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Introduction 
The following documents include the supplementary methods and results for many of the 
analyses that were conducted to support the main publication. If the methods were 
detailed in the main manuscript, we refrained from including the duplicated text in this 
document.  

Methods  

Large language model-assisted background contamination screening 
We employed Claude1 (Anthropic) to systematically evaluate bacterial families for potential 
contamination signatures. Each SILVA-annotated family underwent independent triplicate 
assessment using a standardized prompt designed to identify taxa inconsistent with 
nasopharyngeal ecology (Figure 2A). The LLM evaluated each family for likelihood of 
representing reagent contamination ("kitome")2,3, environmental sources (water, soil, 
laboratory)2, or legitimate nasopharyngeal colonizers. Consensus classification required 
agreement across all three independent queries, with discordant cases flagged for manual 
expert review. A microbiome specialist with expertise in respiratory tract ecology 
performed final adjudication of ambiguous classifications, incorporating published 
nasopharyngeal microbiome literature and contamination databases. This human-in-the-
loop approach ensured that AI-assisted screening augmented rather than replaced expert 
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taxonomic knowledge, consistent with best practices for AI implementation in microbiome 
research93.  

Prompt for contamination assessment 
"You are a nasopharyngeal microbiome expert tasked with identifying potential 
contaminants in 16S rRNA sequencing data. Evaluate the provided bacterial families for 
consistency with genuine nasopharyngeal colonization versus likely contamination from 
reagents, water sources, laboratory environments, or sample processing artifacts. 
Consider typical nasopharyngeal ecology, human commensal flora, and known 
contamination patterns in low-biomass samples.  

Return results in CSV format with columns: 

1. Bacterial Family (string) 
2. Contaminant (boolean: TRUE/FALSE) 
3. Source (string: Reagent/Water/Soil/Laboratory/Environmental/Not_applicable) 

16S data processing  
Raw sequencing data processing was performed using R v4.1.14. Hypervariable region 
(HVR) targets and primer presence/absence were first identified by constructing a 
comprehensive list of possible HVR primer pairs and their maximum expected insert sizes 
(Tables S1 and S2). A kmer hash of each possible HVR configuration was built by in silico 
amplifying various HVRs from the SILVA v138.2 database5 using Mash with kmer size 316. 
When kmer hashing could not distinguish HVRs but PCR primers were present, HVR 
configuration was inferred directly from the PCR primers (Table S1). This process 
independently verified the HVRs reported in corresponding source publications (Table 1). 
When PCR primers were detected, reads were reoriented to the same strand using an in-
house R function utilizing the ShortRead7 R package.   

Quality filtering and trimming were performed using the DADA2 v1.22.08 filterAndTrim 
function. Parameters were optimized using an in-house R function that accounted for read 
lengths and quality profiles, presence/absence of PCR primers, and maximum expected 
hypervariable region insert sizes (Table S2). Quality-filtered trimmed reads underwent 
standard DADA2 processing including denoising and merging to generate amplicon 
sequence variants (ASVs). Singletons and chimeras were removed during ASV filtering. 

Taxonomic classification utilized SILVA v138.2 database5 training data formatted for DADA2 
(obtained from Zenodo, DOI: 10.5281/zenodo.14169026). The DADA2 assignTaxonomy 
function was applied with minBoot=80 using silva_nr99_v138.2_toGenus_trainset.fa.gz, 
followed by the addSpecies function with default parameters using 
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silva_v138.2_assignSpecies.fa.gz. ASVs lacking at least family-rank classification were 
excluded from analysis. Final ASVs were aggregated at the lowest assigned taxonomic rank 
to generate count matrices for each study. 

Beyond the contamination removal procedures described in the main manuscript, we 
implemented stringent quality control criteria at both sample and study levels. Individual 
samples required a minimum of 5,000 reads successfully mapped to family-level taxonomy 
following contaminant family removal to ensure adequate sequencing depth for reliable 
taxonomic profiling. To maintain dataset consistency for meta-analysis, we further required 
that studies retain at least 50% of samples passing these quality thresholds for inclusion in 
the final analysis. This two-tiered filtering strategy eliminated both low-quality samples and 
studies with systematic technical failures while preserving comparability that powered our 
study.  

NPCST classification comparison between the before and after-
background decontamination 
Cluster preservation was evaluated using the Adjusted Rand Index (ARI) to quantify 
agreement between before and after background decontamination cluster assignments, 
with bootstrap resampling (n = 100) generating 95% confidence intervals. This evaluation 
used only the 7,790 high-quality samples retained in the final dataset after background 
decontamination. Internal cluster validity was assessed through silhouette analysis, which 
measured within-cluster cohesion relative to separation from neighboring clusters. 
Silhouette coefficients were calculated using Bray-Curtis dissimilarity matrices for k = 6 
clusters derived from Ward's hierarchical clustering, enabling direct comparison of 
clustering quality between before and after background decontamination datasets.  

To validate preservation of microbiome community relationships following 
decontamination, we employed complementary ordination-based approaches using 
Procrustes analysis and Mantel tests on Bray-Curtis distance matrices. Procrustes analysis 
optimally rotated and scaled principal coordinate analysis (PCoA) ordinations to maximize 
alignment between before and after background decontamination datasets, yielding a 
correlation coefficient and M² statistic with 999 permutations. The Mantel test 
independently evaluated the correlation between pairwise sample distances in both 
distance matrices using Pearson correlation coefficients with 999 permutations.  

Taxonomic resolution comparison between V3-V4 and V4 
To determine the appropriate taxonomic rank for meta-analysis, we compared taxonomic 
resolution between genus and species levels using only studies employing V3-V4 or V4 
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hypervariable regions, as other regions were rare in our dataset and did not warrant 
comparison. We performed rarefaction analysis to assess taxonomic saturation at both 
ranks, calculated the cumulative relative abundance of taxa shared between V3-V4 and V4 
regions, and quantified the proportion of sequences that could not be classified at each 
taxonomic level. Taxa with relative abundance below 0.01% were excluded from all 
analyses to minimize noise from rare sequences. 

Leave-one-study-out (LOSO) NPCST investigation 
To assess the reproducibility and stability of identified NPCSTs, we implemented a leave-
one-study-out cross-validation approach across all 28 studies. For each iteration, one 
study was systematically removed, and hierarchical clustering was performed on the 
remaining 27 studies using Bray-Curtis dissimilarity at the genus level followed by Ward 
linkage, with cluster assignments tested for k values ranging from 4 to 12. The complete 28-
study dataset served as ground truth, and generated clusters were matched to reference 
NPCSTs using a greedy assignment algorithm based on contingency table analysis, 
prioritizing clusters with the highest intersection-to-union ratios.  

Clustering stability was quantified using three metrics: (1) Adjusted Rand Index (ARI) to 
measure overall clustering agreement corrected for chance, (2) Mean Jaccard Index to 
assess average per-cluster similarity between predicted and ground truth assignments, 
and (3) Overall Accuracy to calculate the proportion of samples correctly assigned to their 
corresponding ground truth NPCST after optimal cluster matching.  

Unsupervised learning based definition of the rare biosphere (ulrb) 
To objectively define abundance categories within each CST, we applied the ulrb9 method 
as described by Pascoal et al. Following the recommended approach, we employed the 
default tri-categorization framework (k=3) to classify genera into "Abundant", 
"Undetermined", and "Rare" categories within each sample. The quality of clustering was 
evaluated using Silhouette scores, with scores >0.5 indicating reasonable to strong cluster 
structure across all CSTs. Abundant genera within each CST were characterized by their 
median relative abundance, detection prevalence across samples, and clustering quality 
metrics.  

Machine learning approach for validating NPCST classification 
We developed and validated a comprehensive machine learning framework to classify 
nasopharyngeal swab samples into six previously defined NPCST categories using relative 
abundance data from 626 genera across 7,790 samples spanning 28 independent studies. 
We validated this model using 28 studies and further evaluated its performance on two 
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external datasets. Each method underwent hyperparameter optimization and evaluation 
through 100 iterations of 5-fold cross-validation, with performance assessed using 
accuracy, precision, recall, and F1-score metrics to ensure comprehensive evaluation 
across all NPCST categories. To ensure robust model generalization across diverse study 
populations, we implemented a stratified cross-validation strategy that maintained 
balanced distribution of both target NPCST classifications and source studies (BioProjects) 
origins within each fold, thereby preventing potential batch effects from influencing model 
performance and enhancing the generalizability of the final model.  

For machine learning model selection, we focused on algorithms widely used in the 
microbiome field and methodologically distinct approaches across tree-based, regression-
based, and kernel-based methods. The selected models included Random Forest 
(randomForest10 v4.7-1.2) with hyperparameters including mtry values ranging across 
different numbers of genera and ntree values of 50, 100, 200, 500, and 1,000 trees; Ridge, 
LASSO, and elastic net regression (glmnet11 v4.1-9) with regularization parameter λ 
optimized through 5-fold cross-validation and alpha fixed at 0 (Ridge), 0.1–0.9 (Elastic Net), 
and 1 (LASSO); and Support Vector Machine (e107112 v1.7-16) with radial basis function 
kernel, cost parameters ranging from 0.1 to 100, and gamma parameters from 0.001 to 1.0. 
For each of the iterations and individual 5-fold cross validation, each of these 
hyperparameter was examined and the best one is recorded.  

During evaluation, we removed LASSO regression from analysis because many 5-fold 
cross-validation sets failed to converge, resulting in over 30% missing data points. We 
calculated performance metrics using the caret13 package (v7.0-1), employing balanced 
accuracy to account for potential class imbalances, where overall accuracy represented 
the macro-averaged balanced accuracy across all classes and per-class accuracy 
corresponded to individual class balanced accuracy. Additionally, we tracked Random 
Forest feature importance through mean decrease in Gini impurity and mean decrease in 
accuracy.  

For consistency analysis, we conducted a detailed evaluation of error patterns from the 
machine learning models (incorrect predictions on test datasets across 100 iterations) 
stratified by severity levels. Low-severity errors (<15%, i.e., 15/100 iterations) 
predominantly represented method-specific weaknesses that could be random. Moderate 
(15%–50%) to high (>50%) severity errors demonstrated samples that were repeatedly 
misclassified, indicating that machine learning methods struggled with the same samples 
and suggesting intrinsic classification challenges rather than methodological limitations.  

To enhance deployed prediction models (SVM and Random Forest) reliability, we 
developed a confidence assessment framework using empirical data from test sets across 
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100 cross-validation iterations. We applied Youden's J statistic optimization to determine 
genus-specific probability and relative abundance cutoffs that maximize separation 
between correct and incorrect predictions for each NPCST classification. High confidence 
classifications were defined as samples exceeding both the optimized prediction 
probability and corresponding key genus relative abundance thresholds, while low 
confidence classifications were assigned to samples falling below both thresholds. We 
examined the prediction probability range and relative abundance range less than 0.75 as 
samples exceed this level are almost correctly classified. This approach was applied to 
NPCSTs I-IV and VI; NPCST V was excluded because its diverse composition precludes 
reliable confidence assessment without comprehensive characterization of all 
nasopharyngeal samples.  

NPCST classification model deployment 
The final SVM and Random Forest models were independently trained on the complete 
dataset of 626 genera across 7,790 samples from 28 independent studies. We developed 
customized functions to enable future users to apply these models to new datasets. The 
deployment pipeline validates genera naming conventions before performing NPCST 
classifications and generates confidence scores for both SVM and Random Forest 
predictions. Complete implementation instructions are provided in the Zenodo repository 
(DOI: 10.5281/zenodo.17068997).   

Co-occurrence network  
We used UpSet plots from ComplexUpset14 (v1.3.3) to demonstrate shared association 
patterns (positive or negative) across NPCST-specific networks. We performed network 
centrality analysis using the igraph15 (v2.1.1) R package to calculate closeness, 
betweenness, and degree centrality measures for genera and edges across individual 
NPCST-specific networks and the global co-occurrence network.  

External validation of the NPCST prediction model 
For external validation evaluations, input data underwent the nasopharyngeal-specific 
background removal protocol followed by data validation and NPCST prediction according 
to the deployed classification guide available in the Zenodo repository. We established 
ground-truth classifications for these external validation samples using the same Bray-
Curtis dissimilarity followed by Ward linkage methodology, combining the 28 original 
studies with the 2 external validation studies, then selected the top 6 NPCSTs. We 
performed ROC calculations using the pROC16 package (v1.18.5) in R.  

https://doi.org/10.5281/zenodo.17068997
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Nasopharyngeal microbiome health index (NMHI)  
Adapted from Chang et al.'s GMWI2 methodology17, we developed the Nasopharyngeal 
Microbiome Health Index (NMHI) using LASSO-penalized logistic regression (glmnet11 R 
package v4.1) with balanced class weights to address sample size imbalances. We 
calculated class weights as (whealthy = 0.5/(nhealthy/ntotal), wdisease = 0.5/(ndisease/ntotal)), ensuring 
equal class contribution regardless of imbalance. From 5,435 cross-sectional 
nasopharyngeal samples, we constructed binary presence/absence matrices using a 
0.01% relative abundance threshold (present=1, absent=0). 

We implemented four binary classification models to four distinct models: (1) healthy 
controls versus combined diseased samples with all-taxa (All-taxa All-Conditions), (2) 
healthy controls versus viral infections with all-taxa (All-taxa Viral Infection), (3) healthy 
controls versus combined diseased samples with genus-only taxa (Genus-only All-
Conditions), and (4) healthy controls versus viral infections with genus-only taxa (Genus-
only Viral Infection). This design enabled assessment of both taxonomic granularity and 
disease specificity effects on model performance. 

We evaluated seven taxonomic configurations (all taxa combined, phylum, class, order, 
family, genus, and species), excluding unclassified reads to ensure interpretability of 
results. Model development and validation proceeded through five stages: 

Stage 1: Leave-One-NPCST-Out Cross-Validation for Lambda Selection: We 
implemented LONO cross-validation to establish stable lambda values, leveraging the 
biological distinctiveness of NPCSTs and their differential disease susceptibilities. This 
approach systematically held out each NPCST (I-VI) as a test set while training on the 
remaining five, ensuring generalization across biologically meaningful community states 
rather than technical batch effects. Given that NPCSTs explained substantially more 
variance than study effects (53.19% vs. 13.06%), this strategy provided robust parameter 
selection. We tested selective lambda values ranging from 0.0001 to 0.03, selecting 
optimal values based on maximum AUC aggregated across all six held-out NPCST test 
sets. 

Stage 2: Model Performance Evaluation with Prevalence Thresholds: Using optimal 
lambda values from Stage 1, we performed both LONO and 10-fold cross-validation at five 
prevalence thresholds (0%, 1%, 5%, 10%, 20%) to assess model robustness. The LONO is 
run only once for the cross-validation and the 10-fold cross-validation repeated 10 times 
with reproducible seed numbers (seeds 1-10) to ensure reproducibility while capturing 
variability. We maintained strict train-test separation within each fold to prevent data 
leakage, confining lambda selection exclusively to training partitions. The NMHI score was 
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calculated as the sum of products between coefficients and binary presence values, where 
positive coefficients indicated health-associated taxa and negative coefficients indicated 
disease-associated taxa. We assessed model performance using both AUC and balanced 
accuracy metrics to evaluate discriminatory power and classification performance. 

Stage 3: Final Model Training: Using the selected 5% prevalence threshold (based on 
optimal performance-interpretability trade-off), we trained final models on the complete 
dataset with optimal lambda values. During this stage, we extracted all non-zero 
coefficients and intercepts from each model, enabling NMHI score calculation as the sum 
of the intercept and products of coefficients with presence/absence values for each 
sample's taxa. To identify key microbial markers, we analyzed taxa with absolute 
coefficients ≥0.5 and performed comparative abundance analysis across control and 
disease groups. We visualized abundance distributions using boxplots and assessed 
statistical significance using Wilcoxon rank-sum tests with FDR correction for multiple 
testing comparisons. 

Stage 4: NMHI Threshold Optimization: Using models trained on the complete dataset, 
we optimized classification thresholds to distinguish healthy from diseased samples. We 
evaluated both global (across all NPCSTs) and NPCST-specific thresholds ranging from -5 
to 5 (at 0.1 increments), selecting optimal values based on maximum balanced accuracy 
for each model configuration. We calculated Cohen's d effect sizes to quantify the 
magnitude of separation between healthy and diseased populations, providing a 
standardized measure of discriminatory power independent of sample 
size. We also performed Wilcoxon rank-sum tests with FDR correction for multiple testing 
to statistically compare disease and control samples for both global and NPCST-specific 
models. 

Stage 5: External Validation: External validation utilized both cross-sectional and 
longitudinal samples (n=699 total), treating each sampling point as independent given the 
transient nature of nasopharyngeal microbiome communities during infection. This 
approach tests the model's ability to distinguish disease states regardless of sampling 
design, reflecting real-world diagnostic applications where single-timepoint sampling is 
standard. To ensure valid assessment, we removed samples with ambiguous disease 
classifications (e.g., pneumococcal carriers, emergency room volunteers) and samples not 
consistently obtained during symptomatic disease periods. The validation cohort 
comprised healthy family members with recurrent respiratory tract infections (n=265), 
varying SARS-CoV-2 severity (n=398), lower respiratory tract infections (n=5), and non-
SARS-CoV-2 critically ill patients (n=31). We applied final model coefficients to calculate 
NMHI scores and generate predictions for these previously unseen samples, evaluating 
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performance using ROC (Receiver Operating Characteristic) curve analysis and balanced 
accuracy metrics with both global and NPCST-specific thresholds. The NPCST 
classification was based on the random forest model we provided in the earlier section. For 
NPCST-specific validation, we excluded NPCST V from AUC analysis when all samples 
belonged to a single class (disease), as meaningful discrimination requires representation 
of both classes. 

Results 

Validation of signal integrity following background decontamination 
Following implementation of our three-stage decontamination pipeline (Figure 2A), we 
evaluated quality control metrics across all 28 studies to validate background removal 
effectiveness. The sigmoid distribution patterns observed across studies demonstrated 
that most samples retained robust true signal abundance (>80% cumulative relative 
abundance) with >5,000 reads after contamination removal, exhibiting minimal 
background interference (Figure S1). Of 8,314 total samples, 7,986 (96.1%) successfully 
exceeded the 5,000 true-signal read threshold, confirming that our decontamination 
approach preserves sufficient sequencing depth for downstream analyses. This consistent 
retention pattern across diverse studies validates our pipeline's capacity to eliminate 
spurious signals while maintaining biological integrity. The final dataset comprised 7,790 
samples after additional quality control for complete disease/health status annotation and 
exclusion of rare positive and negative control samples.  After applying the same blacklist 
background removal protocol, we revealed only three novel genera (Tersicoccus, Bact-08, 
Eoetvoesia) absent from our training data, all at minimal abundances all around 0.02%, 
demonstrating comprehensive capture of the core nasopharyngeal microbiome across 
diverse populations and confirming model applicability to new cohorts.  



K. Song et al  Systematic meta-analysis of nasopharyngeal microbiomes 
 

10 
 

 

Figure S1. Study-specific quality control assessment. Quality control evaluation of 
nasopharyngeal microbiome samples across 28 retained studies, displaying the 
relationship between log₁₀-transformed true signal read counts and cumulative relative 
abundance following background removal. Each panel presents study-specific retention 
statistics (passed/total samples and percentage) based on the 5,000-read threshold 
criterion, with blue points representing QC-passed samples and pink points indicating 
failed samples.  

Taxonomic resolution comparison between V3-V4 and V4 
Rarefaction analysis revealed that the majority of samples reached diversity plateaus 
before 5,000 reads for both genus and species levels, confirming the adequacy of our 
quality control parameters (Figure S2A-B). Although selected samples with higher 
microbial richness required over 10,000 reads for complete saturation, genus-level 
rarefaction curves consistently plateaued earlier than species-level curves across all 
samples. Evaluation of cumulative relative abundance of shared taxa between V3-V4 and 
V4 regions identified 485 shared genera and 887 shared species (Figure S2C). Notably, 
nearly all V4-identified taxa were present within the V3-V4 dataset, while V3-V4 contained 
additional unique taxa, and expected pattern given the inclusion of the V3 region. Genus-
level classification demonstrated significantly better consistency between regions, with 
virtually all taxonomic assignments shared between V3-V4 and V4, enabling harmonized 
analyses independent of hypervariable region selection. 
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Analysis of unassigned sequences revealed substantial differences in classification 
success between taxonomic levels, regardless of hypervariable region (Figure S2D). 
Species-level classification failed for a median of 75.9% (V3-V4) and 84.7% (V4) of reads, 
with high variability across studies (SD = 25.0% and 18.1%, respectively). Nearly all studies 
contained samples with >50% species-level assignment failure, creating severe resolution 
imbalances that would compromise downstream analyses. In contrast, genus-level 
classification maintained robust performance with median unassigned proportions of only 
0.4% (V3-V4) and 0.6% (V4). These findings demonstrate that genus-level classification 
provides the taxonomic resolution necessary for reliable meta-analysis across 
heterogeneous nasopharyngeal microbiome studies from 16S data. 
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Figure S2. Taxonomic resolution comparison between genus and species levels for V3-
V4 and V4 16S rRNA gene regions in nasopharyngeal microbiome meta-analysis. A-B. 
Rarefaction curves demonstrate that genus-level diversity approaches saturation while 
species-level richness continues to increase without plateauing, with a vertical blue dotted 
line indicating the 5,000 read threshold. C. Cumulative relative abundance of shared 
taxonomic features between V3-V4 and V4 regions reveals that genus-level classification 
captures substantially higher proportions of the microbial community (485 shared genera) 
compared to species-level classification (887 shared species), stratified by hypervariable 
region and BioProject. D. Proportion of unclassified sequences shows consistently higher 
assignment failure rates at species level compared to genus level across both V3-V4 and V4 
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regions, indicating poor species-level resolution reliability. Colors throughout all panels 
represent distinct BioProjects included in the meta-analysis. 

Comparison of microbial community structure before and after 
background decontamination 
Comprehensive validation analyses confirmed that our decontamination pipeline 
preserved biological signal integrity while enhancing data quality. Cluster assignments 
demonstrated high stability, with 6,327 of 7,790 samples (81.2%) maintaining their original 
nasopharyngeal community state type classification and moderate-to-strong agreement 
between before and after background decontamination datasets (ARI = 0.605, 95% CI: 
0.592–0.617). Clustering quality improved substantially by 18.5%, increasing from 0.245 to 
0.291, with cluster and group transitions visualized in Figure S3A–B. Procrustes analysis 
revealed near-perfect preservation of sample relationships (correlation = 0.973, M² = 0.05, 
p < 0.001), corroborated by Mantel test results showing exceptionally strong correlation 
between distance matrices (r = 0.971, p < 0.001). These convergent lines of evidence 
demonstrate that removing 1,810 contaminating genera (reducing the dataset from 2,436 
to 626 genera) enhanced detection of genuine nasopharyngeal microbiome patterns 
without distorting underlying biological relationships. Principal coordinate analysis further 
validated this preservation, with the first two dimensions each exhibiting approximately 2% 
increased variance explained after background decontamination, indicating improved 
sample separation (Figure S3C–D). The reduction in study-associated variance from 
13.97% to 13.06% (R² from PERMANOVA) represents meaningful mitigation of batch 
effects. Sparsity decreased from 97.89% to 95.53% following decontamination, as 
removing 1,810 predominantly sparse contaminating genera eliminated approximately 14 
million data points (mostly zeros) while resulting in a denser matrix with 2.36 percentage 
points fewer zeros, thereby improving data quality for downstream analyses. 
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Figure S3. Comparison of microbial NPCST structure before and after background 
decontamination. A. Hierarchical clustering dendrograms displaying six NPCSTs identified 
in before and after background decontamination datasets, with an alluvial plot illustrating 
sample transitions between corresponding clusters. B. Confusion matrix quantifying the 
redistribution of samples across NPCSTs from before background decontamination (x-axis) 
to after background decontamination (y-axis) stages. C&D. Principal coordinate analysis 
(PCoA) ordination of the two PCoA dimensions before and after decontamination datasets, 
respectively. Ecological metrics including the number of retained genera, matrix sparsity 
(genera × samples), and variance explained (R²) from PERMANOVA analysis are displayed 
in the lower right corner of each panel.  

NPCST-specific cumulative relative abundance of top 14 families 
We examined the NPCST-specific median cumulative abundance patterns (Figure S4). The 
top six families elevated most samples in NPCSTs I-IV to achieve 80-90% cumulative 
relative abundance. In contrast, the more diverse NPCSTs V and VI demonstrated slower 
abundance progression. Collectively, the top 14 families explained a median of at least 
90% of total relative abundance across all samples and NPCSTs, confirming that these 14 
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families (comprising 161 genera and 513 ASVs) represent the core nasopharyngeal 
bacterial composition.  

 

Figure S4. NPCST-specific cumulative relative abundance of top 14 
families. Cumulative relative abundance distributions across the top 14 most prevalent 
families after background decontamination, with each panel representing sequential 
accumulation of relative abundance from the highest-ranked family through progressively 
lower-ranked families (left to right), demonstrating sample-level variability within each 
cumulative stage across six NPCSTs. 

LOSO validations 
Leave-one-study-out cross-validation analysis identified 6 NPCSTs as the optimal 
clustering solution, demonstrating robust stability across all evaluated metrics (Figure S5). 
At k=6, the Adjusted Rand Index achieved 0.711 and the mean Jaccard Index reached 0.75, 
indicating strong clustering agreement and high per-cluster similarity that substantially 
exceeded random performance. Overall median accuracy attained 0.867, demonstrating 
that 87% of samples were correctly assigned to their corresponding ground truth NPCSTs 
during cross-validation. These converging stability metrics collectively support the 
selection of 6 NPCSTs as the most reproducible and biologically meaningful clustering 
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structure in the nasopharyngeal microbiome data.

 

Figure S5. Stability metrics across different cluster numbers evaluated through leave-
one-study-out (LOSO) cross-validation. Half boxplots (left, gray) show distribution 
quartiles for each cluster number. Individual data points (right, colored circles) represent 
stability measurements from the LOSO CV with different removed BioProjects. Blue trend 
lines show generalized additive model (GAM)-smoothed curves with 95% confidence 
intervals (shaded regions). Top panel: Adjusted Rand Index (ARI) measures clustering 
agreement corrected for chance. Middle panel: Mean Jaccard Index quantifies average 
cluster overlap. Bottom panel: Overall Accuracy represents proportion of correctly 
assigned samples.  
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Ulrb results 
The ulrb analysis revealed distinct abundance patterns across all NPCSTs, with detailed 
results presented in Figure S6-11. The two diverse NPCSTs (V and VI) exhibited 
substantially higher numbers of abundant genera (94 and 65 genera, respectively) 
compared to the remaining NPCSTs (4-27 abundant genera each). This pattern 
corresponded well with the increased overall genera diversity observed in these two 
NPCSTs, confirming their classification as compositionally heterogeneous community 
types. One key distinguishing pattern among NPCSTs was the higher relative abundance of 
Streptococcus in specific community types. Silhouette score distributions consistently 
indicated strong clustering quality for genera abundance classifications across all NPCSTs, 
validating the robustness of the abundance categorizations. 

 

 

Figure S6. Ulrb diagnostic plots for NPCST I (n = 2,057 samples). A. Log₁₀-transformed 
relative abundance distribution across all genera, stratified by ulrb classifications 
("Abundant", "Undetermined", and "Rare"). B. Silhouette score distributions shown as 
density plots and boxplots for each classification. The quality threshold (Silhouette score = 
0.5) is indicated by the red dashed line. Numbers of unique genera per classification are 
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displayed adjacent to each plot. C. Genus-level relative abundance for genera classified as 
"Abundant" by ulrb. D. Detection prevalence of abundant genera across samples, 
expressed as percentages. Classifications are color-coded: Abundant (blue), 
Undetermined (teal), and Rare (gray). Prevalence is represented on a gradient scale from 0-
100% (white to blue). 
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Figure S7. Ulrb diagnostic plots for NPCST II (n = 1,984 samples). A. Log₁₀-transformed 
relative abundance distribution across all genera, stratified by ulrb classifications 
("Abundant", "Undetermined", and "Rare"). B. Silhouette score distributions shown as 
density plots and boxplots for each classification. The quality threshold (Silhouette score = 
0.5) is indicated by the red dashed line. Numbers of unique genera per classification are 
displayed adjacent to each plot. C. Genus-level relative abundance for genera classified as 
"Abundant" by ulrb. D. Detection prevalence of abundant genera across samples, 
expressed as percentages. Classifications are color-coded: Abundant (blue), 
Undetermined (teal), and Rare (gray). Prevalence is represented on a gradient scale from 0-
100% (white to blue). 
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Figure S8. Ulrb diagnostic plots for NPCST III (n = 993 samples). A. Log₁₀-transformed 
relative abundance distribution across all genera, stratified by ulrb classifications 
("Abundant", "Undetermined", and "Rare"). B. Silhouette score distributions shown as 
density plots and boxplots for each classification. The quality threshold (Silhouette score = 
0.5) is indicated by the red dashed line. Numbers of unique genera per classification are 
displayed adjacent to each plot. C. Genus-level relative abundance for genera classified as 
"Abundant" by ulrb. D. Detection prevalence of abundant genera across samples, 
expressed as percentages. Classifications are color-coded: Abundant (blue), 
Undetermined (teal), and Rare (gray). Prevalence is represented on a gradient scale from 0-
100% (white to blue). 
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Figure S9. Ulrb diagnostic plots for NPCST IV (n = 371 samples). A. Log₁₀-transformed 
relative abundance distribution across all genera, stratified by ulrb classifications 
("Abundant", "Undetermined", and "Rare"). B. Silhouette score distributions shown as 
density plots and boxplots for each classification. The quality threshold (Silhouette score = 
0.5) is indicated by the red dashed line. Numbers of unique genera per classification are 
displayed adjacent to each plot. C. Genus-level relative abundance for genera classified as 
"Abundant" by ulrb. D. Detection prevalence of abundant genera across samples, 
expressed as percentages. Classifications are color-coded: Abundant (blue), 
Undetermined (teal), and Rare (gray). Prevalence is represented on a gradient scale from 0-
100% (white to blue). 
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Figure S10. Ulrb diagnostic plots for NPCST V (n = 961 samples). A. Log₁₀-transformed 
relative abundance distribution across all genera, stratified by ulrb classifications 
("Abundant", "Undetermined", and "Rare"). B. Silhouette score distributions shown as 
density plots and boxplots for each classification. The quality threshold (Silhouette score = 
0.5) is indicated by the red dashed line. Numbers of unique genera per classification are 
displayed adjacent to each plot. C. Genus-level relative abundance for genera classified as 
"Abundant" by ulrb. D. Detection prevalence of abundant genera across samples, 
expressed as percentages. Classifications are color-coded: Abundant (blue), 
Undetermined (teal), and Rare (gray). Prevalence is represented on a gradient scale from 0-
100% (white to blue). 
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Figure S11. Ulrb diagnostic plots for NPCST VI (n = 1,424 samples). A. Log₁₀-transformed 
relative abundance distribution across all genera, stratified by ulrb classifications 
("Abundant", "Undetermined", and "Rare"). B. Silhouette score distributions shown as 
density plots and boxplots for each classification. The quality threshold (Silhouette score = 
0.5) is indicated by the red dashed line. Numbers of unique genera per classification are 
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displayed adjacent to each plot. C. Genus-level relative abundance for genera classified as 
"Abundant" by ulrb. D. Detection prevalence of abundant genera across samples, 
expressed as percentages. Classifications are color-coded: Abundant (blue), 
Undetermined (teal), and Rare (gray). Prevalence is represented on a gradient scale from 0-
100% (white to blue). 

NPCST machine learning results 

Model evaluation 
Across 100 iterations of 5-fold cross-validation, machine learning models demonstrated 
strong performance for NPCST prediction. SVM achieved the highest performance (0.972), 
followed by Random Forest (0.966), Elastic Net (0.936), and Ridge (0.922) (Table S4, Figure 
S12-13). Given that Elastic Net and Ridge regression models showed significantly lower 
performance compared to SVM and Random Forest, we excluded these methods from 
detailed evaluation and focused on the two superior-performing algorithms. When 
examining per-NPCST performance, NPCST V (the diverse NPCST) demonstrated 
significantly reduced performance metrics compared to other NPCSTs. SVM achieved 
superior performance on NPCST V with 0.936 accuracy on the testing set, while Random 
Forest achieved 0.922.  

For hyperparameter optimization, we evaluated 500 runs across 100 iterations of 5-fold 
cross-validation to identify optimal parameters. Random Forest hyperparameter 
optimization revealed mtry=209 (representing one-third of the 626 genera features) and 
ntree=50 as the most prevalent and optimal selection. Specifically, ntree=500 was optimal 
in 345/500 runs (69%), followed by ntree=100 in 152/500 runs (30.4%) and ntree=150 in 
3/500 runs (0.6%), while mtry=209 was utilized across all runs. Importantly, our evaluation 
showed negligible performance differences between 50 and 100 trees, supporting 
selection of ntree=50 for computational efficiency. SVM optimization consistently 
identified cost=100 and gamma=1 as optimal parameters across all 500 runs (100% 
consistency). 



K. Song et al  Systematic meta-analysis of nasopharyngeal microbiomes 
 

26 
 

Figure S12. Random forest performance metric distributions across NPCST 
classification types for training and testing datasets. Boxplots display the distribution of 
balanced accuracy, precision, recall, and F1-score values across 100 iterations of 5-fold 
cross-validation for each NPCST class (Overall represents macro-averaged performance 
across all classes, i.e., simple arithmetic mean, while I-VI represent individual NPCST). 
Each panel compares training set performance (yellow strips) against testing set 
performance (purple strips). 
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Figure S13. SVM performance metrics distribution across NPCST classification types 
for training and testing datasets. Boxplots display the distribution of balanced accuracy, 
precision, recall, and F1-score values across 100 iterations of 5-fold cross-validation for 
each NPCST class (Overall represents macro-averaged performance across all classes, 
i.e., simple arithmetic mean, while I-VI represent individual NPCST). Each panel compares 
training set performance (yellow strips) against testing set performance (purple strips). 

Random forest feature importance  
Feature importance analysis using Random Forest mean decrease in accuracy and Gini 
impurity metrics identified the most predictive genera for NPCST classification (Table S6). 
The six NPCST-defining genera ranked among the top six important features based on both 
accuracy and Gini rankings, validating our previous analytical findings and confirming their 
biological relevance for NPCST classification. 

SVM and random Forest incorrect prediction analysis 
We evaluated the frequency and severity of incorrect predictions by SVM and Random 
Forest models relative to the six key NPCST-defining genera. Analysis of relative abundance 
differences across these genera for each NPCST revealed significant statistical differences 
between correct and incorrect predictions for both models (Figure S14-15). Wilcoxon tests 
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confirmed that the dominant NPCST-defining genera were the primary drivers of 
misclassification, with incorrect predictions consistently occurring when these key genera 
fell below characteristic abundance thresholds. This finding directly motivated our 
development of the confidence evaluation system described in the following section, 
which leverages these genus-specific thresholds to flag potentially ambiguous 
classifications. 

Next, we examined the consistency of misclassified samples between SVM and Random 
Forest models. This analysis focused on the 3.34% and 2.8% misclassified samples across 
cross-validation runs for SVM and Random Forest, respectively. Frequency analysis of 
misclassified samples demonstrated that SVM and Random Forest collectively 
misclassified 34-53% of incorrectly predicted samples, with the remainder distributed as 
method-specific errors (Figure S16). Furthermore, severity stratification analysis revealed 
distinct error patterns: samples with low error rates (<50%) showed only 8-9% consensus 
misclassification between methods, while high-error samples (>50%) exhibited 42% 
consensus misclassification. These results indicated that each method exhibited distinct 
types of method-dependent misclassifications.  

 

Figure S14. Relative abundance of key bacterial genera in correct versus incorrect 
Random Forest NPCST Testing Set predictions. Boxplots show the relative abundance 
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[%] distributions for six genera grouped by random forest accuracy and stratified by NPCST. 
Statistical significance between groups for each genus/NPCST was assessed using 
Wilcoxon rank-sum tests with FDR correction, with significant differences indicated above 
boxplots. Statistical significance levels are denoted as * p ≤ 0.05, **p ≤ 0.01, *** p ≤ 0.001, 
and **** p ≤ 0.0001 for adjusted p-values (p.adj). 

 

Figure S15. Relative abundance of key bacterial genera in correct versus incorrect SVM 
NPCST Testing Set predictions. Boxplots show the distribution of relative abundance [%] 
for six genera grouped by random forest accuracy and stratified by NPCST. Statistical 
significance between groups was assessed for each genus/NPCST using Wilcoxon rank-
sum tests with FDR correction, with significant differences indicated above boxplots. 
Statistical significance levels are denoted as * p ≤ 0.05, **p ≤ 0.01, *** p ≤ 0.001, and **** p 
≤ 0.0001 for adjusted p-values (p.adj). 
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Figure S16. Incorrect prediction pattern analysis for NPCST. Venn diagrams illustrate 
overlapping incorrect predictions between Random Forest and Support Vector Machine 
(SVM) models across different analytical dimensions. The upper two rows (blue theme) 
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display method-specific and consensus prediction errors for each of the six NPCSTs, with 
overlapping regions indicating samples consistently misclassified by both methods. The 
bottom row (purple theme) stratifies prediction errors by severity levels: low (<15% error 
rate), moderate (15-50% error rate), and high (>50% error rate) incorrect predictions across 
100 cross-validation iterations.  

SVM and random forest confidence evaluation 
The clear relative abundance separation patterns motivated us to construct a confidence-
based evaluation that provides additional information and improves the usability of our 
final deployed models. For both SVM and Random Forest models, the confidence 
evaluation uses both predicted probability and relative abundance thresholds to classify 
samples into low and high confidence groups. First, we identified samples with low 
prediction probability and low relative abundance for each non-NPCST V group, which 
represented <10% of samples where the machine learning models achieved only median 
accuracies of 56% and 67% for SVM and Random Forest, respectively. As illustrated in 
Figure S17 & 18 A-F, there was an unmistakably strong pattern between relative 
abundance and prediction probability. We established optimal probability and relative 
abundance thresholds for NPCST-specific genera to classify predictions as high or low 
confidence. For example, for NPCST I and its dominant genus Moraxella, predictions with 
SVM probability <0.46 and Moraxella relative abundance <52% were considered low 
confidence.  

Through Youden's J statistic-guided selection of optimal prediction probability and relative 
abundance thresholds, we significantly improved prediction accuracy of above-threshold 
samples to >95% and >97% for SVM and Random Forest, respectively (Table S7). The low 
confidence group achieved 6.2-26.3% and 9.4-19.3% accuracy for SVM and Random Forest 
models, respectively. These results highlight the effectiveness of the confidence evaluation 
in identifying and flagging low-confidence predictions.  
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Figure S17. Evaluation of optimal SVM prediction probability and dominant genera relative 
abundance thresholds for NPCST classification using Youden's J statistic optimization. A-F 
display density plots of relative abundance (x-axis) versus SVM prediction probability (y-
axis) for NPCST groups I, II (two dominated genera were evaluated separately), III, IV, and VI, 
respectively, using data from testing sets across 100 iterations of 5-fold cross-validation. 
Colored dots are correct predictions, whereas gray-colored dots represent incorrect 
predictions from SVM. Each panel's top-right heatmap illustrates Youden's J statistics 
calculated at 0.01 intervals for relative abundance and predicted probability combinations 
within the 0-0.75 range. The red circle indicates the optimal threshold combination with the 
highest Youden's J statistic; when multiple combinations yielded identical Youden's J 
values, the combination with the lowest relative abundance and probability thresholds was 
selected. This optimal combination is visualized as a red dot on the scatter plot, with 
corresponding threshold lines shown on the density plots to illustrate classification across 
all correctly and incorrectly predicted samples. This analysis was restricted to samples 
with both predicted probability and relative abundance < 0.75 to focus on challenging 
predictions where confidence classification is most critical. The right density plot displays 
only 0 to 10 density range for better visualization.  
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Figure S18. Evaluation of optimal Random Forest prediction probability and dominant 
genera relative abundance thresholds for NPCST classification using Youden's J statistic 
optimization. A-F display density plots of relative abundance (x-axis) versus SVM prediction 
probability (y-axis) for NPCST groups I, II, III, IV, and VI, respectively, using data from testing 
sets across 100 iterations of 5-fold cross-validation. Colored dots are correct predictions, 
whereas gray-colored dots represent incorrect predictions from SVM. Each panel's top-
right heatmap illustrates Youden's J statistics calculated at 0.01 intervals for relative 
abundance and predicted probability combinations within the 0-0.75 range. The red circle 
indicates the optimal threshold combination with the highest Youden's J statistic; when 
multiple combinations yielded identical Youden's J values, the combination with the lowest 
relative abundance and probability thresholds was selected. This optimal combination is 
visualized as a red dot on the scatter plot, with corresponding threshold lines shown on the 
density plots to illustrate classification across all correctly and incorrectly predicted 
samples. This analysis was restricted to samples with both predicted probability and 
relative abundance < 0.75 to focus on challenging predictions where confidence 
classification is most critical. The right density plot displays only 0 to 10 density range for 
better visualization. 
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Figure S19. ROC curve analysis of external validation NPCST predictions. Ground truth 
assignments derived from hierarchical clustering analysis combining external validation 
studies with the original 28-study dataset (Bray-Curtis dissimilarity, Ward linkage; see 
Methods and Supplementary File Methods). Model performance is shown via ROC 
curves and AUC values for both SVM (blue) and Random Forest (purple) across all six 
NPCSTs.  
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Community-state-specific patterns in demographics, disease risk, and 
microbial diversity 

 

Figure S20. Host demographic and ecological characteristics of nasopharyngeal 
community-state types (NPCSTs). A. Age distribution across six NPCSTs displayed as 
raincloud plots combining density distributions (right), boxplots (center), and individual 
data points (left). The middle panel shows the proportion of each NPCST across age groups 
using 1-year increments. The two rightmost panels display the sample count for each 
NPCST at 1-year age increments.  B. Sex distribution within each NPCST showing 
proportions of female (light shading) and male (dark shading) participants, with sample 
counts indicated within bars. Dashed white line indicates 50% proportion. C. Forest plot 
displaying odds ratios (OR) with 95% confidence intervals for bacterial and viral infections 
compared to controls across NPCSTs, derived from multinomial logistic regression 
stratified by BioProject with OR=1 indicated by vertical black dashed lines. ORs >1.0 
indicate increased infection risk, while ORs <1.0 indicate decreased risk relative to 
controls. D Shannon diversity distributions comparing control, bacterial infection, and viral 
infection groups within each NPCST. Sample sizes are shown below each group with 
significance levels from pairwise Wilcoxon rank-sum tests with FDR correction indicated 
above with brackets (*p < 0.05, **p < 0.01, ***p < 0.001, ns = not 
significant). E. Relationship between Shannon diversity and age within each NPCST, with 
linear regression R² values displayed above each plot. Each point represents an individual 
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sample colored by NPCST membership. In all panels, NPCSTs are color-coded as follows: I 
(blue), II (green), III (yellow), IV (purple), V (red), and VI (teal). 

Co-occurrence network  
Figure S21A-B presents centrality rankings (closeness, betweenness, and degree) for the 
top-performing genera. These 44 top-ranked genera (of 72 total analyzed) exhibited two 
distinct functional patterns: 17 multi-hub genera 
(including g_Acinetobacter, g_Anaerococcus, and g_Peptoniphilus) consistently ranked 
highly across all three network metrics in both NPCST-specific and global networks, 
indicating their role as keystone anchors that maintain community structure regardless of 
compositional shifts. The remaining 27 specialized genera showed prominence in only 1-2 
metrics within specific NPCST contexts. For instance, g_Enhydrobacter, a gram-negative 
bacterium, ranked first for degree centrality in NPCST VI and first for closeness centrality in 
NPCSTs I and II, indicating its function as a context-specific influencer rather than a 
universal community hub. This specialization pattern provides new avenues for 
investigating these understudied genera. Importantly, Moraxella from NPCST I consistently 
showed low network centrality rankings despite its numerical dominance, demonstrating 
that competitive dominance can paradoxically result in network isolation and limited co-
existence capacity. Figure S21C displays the co-occurrence networks for NPCSTs V and VI, 
which exhibit more complex association patterns consistent with their higher microbial 
diversity.  
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Figure S21. Network Centrality Analysis of Structurally Important Genera. A. UpSet plot 
showing the distribution of genera across global (orange dots and bar on upper marginal 
distribution) and NPCST-specific co-occurrence networks. Each column represents a 
unique combination of networks sharing specific genera, with the number and percentage 
of genera shown above each bar. The left panel indicates the total number of genera in 
each network (set size). The brown column highlights the, genera shared across all 
networks. Connected dots in the matrix indicate which networks contribute to each 
intersection. B. Centrality rankings (closeness, betweenness, and degree) for 44 top-
ranked genera across the global and six NPCST-specific co-occurrence networks. Data 
point color indicates centrality ranking position (ranging from light blue=1 to purple=10), 
and shape indicates centrality type (circle=betweenness, square=closeness, and 
diamond=degree). Genera are stratified into two functional categories: multi-hub genera 
(n=17), representing taxa with consistently high centrality across multiple networks, and 
specialized genera (n=27), which exhibit prominent centrality within specific NPCST 
contexts but limited rankings across networks. C. Associations across networks, focusing 
on associations involving NPCSTs V and VI. Each pie chart represents microbial 
associations unique to NPCST V (red), unique to NPCST VI (teal), or shared between both 
NPCSTs (side by side color).  
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Nasopharyngeal microbiome health index 

Stage 1. LONO cross-validation results: optimal lambda selection across 
taxonomic levels and prevalence thresholds 
Leave-One-NPCST-Out (LONO) cross-validation successfully identified optimal 
regularization parameters across taxonomic ranks, with all-taxa and genus-level models 
consistently achieving superior performance across both disease classifications (Table 
S14). The all-taxa models achieved the highest AUC values (0.886 for all conditions, 0.890 
for viral infections at 0% prevalence), followed by genus-level models (0.847 and 0.855, 
respectively), demonstrating robust discriminatory power. Species-level models ranked 
third with AUC values of 0.798-0.813, representing a performance decrease comparable to 
the all-taxa-to-genus drop (~0.04-0.05 AUC points). The remaining single-taxonomy models 
exhibited more substantial performance degradation, establishing a clear hierarchy: all-
taxa > genus > species > family > order > class ≈ phylum, with class and phylum models 
showing equivalent poor performance (AUC ~0.64). 

Stage 2: model performance from LONO and 10-fold cross-validation on the 
training datasets  
Using optimal lambda parameters identified in Stage 1, we evaluated all-taxa and genus-
level models through both LONO and 10-fold cross-validation (10 repeats) across five 
prevalence thresholds (Table S12 and Figure 6A). LONO validation revealed consistent 
performance degradation with increasing prevalence thresholds: all-taxa all-conditions 
models achieved mean AUC of 0.877, 0.874, and 0.857 at 0%, 1%, and 5% thresholds 
respectively, with marked declines at 10% (0.826) and 20% (0.816). 10-fold cross-validation 
yielded systematically higher performance across all configurations, with corresponding 
AUC values of 0.907, 0.902, 0.889, 0.855, and 0.845, representing a consistent ~0.03 
improvement over LONO estimates. Viral infection-specific models marginally 
outperformed all-conditions models by 0.008-0.016 AUC points across both validation 
strategies. Genus-level models maintained competitive performance, achieving mean AUC 
values 0.03-0.04 lower than all-taxa models, with 0.814 (LONO) and 0.847 (10-fold) at the 
5% threshold for all-conditions classification. 

Balanced accuracy metrics paralleled AUC trends across both validation strategies. LONO 
cross-validation for all-taxa all-conditions models yielded balanced accuracies of 0.792, 
0.791, and 0.773 at 0%, 1%, and 5% prevalence thresholds, with notable decreases to 
0.743 and 0.738 at 10% and 20% thresholds respectively. Viral infection-specific models 
demonstrated consistent but modest improvements, with balanced accuracies 0.012-
0.018 higher than corresponding all-conditions models across all thresholds (Table S12). 
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10-fold cross-validation produced systematically elevated balanced accuracies, achieving 
0.825, 0.821, and 0.804 for all-taxa all-conditions models at 0%, 1%, and 5% thresholds, 
representing improvements of around 0.03 over LONO estimates. The convergent 
performance patterns across both validation approaches support selection of the 5% 
prevalence threshold, which optimally balances discriminatory power with model 
generalizability by capturing community-level microbial signatures while filtering rare taxa 
present in <5% of samples. 

Stage 3: final model evaluation using the full training data 
Having established the 5% prevalence threshold, we trained four final models (all-taxa and 
genus-level for both all-conditions and viral infections) and evaluated NMHI distributions 
across disease categories. Our dataset encompassed diverse pathogen types: viral 
infections (e.g., SARS-CoV-2, rhinovirus, influenza), bacterial infections (e.g., 
meningococcal disease, tuberculosis, pneumococcal disease), and polymicrobial 
conditions of mixed etiology (e.g., otitis media and rhinosinusitis). Initial pairwise 
comparisons between healthy controls and individual disease states yielded significant 
differences for all conditions (Wilcoxon rank-sum test, FDR-adjusted p < 0.001). When 
aggregated by pathogen category, NMHI demonstrated strong discriminatory power with 
large effect sizes: viral infections (Cohen's d = 1.88), bacterial infections (d = 1.58), and 
mixed infections (d = 1.50), with all category-level comparisons remaining highly significant 
(FDR-adjusted p < 0.0001). These substantial effect sizes across diverse infectious 
etiologies validate NMHI's capacity to capture general health index signatures independent 
of specific pathogen type. 

With the final models established, we evaluated non-zero coefficients across all four 
model configurations to identify key taxa driving NMHI predictions (Figure S22-23). 
Coefficients were classified as health-promoting (>0) or disease-associated (<0), revealing 
99 health-promoting and 98 disease-associated taxa in the All-Taxa All-conditions model, 
103/96 in the All-Taxa Viral Infection model, 37/31 in the Genus-Only All-conditions model, 
and 38/36 in the Genus-Only Viral Infection model. To focus on taxa with substantial 
predictive influence, we analyzed features with any taxa that contain absolute coefficients 
≥0.5, identifying 34 health-promoting and 24 disease-associated taxa that demonstrate 
varying prevalence patterns across nasopharyngeal community structures (Figure 6D). 
Comparative abundance analysis of these key markers across control, all-disease, and 
viral infection groups revealed that few taxa exhibit complete absence or presence patterns 
between healthy and diseased states (Figures S20-S21). Even statistically significant 
markers such as g_Cutibacterium (health-promoting),  g_Moraxella (health-promoting) and 
g_Haemophilus influenzae (disease-associated) showed overlapping abundance 
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distributions across groups, with both taxa present in substantial proportions of control 
and disease samples. These findings validate our composite index approach rather than 
reliance on individual microbial markers, as no single taxon provides definitive 
discrimination between healthy and diseased nasopharyngeal microbiomes. 

 

Figure S22. Disease-associated taxa abundance across infection categories. Boxplots 
show the relative abundance distributions of disease-associated microbial taxa across 
Control, All Disease (combined bacterial and viral infections), and Viral Infection groups, 
with sample sizes (n) displayed below each category. The total number of samples for 
control, all disease and viral infections are 3,344, 2,091, and 1,725, respectively. Statistical 
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significance bars indicate Wilcoxon rank-sum test results comparing Control vs All Disease 
and Control vs Viral Infection (FDR-corrected; *p<0.05, **p<0.01, ***p<0.001), with colors 
representing Control (green), All Disease (blue), and Viral Infection (yellow). 

 

Figure S23. Health-promoting taxa abundance across infection categories. Boxplots 
show the relative abundance distributions of health-promoting microbial taxa across 
Control, All Disease (combined bacterial and viral infections), and Viral Infection groups, 
with sample sizes (n) displayed below each category. The total number of samples for 
control, all disease and viral infections are 3,344, 2,091, and 1,725, respectively.  Statistical 
significance bars indicate Wilcoxon rank-sum test results comparing Control vs All Disease 
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and Control vs Viral Infection (FDR-corrected; *p<0.05, **p<0.01, ***p<0.001), with colors 
representing Control (green), All Disease (blue), and Viral Infection (yellow). 

Stage 4: NMHI threshold evaluation 
Once NMHI scores were generated across all samples, we proceeded with threshold 
optimization to maximize classification accuracy. While zero represents the theoretical 
neutral point, it does not necessarily provide optimal discriminatory performance between 
healthy and disease states. Therefore, we determined optimal thresholds for the complete 
training dataset by maximizing balanced accuracy across threshold values ranging from -5 
to 5 (Figure 6E). Given the compositional distinctiveness of NPCSTs, we additionally 
evaluated NPCST-specific thresholds to account for community-structure variations in 
optimal classification boundaries. The analysis revealed strong clinical differentiation 
between healthy controls and disease groups, with Cohen's d values ranging from 1.661 to 
2.012 across individual NPCSTs and 1.887 for the combined dataset (Figure 6E). These 
large effect sizes demonstrate robust separation between healthy and diseased 
populations, with all Wilcoxon rank-sum comparisons achieving statistical significance 
(FDR-adjusted p < 0.001). 

Stage 5: external validation 
With final model coefficients and optimal thresholds established, we evaluated NMHI 
performance on independent validation datasets excluded from all prior training stages 
(Figure 6F). The external validation cohort was dominated by SARS-CoV-2 cases, reflecting 
continued research focus following the 2019 pandemic, with disease severity ranging from 
standard qPCR-confirmed SARS-CoV-2 to critical cases requiring ICU admission and 
mechanical ventilation. Additional validation samples included limited numbers of lower 
respiratory tract infections (LTRI, n=5), critically ill SARS-CoV-2-negative patients (n=31), 
and symptomatic individuals with suspected but confirmed-negative SARS-CoV-2 (n=15). 
External validation maintained strong discriminatory performance, with Cohen's d values 
ranging from 1.598-2.368 across all diagnostic categories when compared to external 
healthy controls, indicating large effect sizes and robust separation between healthy and 
diseased populations. Notably, mechanically ventilated SARS-CoV-2 patients showed the 
lowest effect size, potentially due to procedural artifacts affecting the nasopharyngeal 
microbiome during or after intubation. Nevertheless, all disease categories demonstrated 
statistically significant distributional differences from healthy populations, confirming 
NMHI's broad applicability across diverse pathological conditions. AUC analysis further 
validated model performance, achieving 0.922 for the combined dataset and NPCST-
specific values ranging from 0.848-0.953, with NPCST classifications determined using the 
random forest model developed in earlier stages to ensure reproducible workflow 
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implementation (Figure 6G). NPCST V was excluded from analysis as all samples belonged 
to the disease group, precluding meaningful AUC calculation. 

These comprehensive external validation results demonstrate NMHI's robust 
generalizability across diverse clinical populations and nasopharyngeal community 
structures, confirming its utility as a reliable monitoring tool for tracking disease 
progression and healthy nasopharyngeal microbial composition. The consistent 
discriminatory performance across independent datasets, varying disease severities, and 
distinct community types validates NMHI's potential for clinical implementation as a 
standardized biomarker for respiratory health assessment. 

PRISMA checklist 
Section and 
Topic  

Item 
# Checklist item  Location where 

item is reported  
TITLE   
Title  1 Identify the report as a systematic review. Title  
ABSTRACT   
Abstract  2 See the PRISMA 2020 for Abstracts checklist. Abstract 
INTRODUCTION   
Rationale  3 Describe the rationale for the review in the context of existing 

knowledge. 
Introduction 

Objectives  4 Provide an explicit statement of the objective(s) or question(s) the 
review addresses. 
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METHODS   
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websites, including any filters and limits used. 
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8 Specify the methods used to decide whether a study met the inclusion 
criteria of the review, including how many reviewers screened each 
record and each report retrieved, whether they worked independently, 
and if applicable, details of automation tools used in the process. 
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in the process. 
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data processing” 

Data items  10a List and define all outcomes for which data were sought. Specify Methods  
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Section and 
Topic  

Item 
# Checklist item  Location where 

item is reported  
whether all results that were compatible with each outcome domain in 
each study were sought (e.g. for all measures, time points, analyses), 
and if not, the methods used to decide which results to collect. 

&  
Table 1 

10b List and define all other variables for which data were sought (e.g. 
participant and intervention characteristics, funding sources). 
Describe any assumptions made about any missing or unclear 
information. 

Table 1 

Study risk of 
bias 
assessment 

11 Specify the methods used to assess risk of bias in the included 
studies, including details of the tool(s) used, how many reviewers 
assessed each study and whether they worked independently, and if 
applicable, details of automation tools used in the process. 

Methods 
& 
Discussion 
(Limitations) 

Effect 
measures  

12 Specify for each outcome the effect measure(s) (e.g. risk ratio, mean 
difference) used in the synthesis or presentation of results. 

Methods 
“Statistical 
Methods” 

Synthesis 
methods 

13a Describe the processes used to decide which studies were eligible for 
each synthesis (e.g. tabulating the study intervention characteristics 
and comparing against the planned groups for each synthesis (item 
#5)). 

Methods 
“16S data 
processing” 

13b Describe any methods required to prepare the data for presentation or 
synthesis, such as handling of missing summary statistics, or data 
conversions. 

Methods 
“16S data 
processing” 
& 
“Nasopharyngeal 
background 
decontamination 
protocol” 

13c Describe any methods used to tabulate or visually display results of 
individual studies and syntheses. 

Methods 
(multiple 
sections) 

13d Describe any methods used to synthesize results and provide a 
rationale for the choice(s). If meta-analysis was performed, describe 
the model(s), method(s) to identify the presence and extent of 
statistical heterogeneity, and software package(s) used. 

Methods 
(multiple 
sections) 

13e Describe any methods used to explore possible causes of 
heterogeneity among study results (e.g. subgroup analysis, meta-
regression). 

Methods 
(multiple 
sections) 
& 
Supplementary 
File 

13f Describe any sensitivity analyses conducted to assess robustness of 
the synthesized results. 

Methods 
(multiple 
sections) 
& 
Supplementary 
File 

Reporting 
bias 
assessment 

14 Describe any methods used to assess risk of bias due to missing 
results in a synthesis (arising from reporting biases). 

Methods 

Certainty 
assessment 

15 Describe any methods used to assess certainty (or confidence) in the 
body of evidence for an outcome. 

N/A 

RESULTS   
Study 16a Describe the results of the search and selection process, from the Methods “Study 



K. Song et al  Systematic meta-analysis of nasopharyngeal microbiomes 
 

45 
 

Section and 
Topic  

Item 
# Checklist item  Location where 

item is reported  
selection  number of records identified in the search to the number of studies 

included in the review, ideally using a flow diagram. 
screening and 
metadata 
evaluation” 

16b Cite studies that might appear to meet the inclusion criteria, but which 
were excluded, and explain why they were excluded. 

N/A 

Study 
characteristics  

17 Cite each included study and present its characteristics. Table 1 

Risk of bias in 
studies  

18 Present assessments of risk of bias for each included study. N/A 

Results of 
individual 
studies  

19 For all outcomes, present, for each study: (a) summary statistics for 
each group (where appropriate) and (b) an effect estimate and its 
precision (e.g. confidence/credible interval), ideally using structured 
tables or plots. 

N/A 

Results of 
syntheses 

20a For each synthesis, briefly summarise the characteristics and risk of 
bias among contributing studies. 

Results (multiple 
sections) 
& 
Supplementary 
File 

20b Present results of all statistical syntheses conducted. If meta-analysis 
was done, present for each the summary estimate and its precision 
(e.g. confidence/credible interval) and measures of statistical 
heterogeneity. If comparing groups, describe the direction of the 
effect. 

Results (multiple 
sections) 
& 
Supplementary 
File 

20c Present results of all investigations of possible causes of 
heterogeneity among study results. 

Results (multiple 
sections) 
& 
Supplementary 
File 

20d Present results of all sensitivity analyses conducted to assess the 
robustness of the synthesized results. 

Results (multiple 
sections) 
& 
Supplementary 
File 

Reporting 
biases 

21 Present assessments of risk of bias due to missing results (arising 
from reporting biases) for each synthesis assessed. 

N/A 

Certainty of 
evidence  

22 Present assessments of certainty (or confidence) in the body of 
evidence for each outcome assessed. 

Results (multiple 
sections on 
validations) 
& 
Supplementary 
File on 
validations 

DISCUSSION   
Discussion  23a Provide a general interpretation of the results in the context of other 

evidence. 
Discussion 

23b Discuss any limitations of the evidence included in the review. Discussion 
23c Discuss any limitations of the review processes used. Discussion 
23d Discuss implications of the results for practice, policy, and future 

research. 
Discussion 

OTHER INFORMATION  
Registration 24a Provide registration information for the review, including register name N/A 
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Section and 
Topic  

Item 
# Checklist item  Location where 

item is reported  
and protocol and registration number, or state that the review was not registered. 

24b Indicate where the review protocol can be accessed, or state that a 
protocol was not prepared. 

N/A 

24c Describe and explain any amendments to information provided at 
registration or in the protocol. 

N/A 

Support 25 Describe sources of financial or non-financial support for the review, 
and the role of the funders or sponsors in the review. 

Funding 
statement 

Competing 
interests 

26 Declare any competing interests of review authors. Conflict of 
Interest 

Availability of 
data, code 
and other 
materials 

27 Report which of the following are publicly available and where they 
can be found: template data collection forms; data extracted from 
included studies; data used for all analyses; analytic code; any other 
materials used in the review. 

Data avalibility 
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