th iteration as

DY (B.8,) = (VLG)(8) - VL(8.).8 - B.)
= (VLS(8) - VES(B,).8-B,) = D) (8.8,)

For €, =y, — x> B,,i=1,...,M, k=1,...,n;, define the event

[y <) [l BB
=l < 30 (52500 < 5

Recall that Bx(r) = {8 € R? : |8 — B,|ls < r} is a local neighborhood of 8, under
|- [|[z-norm. For any 3 € Bx(r), we have |y, — 28] < hy on . Therefore, conditioned




on the event &, we have

DE) (8.8,) = <% > Wz (8- 8,).8- ﬁT>

1€1;

LS (7)) A (8- )

1€y
K 1 - )
Lk, - Mr I SZ
S T = 7)o 2 208 = B 1)
mhl T(l — T)gmax i€T, k=1 i m/ ik kol = 2r

for any B € Bx(r), where ¢ = I(|eix] < hi/2) and i = (2ir, v) with z = >z,
v=3Y2¢/|¢|lx € P! and ¢ = B — 3,. Note that E(0%.,) = 1.

Following the prove of Lemma C.3 in He et al. (2023)[4], we have
2T <My > 2T <M
(zik, ) |<Zz'k;'v>‘ =5, = (Phl/(Qr)(<zikav>) > (2zik, v) |<Zik;'v>‘ =)

where @p(u) = w?I(Jul < R/2) + [u sign(u) — R]2I(R/2 < |u| < R) satisfying v?I(|u| <
R/2) < or(u) < v?I(Jul < R), wo(u) = 0, and @psr(su) = s*pr(u) for any s > 0 and
R > 0. Define

Do(v) = mihl > Z Sikm)r) ((Zik, v)) = % > Z Nir(2ik, ), (2)

icT; k=1 i€T; k=1

where Nix (2, v) = hl_ICikSOhl/(gr) ((zik, 'U>) At follows, we drive the lower bound of Dy(v)
uniformly over v € SP~L.

According to Condition (A5), there exist some constants f,; > fi; > 0 such that
fig < minjy<p, /2 fez(u) < maxjy<p, /2 fez(u) < fuy almost surely (over x) as long as hy is
sufficiently small. Then, we have

ha/2
fruhi < E(sklzin) = / feja(w)du < fo 1y (3)

—h/2

almost surely (over x). For r < hy/(4t1/4) with ¢1/4 defined in (1), we have

h
E [Sirn2r (Oinw)] > E {C¢k5§k,v1(|5ik,v| < 4_;,)]

h
> frih {1 —F |:5i2k,v1(|5ikv"~’| > 4_;)] }

> fuhi{1= swp B[(z,w)1(|(z,u)l > u)] |

uesSr—1
> 3 (4)
= i
Together with (2) and (4),
3
inf FE|D > — . )
56%31)3(1”) [ o(U)] Z 4nlfz,z (5)



Let N. C SP7! be an e-net of SP~!, which is a finite set satisfying that: for any
u € SP7! there exists w' € N such that ||u — u'||; < e. Define

[I(v) = sup {E[Do(v)} - Do(v)} = sup { ZZE aw(Zi, v)| — Nik(zik,v)}.

veEN: veN: e, k1

Next, we derive the upper bound of II(v).
Since 0 < pr(u) < (R/2)? for all u € R. We have 0 < Ny, (z4,v) < Iy/(4r)?. For
ik € {0, 1}, based on (3), we have E [N2 (zi, v)] < h; 'pigfuy. Define the function

(1) &
9i(zi,v) = oy ZlE i (i, v)) ] — N (i, ),
where z; = (21,...,2i,)". Let G be a countable set of functions from Z to R, and

assume that all functions g; (i € Z;) in G are measurable, square-integrable and satisfy
E[g,;(zl-,'v)} = 0. We have sup,, g 9 < 1 and

(4r

:T)L?E{RZ;E ik ((Zik, v >)}_Nik(<zz‘kav>)}2

u

sup E[gf(zi, ’v)}

9i€G

G
(4r)” LS BB (fn)] - Naltza) ) < Juldrs _ o,

Therefore, sup,.cg > icr, [9(z;,v)] < mC),. Since

sup ¥ gi(zi,v SuP E[Ri ((zir, ) — Rip((zir, )
gleg gz:l h‘ln ’UENE ; kz;
_ (4r)*m { B } _ (4r)*m
"o, ot VPO Dl = )

According to a refined Talagrand’s inequality in Theorem 7.3 of Bousquet (2003) [2] and
the elementary inequality ab < a?/4 + b? for all a,b € R,

(47)>m h? hiny, (41)>m
/ 4vhin, hiny,
+?”Lu /~L4fuz yhin,E } i yhun
hlm (4r) 2m 3(4r)>m
7M4fu l ’thnu /yhlnu
B ur ————— E II
[ (’v)} n V. m + 4 [ (v >] + 4r2m + 48r2m

[29pafuy  13vhyny,
E |11 ’
[ ('v)} t hym + 48r2m (6)

holds with probability at least 1 — e~ for any v > 0.
Now, we derive the upper bound of E[II(v)]. Since ¢ = I(|ex| < hy/2) € {0,1},
we have Gron, /@2r) (Oikw) = S5m0 Oikw) = Peph@r) (Sikdikw) = Ony/r) (Sikinw). Write

H('U) < E[H(’Uﬂ i hing, \/27 |:mfu,l<47”>4/114 i 2<4T>2mE|:H(v)]:| +% hin,

IA

IA
W~ Ot



Nzk(]k, ) = hz P/ 2n) ( Zk, ) with Z; = Grzik. Since pg(+) is R- Lipschitz continu-
ous, h™! ©Ony/2r) (Zik, v ) is ( L_Lipschitz continuous, that is, for any v, v’ € RP,

1 B _ 1,_ _
E‘%l/@r)((zzkm» - SOhl/@r)((Zik,’U/D‘ < 5‘(%@’0) — (2, V")) (7)

Moreover, for any v such that (z;;, v) = 0, we have N (Zik,v) =0.
Suppose that 71, ..., Z,, are m independent Rademacher random variables. Accord-
ing to Rademacher symmetrization, we have

sup( ZZN Zi, v )], (8)

E[l(v)] <2E

UENE €L
where Ni((zi,'v)) = > Nik(<2ik,v>) and z; = (Zi1,...,2in,) . Define the subset
Vi CRYM (N = 3,0, i) as
{1/— T ...,V?;L)T,Vi = (Vz'1,---,1/mi)T :

Vi,
Vie = (Zak,v), i=1,....m, k=1,...,n;, veN}.

Let ¢ie(vie) = (2r/h1) - ©n,/2r)(Vir). Then, ¢y is a convex function on its segment value
ranges and Ny, ((Za, v)) = B " onyen(vin) = (1/2r)¢u(va). Based on (7), we have
lo(v) — (V)| < |v—1/| for v,/ € R. According to the Talagrand’s contraction principle
(4.20) of Theorem 4.12 in Ledoux and Talagrand (1991) [5],

28 o (5 32t )| < 2 1522 (S

'UENE ZEIZ lGIL

SREI ]}

{:;;z[ > (S|}

zz@xm)

ZGII

| /\

(9)

Let hj = m’l ZiEIl ZZ ZZ;I SikZik,j - Note that E(Zl ZZZ:l Cikzikd') = (0. Based on (3),

2 o, 2
ZZ (Z %szg)] = %ZE Zn; (ni Z%%k,j)
b k=1

ZEZl 1€

_Zn’LZE glkzlk] = fUZ:Lln

€Ty

for j =1,...,p. Then,

(10)




Together with (6) and (8)—(10),

5nu pfu lhl 271“4fu l 13’yhlnu
E\D - ——1/ oy 11
5;1/\1/)'5{ [ 0(’0)} — Adr him 48T2m (11)

holds with probability at least 1 —e™”. Since for any v € SP~!, there exists v’ € N, such
that

sup {E[Do(v)} — Do(v)}

veSp—1

= sw {E[Do(v’)] — Do(v') + E[Do(v)] — E[Do(v')] + Do(v') — DO('U)}

veSP—1, v/'eN;

< sup { E[Dy(v)] = Do(v)} (12)

v'eN:

as ¢ — 0. Together with (5), (11) and (12),

_inf Dy(v) = inf {Do(fv) — E[Dy(v)] +E[D0('v)]}

vesSp—1

> inf E[Dy(v)] + inf {Do(v)—E[Do(vﬂ}

veSp—1 veSp—1

= velgpf 1 E[Dy(v)] — sup { — Dy(v) + E[Do(v)]}

veSp—1

> %f B 57% /pfuzhz /2’W4fuz 13vhin,
b hym 4812 m

holds with probability at least 1 — e™”. Consequently,

me L (B.87) = %me()

BEBx(r) ( )gmax vesr—!

H*”CHE 3nlf 5nu pfuzhz /27,u4fu,l _ 13vhyn,
( )gmax B hlm 487’2777, '
[ |

Lemma 2. Given an estimator B of B, denote 1/%2 as the estimator of R; = R;(a) based
on B. Let T = max(1 — 7,7). Under Conditions (A1)-(A4), for any € > 0, there exist

constants C., My > 0 such that for every M > My, the following hold simultaneously with
probability at least 1 — e:

(i)

[08) - Ui < e[ 2.

where Cy = (1 — 7)~'n, B is independent of M and p.
(i)
—||z-12{U _ ~1 P
ISu(B)l, = |27 {0u(8) - UnB)}|, < 000 2

where &, > 0 is the smallest eigenvalue of ¥ = E(xx?T).



Proof. Under Conditions (A1)-(A4), with probability at least 1 — e:

ty = |[T(8) - Un(8)|

M
1 - ~-1 _ .
ey E ch.A' i (Ri - R, 1) A; i [Kh( —&(B)) — 1, 'T}
_E , —1/2 —1) 4712 _YyimmBY
= 112]2%7 M liillz HA < - R ) 4 2 ‘K ( h ) Logo 9
1 L - yir — ;0,0
< - . E - o RL — Lik
“r(l—7) M “ sl HRz R; p VI RN K( h ) ’
<

e

S(l—T HUBC“ Co “

where the identity 771(1 — 7)7'7 = (1 — 7)~! follows from the definition of 7. With the
same probability, we have

183, = ||=772 (Tu(8) - Un®)], < &2(|0u(8) - Um8),

. 2
|
Lemma 3. Assume that Conditions (A2)-(A7) hold. For any v > 0, as long as h 2
(p+7)/M,
swp ([ Au(B)], = sup = 2{Uw(8) - Un(B,) - Hu(B,)(B-8,)}|
BEBs BEBs(r) 2

+
,S Cl”f’ ( th’7 + )
holds with probability at least 1—e™", where Cy > 0 is a constant depending on (T, Lo, 1y, fu,
Ry A1,y 43, gmin)-
Proof. Similar to the proof of Proposition S5 in Song et al. (2024) [6], we just need to
derive the upper bound of

sup
BEBx(r)

Au)]||, + suw
BeBx(r)

Au(B)||, < sup Au(B) - E[du(8)]] . (19

BEBx(r)

According to the mean-value theorem of vector-valued functions, for ¢ = 8 — 3, with

B € Bx(r),
E[AM(B)} = 2_1/2 </0 HM(ﬁT —|—tC) dt, C> - E_I/QHM(/BT) ¢

= <2—1/2 / CH (8,4 1€) di- SRS (B) 5 21/2<>.
0
(14)



Denote z; = ;X /2 and § = Zl/QC, we have

SV H(B,) 8T = MZ {zFa7?R A7 P82} (1)

Since for zj (1 <i< M, 1 <k <mny),

1 ZT(S -t — €;

=F [/+OO k() fou (276 - t — hu)du - zzT] , (16)

o0

where Ay, () is the kth diagonal element of A;(-) and z = £~Y2z. According to (15) and
(16), For § which satisfies ||d]|s < r,

HEI/QHM@ +1¢) ST - ST H (B, B

2

M
1 _ 14—
=2 E{z;fAl- VERTIAP (B, 4 1C) — Ai(B,)] 2 |
i=1 2
(1_7-)€m1n Mz 1 k=1 2
+oo
1—7 fmm H/ f|;B PANE t—hu) fdm(—hu)}dwzzT 2
nuLgt 2
<=5 s {E(E w0l }- 6]
Ny i3 Lort
< ufsmu
< Dby onl (17)
where C, = 7(1 — 7)&min. Together with (14) and (17),
sup (|[E[An(B)]|| < 0.5 C ' Long,usr®. (18)
BEBx(r) 2

At follows, we derive the upper bound of supgepy ) |AM(8) — E[An(B)] Hg Define
the centralized gradient process

Uy (B) =%"1? U (B) — Ju(B)]
such that Ay (8) — E[An(8)] = Ui (B8) — Ui (B,). For & which satisfies [|8]|s < 7,

sup (B) = E[An(B)]|| = sup (8) — Yu(B;)
BEBx(r) 2 peBx(n) 2
= sup ||V (ﬂT + 2_1/26) —Uy(B,) ,
[16]l2<r

Let AM,()((s) = \IIM(ﬂT + 271/26) — \I/M(,BT), then AM,O(O) = 0 and E[AM,O(é)] = 0.
We now drive the upper bound of sups,<, An0(d) based on Theorem A.3 in Spokoiny

8



(2012) [7]. Take the first-order derivative of Ay o(d) with respect to 4, we have

VApo(d) =%

|

Dy(8, +7125) - Hy (8, + 27/%)| - 571/

11

(AN
Q|

~
i Mg

{ZIA(8, + 57/26) 2 — Bzl A(B, + ©71/%6) ] |
=1

r

11

> {z"’“Aik’ (8, +=7128) 2, — Blzulun (B, + E71/28) ] }

r i=1 k

Q|
=|
NE

n;
1

S

I
Q-
=|-

{k}h( 5 ezk)zlkzlk E [k'h( 5 - eik)zikzg]‘c} }7

i=1 k=1

where ky,(-) = (1/h)k(:). Write ki s = kn(2}0 — €ix), then 0 < ki 5 < ky/h. According
to the proof of Proposition S5 in the supplementary of Song et al. (2024) [6] and the
elementary inequality |e% — 1 — u| < u?e*!/2, for any w,u’ € SP~! and A € R,

/e

E[exp WA (u, ¥ As10(8)u
WM/ 1 &RE ,
exp { 2C, <U, i Z {kik,ézikziTk — E(kikszinzy) }u >}]

<F >3
— ﬁE exp {a/\%g/[ :1 <u, {kik,gzikz;fk — E(kipszinzs,) }u’> }]
< ]Aj {1 +E L%% :Z (u. {kinszinzh, = E(kiszazh) }u>1
+ %E (g <u, {kmziszk E (ki szinzh) }u,>)2
Bt st
: ﬁ {1 ! 22;2;7\;2]5 nizg {ki’“’5<zi’“’ up(zig, ') = E(kiro(Zik, ) (zin, ') }2

Ry, A m u A Mnu /
X exp{ | 2’\0/7\4 nzz‘ Zik, W zlka >|}exp{f|a%‘0—\/rj_\4 E[<Z1k7u><zzk7u>}‘}] }

Uz

il N2 Mn? 1 , ) 2
< H 1+ WE Z {kik,6<zik7u><zika u > - E(kik,6<zik>u><zik7 u >)}
=1 v k=1
X exp Kul AV M, "M"”RZ. )z, )| bexp SulAlVMn,
ha2C, M 1T AT a2C, M ’

(zik, w)(zi, w')|. Let [A] < min {n/( (4nuku VM), 1/ (n, fuM)}C, M,

[
where k' = argmax; <.,



then k,|\|VMn,/(hC,M) < 1/4 and f,|\vVMn,/(a3C.M) < 1. Consequently,

E [ exp {AW(U, VAo(8)u)/a; }]

al NMn2e [1 & , ) 2
< H 1+ WE - Z {k‘ik,a(Zz‘k, u)(zip, u') — E(kins(Zin, w)(zi, w >)}

x exp { | (ziwr, w) (a0, w) |/ <4a?>ﬂ }

IN

11 {1 #2815 { e e )+ (B stz w) (o)

i= =

X exp {‘<Zik’7 u><zik’>“,>‘/(4a%)}} }

M n;
A2Mnu6 1 . 2 Z.a .Uz, /u/ CL2
1

k:l

=

)‘2Mn%te 2 2z, 0wz 0,1 )|/ (4a?

M
AN Mn?e 1 2
. {2z u) {2z )|/ (4a?)
H{l 402M2 nl ZE{ Zk‘(s ’Lk‘a’u’><z7,k;,u>) € k ik 1 }

=1

| N

2
+A4Mgn if [ W,u>2/<2-4a%>+<zw’“'>2/(2'4a%)}}
‘o2

M
N2 MnZek, P2z )z N/ (Aa2 N2 Mn2ef.,
< E {1 + WE{(<zik/7u><zik/7u >) €|< i W) (Ziwr W)/ ( 1)} + BW}
M 2 2 2 2 1/2 AW 2 1/2
<11 {1 n %% [ Bz, u)Selz ) /(4%)] [ Bz, wYhe =) /(4%)]
a
i=1 1~r
N 3)\2Mniefu
PYSEITE
< al NMn2ek, . ., AN Mn2ef, al C’2Mn2)\2
= 11 LS ey, 00 T e 11 2CEMEh

,’:12

C?n2 \2 C?*n2\?
< u
= {202Mh} eXp{ 2021 }
where C' > 0 depends on (fy, Ky)-
Let vy = Cn,C~*h™'/? and g = min {h/ Inyky), 1/ (N fu) }C’ \/M/2. After applying
Theorem A.3 of Spokoiny (2013) [8] to the process {vMAy (8 )/al,d € BP(r)} with
BP(r) = {6 € RP : ||8]» < r}, we have

1

()

dp + 2+
Mh

sup (19)

BeBx(r)

(8) - E[au(B)]|, <6 ¢ *Om,

with probability at least 1 — e~ for any v > 0 as long as h > 8 C 'k, nu/(2p +7v) /M

10



and M >4 C72f2n2(2p + ). Together with (13), (18) and (19), for any v > 0,

T

I+ 2
< 0.5 C ngpisLor® + 6 - Cnya?ry ) 220

Au(B) 2 Mh

sup
BeBs(r)

holds with probability at least 1 —e™7.

Lemma 4. Assume that Conditions (A2)—(A7) hold. For any v > 0, as long as M 2

P+,
P+ 2
<Oy (2T 1
2N02< i + )

holds with probability at least 1—e~7, where Cy > 0 is a constant depending on (T, Ly, ny, K2,
ay, h7 gmin) .

Proof. Assume that x; (1 < i < M,1 < k < n;) satisfies Condition (AT7). Let wy =
K(— (ya — x}.B,)/h) — 7 and w; = (@i, ..., @m,)" = K(— (y; — ®:6,)/h) — 1,, - .
Denote Q; = A;l/QRi_lAi_l/Q. According to He et al. (2023)[4], for any € € (0, 1), there
exists an e-net N, of the unit sphere SP~! with cardinality |N.| < (1 4 2/¢)? such that

I=a B, = [ =20 (8,)

|={uus.) - E[UwBI]}, =

1 M
i=1

M
< (1 —¢) ' max <u, % Z {Z?szl — B[z} Q] }> :

ueN: —
1=

2

Let X, ; = u"2]Q,;wo; for each direction u € N, we have

where @ = K(—¢/h) — 7 with ¢ the random variable of ¢, = yu — . 3,.. At follows,
we derive the upper bound for E(w?|@), which involves calculating E[K?*(—¢/h)|z] and
E[K(—¢/h)|x]. Note that

o (&)

m} - /_ e (%t) fadt=h [ K)o (—uh) du

OO—i—oo _OO—I—oo
=/ K*(u)dF,y (—uh) = 2 ) K(u)k(u)Fyy (—uh) du. (20)
Let . .
0<u= /_ uk(u) K (u)du = /0 E(u)(1 —k(u))du < K. (21)

11



Since Fij(0) = P(e < 0|x) = 7 and
—uh
Foz(—uh) = Fz(0) + /0 fea(t)dt
—uh
=7+ (—uh) fiz(0) + /0 [fegx(t) = fe(0)] dt. (22)
Based on (20)-(22) and Conditions (A5) and (A6), we have

e[ ()

m} P / R K (w)du — 2510 0) / " k() K (1) du

o0 — 00

#2 [ T hK@ [ falt) - (0

+o0
<7 — 2hfe(0)uy + Loh? / w?k(u) K (u)du
S T+ L0K2h2. (23)

Similarly to (22),

2| (7)

Based on the Lipschitz condition of f«(:),
el (5) ] -

7 —0.5Lroh® < E {K (%ﬁ)
Together with (23) and (24),
9 o [ —€ —€
E(w|le)=FE |K*|— | || —27E |K | —
h h
< 74 Lokoh* — 27’(7’ — O.5Lofi2h2) + 72
=7(1 —7)+ (7 + 1) Lokah® = C2.

m] e / ) /0 - [fua(t) — f1a(0)] dtdu.

o0

S 0.5L0/€2h2.

Therefore,

:c] < 7+ 0.5Lgkoh*. (24)

w} —1-7'2

Therefore, >-M, E( M)Q < C72Mn2C?. Since |w| < max(1 — 7,7) = 7. Based on
Condition (A7), for ¢« > 3, we have P(|z;| > aoa;ffy) < €77, where qg is a constant
depending on a;. Therefore, for all v > 0,

Elwz;|' = E[|lz;|'E(lw|'|®)] < 772 By [|2] E(w’|)]

“+o00
< 772020t} / Pl = agoj)*y)dy
0

—+00
< 7 202a60L/2 / 7L e Tdy="7" 202 ¢ L/Q !
0

1/]

!
< 56’3@3% [27’@00

12



Thus, E(|(u, zgw@i)|) < (11/2)C2a(27ao) "% for « > 3. This implies that for all integers

L >3,

According to the Bernstein’s inequality in Theorem 2.10 of Boucheron (2013) [1], for all
v >0,

M M
Z (]XM ZE(|UTZTQ w,; ) < EZE(
i=1 =1

< E'MC’;%inag(Q%aonuC’r_l)L_Z.

n;
ZW; zikwik>
k=1

27 2y
C.,- M + TM

M
gé% <u, % Z {zZTQZ'wZ — E[z?ﬂlwl] }> < C’T_laonu

=1

holds with probability at least 1 —e™7. Applying a union bound over all vectors u € N,

2y 2y

oo - o] = s o/ 2]

1—6

holds with probability at least 1 — el°e(1+2/P=7 " After taking e = 2/(e? — 1) and replacing
v by 2p + v, we have

4 2 4 2
HE‘I/Z{UM(BT) E[U(B, }H < 1.46 Clagny |Cryf p]\j} TyF p;} 71 (25)
with probability at leastl — e™7. Also because
| M
* -1/2 - T
w HE E[U (57)}“2 = M;E[zz Q] 2
1 Ln
< — Y 2 EJ|K(—€/h) —
a3 eI e
n 400 —hu
< sup {Ez / k(u)/ [fe1z(t) = fee(0)]dt - du zTu}
r ueSpP—1 —00 0
< 0.5 C 'y Lokoh?. (26)

Together with (25) and (26), as long as M 2 p + 7,

|z U,

= [ {enatsn - s )], [ erws. ],

Adp+2y  _4dp+ 2y
Cr/ i +7T i

holds with probability at least 1 — e™”, where C5 > 0 is a constant depending on
(7, Lo, My, K2, a1, by Emin ). This completes the proof. [ |

< 1.46 C’[laonu + 0.5 C[lnuLomghQ
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Lemma 5. Under Conditions (A2)-(AG6),

2
§O3T7

2 [Hy(8) - Hu(8,)] (8- 8,)],

sup [[Su(B)], = sup
BEBx (1) BeBs(r)

where C3 > 0 is a constant depending only on (7, Lo, Ny, 143, Emin) -

Proof. For ¢ =3 —,, 8§ = 2Y%¢, and v = §/||6]|2, we have

sup [|Z1/? [HM(ﬁ) - HM(@)} ¢
BeEBs(r) 2
= s ZE{ 22T [A(B) - Ai(B,)]w R |

BEBs(r 2

1 zZhd — € e\

= sup sup E [ 2} Q;diag (— {k (”“—) —k ( )} ) zié]

d€BP(r) ueSr—1 Z h h h k=1
< su su Elu'z; k(u fw 256 — hu) — fo(—hu du-ziTé

66]331’1?7")11681?1 M Z Z : —0 | g ) | ( )} ’
< Rulo sup sup E(| Y2) - |I6]13  (by Conditions (A5) and (A6

2
C. §€BP(r) u,vesSr—1
L

< M Oug r? = Cyr.

C,
Lemma 6. Under Conditions (A2)-(A6),
sup (|Fara(B)ll, = sup |57V [H(8) — Huna(B)] (8 — B;)
BEBx(r) BeBx(r) 2

< [Ci(1 = L7Y) + Cs|hy — h] r,

where Cy > 0 is a constant depending only on (T,My, fu,&min), Cs > 0 is a constant
depending only on (7,My, Lo, K1, &min) -

Proof. Define H, ,(8) = E [a:;FQ,AZ(,B)m,}, where the kth diagonal element of A;(3) is
k ((z}0 — €x)/h) /h. Then, we have the decomposition:

H2—1/2 [HM(B) - HW(B)] B8-8),

< || o ) - S Hz-,hw)] B-8,)
(=S [Hu(®) - HunB)] (8- 8.) (27)

Define the coefficients a;; = 1/M — 1/m for i € 7, and a;; = 1/M for i ¢ Z;. Then,
Zi]\il a;y = 0 and Zz]\il |ai| = Zz’ezl(l/m —1/M) + Zi¢Il 1/M =2(1 —m/M). Thus,

% ZHM(B) - %ZHZ}L(,B) = ZCLMHM(,B), (28)

i€y

14



Next, we bound the norm of each term in (27). First,

o THW(B) (B - By
cebs(r
1 To—en))"™
= sup sup |E [uTziTQidiag ({—k (M>} ) zi] 5‘
6€BP(r) uesr—1 h h k=1

1 >
< sup sup |— Z E {uTzik/ k(u) feu (25,6 — hu) du - zﬁé]
d€BP(r) uesr—1 C, 1 )
Junu Junur
< 5 sup sup E([(z,u){z,0)]) 0] < =5~ (29)
r 6€BP(r) u,veSr—1 r
From (28) and (29), we obtain:
M
1 1
sup | =7V = Hin(B)— — > Hiu(B)| (8-8,)
BeBs(r) M ; m gz:l )
< Z lai] sup |[Z7V2H,(8)(B - B,)
,BGBE T) 2
funar m
< - — = S
<2 (1 =) & =Cy (1-5) (30)
where Cy = 2 C7 fun,.
For the second term in (27), we have:
B!
sup (|72 3 [H,(8) — Hil(8)] (8 - 8,)
BeBs(r) mi )
< sup sup Z ZE{U zzk/ k(w) [ fez (25,6 — hu)
6€BP(r) ueSp—1 €T,
— fou(230 — hyu)]du - z;ﬁ]
o o
< ULO/ lulk(u)du - |hy — k| sup sup E(|(z,u)(z,0)|)-[d]-
r —c0 6€BP (1) u,veSr-1
< C'nyLoki|hy — hlr = Cs |hy — hlr, (31)
where C5 = C"'n, Lok;. Combining (30) and (31), we conclude that
sup ||=V2 [HM(B) - Hml(ﬁ)} B-8,)| <[cia—L")+Csh—hl]r.
BEBx(r) 2
|

Lemma 7. Assume that Conditions (A2)-(A7) hold. For any~ > 0, as long as m 2 p+7,

[P+
r
m
holds with probability at least 1 —e™", where Cg > 0 is a constant depending on (T, Ny, fu,

ay, gmin) .

sup || 9ms(B)||, = sup
BeBx(r) BEBx(r)

2 Dy(8) — Huna(8)] (B 8,)|, S Co

15



Proof. The proof is similar to that of Lemma 4. For any € € (0, 1), consider an e-net N
of the unit sphere SP~! with cardinality |N.| < (1 + 2/¢)?. Then,

Hzfl/z |:Dml(/8) — Hm,l(ﬁ)} (B-p8.) )

_ H% g;l {Z;FﬂiAi(/B)Zi — E [2FA(8)z] }5

2

< (1 —¢) ' max <u, % Z {ZiTQiAi</3)zi - E [zz‘TQiAi(/@)zJ }5> :

ueN; —
1€l

From Condition (A7), P(|z;| > apy) < e™7, where z; is the jth component of z and a is
a constant depending on a;. Thus, for any integer 1 > 2,

E(|z") = af / ' P(|5] > agy) dy < af / ' Tle dy = agel,
0 0

which implies that for any w € N, E (|(z,u)|") < af!.
Define X,,; = uT2]Q;A;(83)z;8 for each direction w € N.. We bound the second
moment:

max E (XW)Q < sup max E [uTziTQiAi(ﬁ)zi(ﬂz
ueN; 4 S€Br (r) WEN: 4
’LEIZ ZGIL

1
< —; sup max » FE [uTziTAi(ﬁ)zié}Q

r 0€BP(r) ueN: ieT,

< — Z sup maXE

7’ €T, (SE]BP ’U.G €

Zu zzk/ () foz (25,0 — hyu) du - 2,6

m 2n2

: 2
“ U gup max F((z,u)(z,v)) -|d|>
Crz ée]BpI?r) u,veEN; (< > < >) || ||2

mfinr?
For « > 3, the (th moment is bounded by:
T L
}}éaﬁjZE(Xw < sup maXZE z; QiAi(,B)ziJ]

ueN,
iEIl o€B? (T) c 'LEIZ

< —Z sup maXE

SeBp(r) WEN:

Zu - / () fn (28 — hyu) du - 21

T’LEI
me L

< uusup max E(|(z,u){z,v)|") - ||8]"
CL ée]}gp(r)ume/\/g <|< >< >|) “ ||2
mfbnl,,r.L

< u_u 2! 2t

- CL ( )

22,244
domfingrodlag

2 C?

IN

1—2
funurad ((2¢)! 1/(=2)
C, 124!
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Applying Bernstein’s inequality [1], we obtain that with probability at least 1 — e~ 7,

sup max <u, % Z {Z;FQZ'Ai(,@)Zi - F [z;rQiAi(B)zi} }6>

ber(r) wEN: ieT
nual 3 21 /(=2

< Juragr |, 3y (20! <o J2+ 2,
C, m 12! m m m

Following the proof of Lemma 4, after choosing an appropriate €, we can conclude that

P+
.l
m
holds with probability at least 1 — e™”, where Cg > 0 is a constant depending on

(7—7 nuan7a17€min)- .

Lemma 8. Assume that Conditions (A1)-(A4) and (A6) hold. For any ¢ > 0, there
exist constants C., My > 0 such that for every M > My,

sup
BeBs(r)

=2 [Dyi(8) ~ Haa(8)] (8- 8,), 5 Co

p3
C7C Va1

Aﬂﬁ%Ng—meﬂw—BJ

s [|€na(B)]l, = sup
BEBs BeBx(r)

holds with probability at least 1 — ¢, where Cy = 7711 — T)*lﬁzjl/{unuBQ.
Proof. Under Conditions (A1)-(A4) and (A6),

sup |22 [D,1(8) — Di(8)] (8- 8,)

BEBs; (r) 2

~ sup  sup }:uT’R41”[A; —IQJ]A;”%MQﬂzﬁ
d€BP(r) uesr—1 ieT,

< — Z sup sup

T(1 = 7) seBr(r) uesr—1

T -1 1 ylk’ zkﬁ )
U z; [Rl - R, ] diag <{hlk ( I )}k1) z;0

zEIz
e 1], 5 )
SN sup  sup ZiUjy - i Y L
AT=1m & sciacsra L2 S
< _mC [p —Z sup sup (||zaul, - [2:0]],)
=T VM S ity e

Ko Cs P
< —2F 2= sup Z; 4

r(1—n)h V' M é;MWT|’H2H|”

o D /iuCT H 1/2
_ mCr 1 l 1,
< VA w = s e

IN

Ko Cor P 4 9 /fuC r
e 2 b /2H N ;
e [ e < e S el

1€ ’LEI
Ko Cor P 9

_— ‘nup B

u—fgmv b
B ﬁunuB C.r _oC

1—T@mv 6 V '

holds with probability at least 1 — ¢. |

I/\
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Lemma 9. For any v >0, 0 <r < h/(4t025) and s > 0, there exists fi; > 0 such that

DY (8.8,

L,

inf
BessnCs@ kCol |8 — B 1%
2dh,; log 2p 2ymy 137hmu
V hym 481%m

Proof. Define the parameter set By(ri,72) = {¢ € R : [€]li < r1, [[€|ls < 7o} for
ri,m > 0. Let ¢ = B — B. € By(4d"?r, r) for B € Bs(r) N Cx(d). From the proof of
Lemma 1, it’s sufficient to derive the upper bound of

E{C . sup [ ZZ (Z SikTik, C/||C||E>>

(4d/2r, r) €T,

3n
> _lfll

holds with probability at least 1 — e™7.

<arnp| Ly, (z <w> A S Y (z <w> ,
’LEIZ ZEIZ
where E stands for the (conditional) expectation over 71, ..., Zys given all the remaining

random variables. Based on the Hoeffding’s moment inequality, we have

1/2

21og(2p)
< Bl £108\2P)
ZZ (Z %wzk) max N o, Z (Z %f@m) m
ZEI[ ZEZ[ k=1
21log(2p)
< ma x _
n Y Blog(2p)
Ty, og(2p
< —zz%) py2lot8)
(m i€ k=1 m

Since E(Gk|xi) < fuilu, we have
2dh; log(2
By s |2 (S /Gl ) | b < angpem 20s)
¢EBy (4dt/2r, 1) zEIl 1 m

After using the similar arguments in the rest proof as that in the proof of Lemma 1, we
obtained the claimed bound. |

Lemma 10. Assume that Conditions (A1)-(A7) hold. For any v >0 and r > 0,

Zu) = sw ou(®) - Elou®)]|

BEBs (r ﬂ(CE

[03 [2d log 2p /log +’y+cd1/210g D) + v
Mh

holds with probability at least 1—e™", where c3 = 20 Cinyk,B?, ¢y = C[l(2ﬁufuau)l/2u4/
with o, = maxi<j<,0jj, and cs = (52/3)C;  'n,k, B>,
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Proof. Note that 8 — yi = @, — €, Where € = yy — @, 3,. Write x;; =
T
(Titjy -y Tin,j), We have

on(8) = Eloun(8))

sup
BeB(ri,r2)

M
1 wZC — €; —€;
= max sup —§ 1—1@{?9{1{( )—K( )]}
1<G<P ¢eBy(ry,ra) 7 h h

[e.e]

1=

M
a 1
= max  sup — E) s (
1<7<p€630(T1 2) M; g ‘
2 max Yo,
1<5<p
where B(ry,r5) = {B € R?: |B—B, L <7, [18-8.ls <12}, A1=E)0(-) = () —E[p(-)],

K((wz El)/h) = ( (( ¢ — ezl)/h) oo K ((wml ezm)/h)) , and K(—€;/h) =
(K (—ein/h), ..., K (—em,/h)". At follows, we derive the upper bound of 1) ;.
Since k(-) = K'(+) is uniformly bounded, we have

T
wikC — €k —€ik Ky | T
() () i
Therefore, for ¢ € By(ry,rs), we have
T — € —E€;
(@< s Ll ol |5 (4750 <k (5
CEBo(r1,r2) CEBo(r1,r2)

Ky
< sup {umi,ju,uniugw—i;-Hwikumucul}

CEBo(r1,72)

J

1 Ky

< [
\/n_zlg}fix |35sz| C. T h 11232‘ |Izkj|7"1
Nuku BT

- C.h

and

G4(0) = By [16 (B0 g (202 :

-/ (%) -K (_—“)rfw%(u)du
/_ " (B ) K @] ot
@hor [ { / L ( ¥ h“fc) ] st (o)
et [ [[ (o 5]
sor{ [/ [0 (o4 75) o] o)

(@35,0) -

I
=

;‘I>—‘

IN

IN IA

:lb >| = tl“ﬁ
—
8
o
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Denote K;(8) = K ((z;¢ — €;)/h) and K;(8,) = K (—¢;/h) for the sake of notation, we

have
B[v,(Q)] = E[e],0u(a)(Ki(B) - K.(8,) (Ki(8) - Ki(B,) " @)e,]
= Emi{ngﬂi(a)Eezwml [(Ki(B) — Ki(B,)) (Ki(8) — Kz‘(ﬂf))T} Qz‘(a)mz‘,j}
< B {1 0(0) B, [(Ki(8) — Ki(B,))" (Ki(B) — Ki(B,))| L (@), |

1
S @Eml

= fubu
ngwm Z gzk(C)] < hC?2 Ea:i
=1 r

n;
xl i Y (w4C )2]

k=1

Jubiu Juku 1/2 1/2
- hCzE z[ C ZC} = he? [E(%Tgmu)ﬂ [E(CT%T%C)Q}
futiun uui/ 2%7“%
< he? : (32)
where E(x}x;;)* = E||zi21/2ej}|;1 < nimHElﬂejH;l = napu0;; with the j-th diagonal

element o, of ¥, and E(¢TxTz,¢)? < n2||ZV3¢||4 < n2rd.
According to the Bousquet’s version of Talagrand’s inequality in Bousquet (2003) [2],
for any v > 0, we have

/2 1/4 1/2 1/2

5 u' K Mara [ 2y 1\ nyk,B?riy
Yo < 2E(Tur iJ 44 o) 1 (33
v < 7B Targ) + C, Mh+( - 3) C,Mh (33)

with probability at least 1 —e™7.
At follows, we derive the upper bound of E(2y,;). Let Z1,..., Zy beii.d. Rademacher
random variables. Based on the Rademacher symmetrization,

1 M
— > Zabi (C)
¢eBy (7‘1,7‘2) M 'LZI !

1 M
=92F {Ez U ; Zz‘l/)i,j(C)‘ ] } ; (34)

where the expectation E is taken with respect to Zy, ..., Zy. Write ¢;;(¢) = ijQicpi(wiC)

with ¢, (z;¢) = (gpil(a:?lC), e Ping (T, ))T,Where o (+) satisfies i, (0) = 0 and | (u)—
oir(v)| < Kyh™tu — v]. According to the Talagrand’s contraction principle in Ledoux
and Talagrand (1991)[5], we have

Ey sup Zibi i(

{CEB()('I‘1 7‘2) Z J ‘ }

| M

=Ey sup  |— > Z; [wlTchpl(wlC)}

{CeBo(n,m) M ; !
1 M n;
() |

i=1 k=1

2Ky
< max |z |- Ez su
— CLh 1<i<M,1<k<n | Zk’j| {CEBO(E,M)

E(Yy;) < QE{ sup

sup
¢EBo(r1,r2)

QIQUB'I"l

(35)
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Based on the Hoeffding’s moment inequality,

1/2

1 & = 1 L& ’ 2log(2p)
ool a3 ()| < (432 (o) s
= =1 o i=1 k=1
. M s 1/2
1y, 1 2 2log(2p)
cs(Fr(iza)) P

Together with (34)—(36), for any j =1,...,p,

dnyk,B*ry  [21og(2p)
E(T ) < )
( M:J) — Crh M

(37)

Take r; = 4d'/?r, ro = 7, and 7' = log(2p) + . Combine with (32), (33), and (37), we
have the claimed bound. |

3 Proofs of Main Results

3.1 Proof of Theorem 1

Theorem 1 (Restatement of Theorem 1 from main text). Assume that Conditions (A1)~
(A7) hold. Letry 2 r, > 0. For any -y, > 0, suppose the bandwidths hy > h > 0 satisfy
max (7o, (p+’y)/m) Sh <1and \/(p+7)/M < h. Then, conditioned on the event
Eo(ro) N EL(Ty) NEL(TL), there exist constants C., My > 0 such that for all M > My, the

~(1
one-step distributed estimator Bl( ) computed on the [-th machine satisfies

~(1) P+ p+vy C. [p3 -1
||/6l _ﬁTHESC< Mh + m +h_l M+hl+1_L ‘7”04‘7”*

with probability at least 1—3e~"—&, where C' > 0 is a constant depending on (T, Ny, fu, Ku, 43,
ay, LO) Ba fpv fmin)-

Proof. Assume the event Ey(rg) = {B(O) € Bz(ro)} holds. Set roc = hi/(4ig25). Let

B = ,/(;'l(l) be the one-step estimator that minimizes 25\04)1(/6) with respect to 3 on the [th
machine. Define an intermediate estimator EU =0, + U(,@ — 3,), where v = sup {u €
0,1]: B, +u (B B,) € Bs(roc } is the largest value of u € (0, 1] such that the convex
combination of 8, and B: (1-v)3,. + vP3 falls into Bx(ro). If 8 € Bx(ric), v =1, and
B ﬂ, otherwise, if B ¢ Bs(roc), v € (0,1), and ﬁ falls onto the boundary of Bs(rec),

that is, 8, € OBx(110c) = {B €R? . ||B - B, ||z = roc}-
Based on Lemma F.2 in Fan et al. (2018) [3] and the first-order optimality condition

VZS\%(,B) = 0, we have

DY (B,.8,)<vDY <ﬁ6> v<vfﬁ%<ﬁ)f3—ﬂ>

L M,1
G R |

(38)
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Based on Lemma 2, given any v > 0, as long as (p+7v)/m < by S 1,

D(E(“)L (B,8,) =05 C e fi- 18— B85 (39)

N
holds uniformly over all 8 € Bx(r,.) with probability at least 1 — e~ 7.
0)

Note that VLU, (8) = v£%,(8) — v£9,(8"”) + v (B"). Since

- D,.(8")B" -8.).

vE8,) =0u(B") - D,.(8") (8" - 8,)
—Uy(B") - UuuB”) + Un(B”) - Un(B,) +Un(B,)
- D83 -8,
_ . (B(O) U, (3(0))

According to Lemmas 2-8, as long as h 2> /(p +7)/M and m 2 p + 7,
< [ou @], + [0, + Imta.

o @), + [5:™)

+[omi B, + a8

_ | p? /p+7
Sfpl/QCOCE M+Clr< M—h—i_r)
+02 (\/%—F}ﬂ) +03 7”2+ [C4<1—L71>+O5‘hl—hu7"
[Pt o
+06T m +C7C€hl Vi

holds with probability at least 1 — 3e™” — 2e. Then, conditioned on the event Ey(rg) N
E.(T) NEL(Ts), as long as hy > h > 0 and h; 2 719,

P+ p+vy C. [p? .
<O\ Sty 1L »
LS ( R +hl e ro+ 7

(40)

|=ev i s.)

|=evERs.)
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holds with probability at least 1 — 2™ — &, where r, = O,(p/V M + h?).
Together with (38), (39), and (40), conditioned on the event Ey(ro) N Ex(Ts) N Ex(T4),

’ B, - B, L =2 Cr(kani fug) ™ | S2V LY (8,) ,

_ P+ p+vy C. [p? 1
<2 . ! R R T, . .
~ Cm(KJ nlfu) {C ( Mh + m + hl M + l+ To —+r

(41)

holds with probability at least 1 — 3e™ — . Let the bandwidth h; > h > 0 satisfy
12l 2 max(ro, ry) and v/ (p +7)/(Mh)++/(p +7) /m~+Cchy /PP [Mh+1-L71 S 1,
so that the right hand side of (41) is strictly less than 7. Then, the intermediate
estimator BU falls into the interior of the local region Bs(r,.) with high probability
conditioned on the event & (ro) N & (7)) N E.(7,). Note that if 3 ¢ B (7o), B, lies on

the boundary of Bx(71,.), which is a contradiction to (41). Therefore, B =3, € Bx(710c)
and the bound (41) also applies to 3.

3.2 Proof of Theorem 2

Theorem 2 (Restatement of Theorem 2 from main text). Assume the conditions of
Theorem 1 hold. For any v,e > 0, conditioned on the event Ey(ro) NE.(T) NEL(Tx), there
exist constants C,, My > 0 such that for all M > My, the S-step distributed estimator

~(8
Bl( ) computed on the [-th machine satisfies

H//B\l(S) - ﬁ’THE S./ 193 “To T+ T S_/ T

with probability at least 1 — (28 + 1)e™ — Se, provided that 9571 -ry < r.. Here, ¥ =

O(p,m, M, L, Iu, h,7, Cc) = C{/(p +7)/ (M) +/(p+ 7) fm+ Cehy /PP /M +hy +1 =
L'}, and the number of iterations satisfies S Z log(ro/r.)/log(1/hy).

Proof. Given the s-step (s > 0) estimator ,/6\1(8) of B on the /th machine and denote
56 A(0)
B, =3 ', we have

5 2VEB,) = 64 (B7) + 21 (B”) - 51(B"”)
+ 510 (B") = 9ma (B + €ms(B) + Tui(8,).

Therefore,

ERELE

< |eu@)|, + 2w B, + |5 B, + 3B,
#[oms B[, + [ eneB)], + It (@2

Define the “good” events for the sequence of iterates {B(s)}fzoz
55(7”5) = {//B\(S) c ]EE(T'S)} , §S= O, 1’ R S,
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where rg > 1 > .-+ > rg > 0 are some sequence of radius to be determined. Let
Toe = 1/ (470.25) be the same local radius defined in the proof of Theorem 1. According
to Lemma 1, as long as (p+v)/m S h S1

DY (8,8,) =05 Cplranfi- I8 - B, % (43)

L,

holds uniformly over all 3 € Bx(r,.) with probability at least 1 —e™7.

1 ~(s+1
Let ,3 ) _ ,Bl( v be the update of B on the Ith machine in the (s + 1)th iteration.
~(s+1
Define an intermediate estimator ,Bi W 8. +v(B — B,) (a convex combination of

~(s+1) ~(s) .
I¢] and 3.). Assume that 3, € Bx(7,.). Based on (38), (42), and (43), conditioned
on the event &y (ro) N E(T) N EL(Ty),

~(s+1)

3.

_<E[EevER s,

2

e (Jou ) o

Gl

3B, + 30 B)], + ens B, + Izt )

Sl_i1<HAM(B(S))H +H3M(f3() +‘3M,I(B(S))H2

@], + en@)], ). 2
where & = 0.5 C, ' k.n; fi;. Define the event
70 ={ _sw {lau@, + 5B, + |56,
BeBs(r)
9 B, + €@} < 00+

where 9(v) = C{\/(p+7)/(Mh) + \/(p+7)/m + Cch; ' \/pP*/M + hy + 1 — L7'} (for
some C' > 0) such that F(r) holds with probability at least 1 —2e™" —¢ for 0 < r < hy.

Let &oc be the event where the local strong convexity in (43) holds. From (44), at
the first iteration, conditioned on the event Ey(rg) N E.(7y) N Eu(Fs) N Eioe N F(10),

A( ) < ri=R () crg + RO (45)

From the constraints on (hy, h,70,7.), we have £ '9(y) < 1, ry < rige < hy, and 71 <
~(1 ~(1
ro. This implies B() = Bi) € Bx(roc), which in turn certifies the event & (r) =

{B“) & Bx(n) }

Next, we assume that for some s > 1, B(S) € Bx(r,), where 7 := & 19(y) - re_1 +
Flr, <r,qpandr, <rg foralle =1,... s According to (44), at the (s+1)th-iteration,
conditioned on the event & (rs) N E.(7x) N E(T) N Eloe N F(15),

~(s+1
= <rgpr = RTO(Y) s R (46)

-6,
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~(s+1
Note that re; < &719(y) - re_1 + K1 = 74 < 7roe. Therefore, ,ij+) falls into the

. . . . . (s+1) (s+1) .
interior of By (roc), which implies 5 = 5 € Bx(roc) and certificates the event

~(s+1 ~(s+1
Esi1(rsq1) = {[3( ) € Bg(rs+1)}. Consequently, [3( v € Bs(rs11) C Bg(rs) and the
~(s+1
bound (46) also applies to 5( Y with ro 1 < r,.

Repeat the above arguments until s = S > 1. Since for every 1 < s < 5, E(rs) holds
under the event E_1(rs_1) N E(Fx) N Eu(Fs) N Epe N F(rs—1). Conditioned on the event

Eo(r0) NEL(Te) NEL(Ts) N Eoe N { ﬂf:_& ]—"(7“5_1)}, B(s) satisfies the bounds

~(9)
|2
Since ry = {F19(y)}oro + [1 — {E9()}] /1 — kI(y)] & rs for s = 1,...,S. Then
S = [log(ro/r.)/log(k/V(7))] + 1 is the smallest integer such that {&k=19(y)} 1y < 7,.
Finally, together with (43) and (45)—(47), conditioned on the event Ey(rg) N E.(T.) N
E.(Ty),
~(5) 1
B - .
H F=19(7)

holds with probability at least 1 — (25 + 1)e™" — Se. This completes the proof. [ |

A <E() rsor R =g <rey. (47)
>

<EM(Y)r.+ Te ST

3.3 Proof of Theorem 3

Theorem 3 (Restatement of Theorem 3 from main text). Assume that Conditions (A1)-
(A7) hold, and o, \x > 0. For any ~y,e > 0, there exists a constant C. > 0 such that
the bandwidths hy > h > 0 and the reqularization parameter A = 2.5(\. + <) > 0 satisfy
d'?X < h <1, and

d (lo + + _
Cmmax{h (g]wp ’y 1/2<”p 7 hl” -I—hz—l—l— >To+d1/2h2}.

Then, conditioned on the event Ey(ro)NE.(M)NEL(N.), there exists a constant My > 0 such
that for all M > My, the one-step reqularized estimator computed on the l-th machine

satisfies ,Bl € Cx(d), and with probability at least 1 — 3e™ " — ¢,

_ d [ [P’
ngl(l)_:@THz:,SC(h ng—i_fy \/p+7_’__ pM"’hl—f-l—L_l)TO‘f'dl/Q/\*'f‘th

where C' > 0 is a constant depending on (T,ny, fu, Ku, i3, @1, B, &p, Emin) -

Proof. Denote é = Bl(l) and E = E — B,. Based on the first-order optimality condition,
there exists a subgradient g € 8“6”1 such that Vﬁg\%(ﬂ) +X-g=0and g B =0
Therefore,

(@.8-=8) <8I, = 18I, = 18- all, = I 4
This implies that
0< DY) (B.8,) = (VLY(B) - VLL,(B,). B~ B.)
=X <g, B, —B) — (VLY,(B,), ¢)
<A (1Al = Il = (VL8 €, (48)

1 “EA+ﬁ WAl < HzAHl B HZAC 1
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where Vzg\% (8,) =

vzg\(}),l (IBT)
~(0)\ ,~=(0)

~{Uu(8,)— Iy

+{HM(BT>_HM(B (/3 ,
+ {Hm,l (é(O)) — Dy (E(O))}(é(m - B,) + {Dml(ﬁ(O)) — ﬁm,z(ﬁ
For r > 0, define
T (r) =S |EAMB)|l,  Ha(r) =S 15:(B)][,:
Hna(r) = SUP 1320(B)]|; Bma(r) = sup ||53ml 8|,
BeBx(r) BEBs:(r
. [edl,

@myl(r) =
BEBx(r

Based on the Hélder’s inequality, under the condition of the event &, (A\,)NE, (M) NEy(ro)

(VE8, \<{~Mro+x}>km
+ {Tn(ro) + wiy + Har(ro) + Hara(ro)
(49)

+ &11(10) + Dia(ro) } - HEHE

Take A = 2.5 (A, + <) with ¢ satisfying
S > max {_,M(TQ) [JM(T()) +w7\4 —I—S’:)M(TQ) —f-f)M’l(T‘g) +®m75(T0) _’_@ml(TO)}d 1/2} (50)

so that
(51)

j (7"0) + wM + fJM(T'o) + yJM,l(To) + @m,l(ro) -+ @mjl(To) <04 dl/Z)\
51), we have

Together with (48), (49), and (
+0.4 d"?||¢|.

<10~ 2 . .
Il = 5 lCull, + 5 dllclly < 4 a2 ¢l
This implies that B € Cx(d). N

Assume the event £,(\.) N E.(\.) N Eo(Ao) occurs. Define 8, = B, + v(B — B;) with
0 < v < 1. For ripe = hy/(4t0.25), we have 3, € Bx(r0c) N Cx(d) under the requirement

Therefore,

(50) on ¢. Based on (48), we have

(8..8,) <v-DF (B.B.) < v (14 NCAll, +0.4dA]|5)

H(0)
D
<138 dl/z)\ 18, - 8. |5
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From Lemma 9, as long as (d log p+7)/m < hy S 1,
DY (Bu,B,) = 05k fuiCyl (|8, — B, Iy
holds with probability at least 1 — e™7. Therefore,
18, — B.||g < 360 (ki fig) " d" /2. (52)

At follows, we choose a sufficiently large A (or <) satisfying (50).
According to Lemma 10,

_ ro /d (log p+7)
=) < = - = - 7

holds with probability at least 1 — e~7. Based on Lemmas 3-8, as long as rq < h; and
hl 2 h7

NM(TO) + wiy +HOm(r0) + 9ri(10) + Bi(r0) + Dii(r0)
1T0+02h2+037“0 04 1-—L )+C5|hl—h”7’0

+
+067“0\/u+077“0 \/
hy
p+ty  C. |p? -1 172
< —+ /= 1-L
NC(,/ — +hl\/M+hl+ >r0+0h

holds with probability at least 1 — e~ — ¢ (for some constants C,C’" > 0). Therefore,
after choosing a sufficiently large ¢, which is of the order

d (log p + Ip+ C. |p? _ _
§Amax{h (g]\f 7 1/2< p 7 n pM—I—hl—Fl—Ll)To—i—dlth}:

(50) holds with high probability. Then, conditioned on the event &,(X,) N E.(X\,) N
Eo(No), B, satisfies (52) with probability at least 1 — 3¢~ — . Based on the above
choice of ¢, the right-hand side of (52) is strictly less than 7. provided that h; >
14410 95(kamy f11) "1Crnd/? . This implies that B = BU € Bs(re); and 3 satisfies the
bound (52). |

3.4 Proof of Theorem 4

Theorem 4 (Restatement of Theorem 4 from main text). Assume the Conditions in
Theorem 3 hold. For any v,e > 0 and a constant C. > 0, choose the local and global
bandwidths as hy < (C*p?/M)"* and h < {d (log p + ~)/M}Y*. For ro,\. > 0, let
re = dY2 )\, and A\ = 2.5(As +55) > 0 for s > 2 with

|
Gs X max {ﬂsd‘mro +9d 2 (1, + ), \/7%”} :

where ¥ =< Cmax {d*(log p+v)/M, C’gpg’/M}l/4 +(p+7)/m+1— L1 Assume
m 2 p+vy, M 2 max {d*(log p+7),C?p*}, 10 < min{l, (C§p3/M)1/4}, andr, < h < 1.
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Then, conditioned on the event Ey(ro) N E.(N.) NEL(N,), there exist a constant My > 0

~(S
such that for all M > My, the S-step regularized estimator ,Bl( : computed on the [-th
machine satisfies

Hﬂl - B H2<d1/2)\ +h? and ||El( —B_||1 < dX, +dV?h?

with probability at least 1 — 3Se™ — Se, provided that the number of iterations satisfies
S Z log(ro/r.)/ log(1/9).

Proof. We carry out the whole proof under the condition of the event &(Ag) N E.(A.) N
& (/\ ) for some prespecified ro, A, > 0; and write 7, = d*/2)\,. Recall that in the proof of
Theorem 3, the regularization parameter \; needs to be sufficiently large to obtain the

desired error bound for the first iterate Z‘](l) = El(l) on the [th machine. Given v > 0, let
A1 = 2.5 (A +¢1), where ¢; > 0 is of the order

d (log p + [p+ [ _ _
§1Amax{h <g]\f 7 1/2< p 7 l pﬂ+hz+1—L1>7’o+dl/2h2}.

As long as the bandwidth h; 2 max(rg,r,) > 0 satisfy

dro 1 s
r*—i—max{ ;0,/ o8 p+7 (,/m \/pM—f—hl—f—l—L_l) ro+h2}§hz§1,
l

~ ~@
the first iterate B(l) satisfies ,3( ) € Cx(d); and with probability at least 1 — 2e™7 — ¢,

~(1) d [log p+7~ p+vy  Ce [p? 1
_ < = i/ =4+mn+1-1L
|3 ﬁT{]E_(,‘(h TV +hl R o

+ (7“* + hz) = 7.

Let

V=1 (d,p,m, M, L, hi,h,~,C.

d log p—|—7 \/p—l—fy p3
_ 4=+ mn+1-1L
C{h M fu

be the contraction factor. After setting by = (C2 p3/M)"* and h = {d (log p +~)/M}*"*,

we have
log p+~\"7*  [C2p\ V! P+
V=03 (=21 —< —4+1-1L
{ ( i ) + (=5 4/ —+
_ lo +
3 xmax{ﬁd vy ,/$}.

Therefore, if ro < min{1, (C?p3/M)/*}, d*/?¢; < h;. To ensure the contraction factor ¢
strictly less than 1, we need m 2> p+~ and M 2> max {d*(log p+ ), C?p*}. Then, the

and

~(0
one-step estimator reduces the estimation error of ﬁ( : by a factor of ¥.
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For s > 2, define the events &(ry) := {B(s) € Bx(r;) NCx(d)}, where

1 —v°

re = Ure_1 + C'(r, + h?) = 0°rg + C’ -

(. + h?). (53)

Set A\, = 3 ¢, at iteration s > 2 with

1
oy (PR (5

Then, based on (53) and (54), for s > 2,

1
S X max {ﬂsdmro +9d 2 (r + 1), ﬁ%ﬂ} .

Note that under the conditions on 79 and (m, M), d/?c, < h; for s > 2. According to

Theorem 3, conditioned on the event &_1(rs—1) N E«(As) N E(As), the s-step iterate B(s)
satisfies B(S) € Cx(d); and with probability at least 1 — 3e™7 — ¢,

11—
1—9

1B = B, |l < Oracs + C'(ry + h2) = 1y = 910 + C'=——(r. + h?).

Let S = [log(ro/r.)/log(1/9)] be the smallest integer such that ¥°ry < r.. Under

the condition & (Ag) N E(As) N EL(A), the Sth iterate Z‘i(s) satisfies the error bounds

||B(S) —IBTHE ,S d1/2>\* +h2 and HB(S) _IBTHl 5 d\* _|_d1/2h2

with probability at least 1 — 3Se™ — Se based on the union bound over s =1,2,...,S.
This completes the proof of the theorem. |
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