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We first introduce the mathematical framework and key concepts used throughout the Supple-
mentary Material (SM). We provide the necessary background and definitions for understanding the
derivations and analysis presented in the subsequent sections.

This Supplementary Material aims to present analytical derivations demonstrating how non-
normality impacts the probability of transitions between states in non-variational systems. The
main results show that non-normality leads to an amplification mechanism, enabling faster transi-
tions between states and even causing systems to exit stable equilibrium more rapidly due to this
amplification.
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I. MATHEMATICAL FRAMEWORK

In this appendix, we provide the mathematical background and assumptions underlying our analysis. We
first introduce the dynamical system of interest, before reformulating the problem in the language of stochastic
calculus.

A. Generalized Langevin System

We consider an overdamped Langevin dynamics describing the evolution of an N-dimensional state vector x,
subject to a generalized force f and stochastic fluctuations

x=f(x)+v20n, 0 SNOI), (1)

where § denotes the noise amplitude. In physical systems where the noise originates from thermal fluctuations,
one has § = kgT, with kg Boltzmann’s constant and 7" the temperature.

By Hodge decomposition—a generalization of the Helmholtz decomposition to higher dimensions [1, 2] — the
generalized force can be expressed as

i) = = 0i6(x) + 3 95 s (20 @

where ¢(x) is a scalar potential and A(x) is an anti-symmetric (anti-Hermitian in the complex case) matrix.
The first term represents a conservative (longitudinal) force, while the second corresponds to a non-conservative
(transversal) force. Systems of this type are called non-variational, as they do not generally derive from a
least-action principle.

Near a stable fixed point xq, the dynamics can be linearized as

)'(%Jf(Xo)X-‘r\/%TI, (3)

where J¢(x¢) is the Jacobian of f at xo. Stability requires that all eigenvalues of J¢(x() have negative real
parts.

If A =0 in (2), then the system is variational and J;(x) is Hermitian, i.e. Jp(x) = J;(xo)!. Our focus,
however, is on non-normal systems, characterized by [J (xo),J(x0)T] # 0, which implies that Jf(xo) cannot
be diagonalized in a unitary basis. Even when such systems are linearly stable, transient deviations may be
strongly amplified, and this amplification grows with the degree of non-normality.

A natural quantitative measure of non-normality is the condition number x of the eigenbasis transformation
of J¢(x0) [3]. In this work, we investigate the leading-order behavior of escape probabilities in the asymptotic
regime x> 1.

B. Problem Statement

We now reformulate the problem using the framework of stochastic calculus. Let (Q, F,P) be a filtered
probability space supporting an N-dimensional Brownian motion W. We consider the It6 stochastic differential
equation

dx =f(x)dt +V26dW, xeRN, 0<d<1, (4)

where f € C2(RY;RY) is the drift function. We assume that f satisfies a sub-quadratic growth condition,
ensuring the existence of global strong solutions. Equation (4) is equivalent to (1), but expressed in stochastic
calculus notation.

We focus on two disjoint open subsets A, B C RY, each containing a hyperbolic equilibrium of f: a € A and
b € B. The central object of interest is the transition probability

P°=Pi{7p < Toa}, (5)
where the stopping times are defined by

TR = 2I>1£{Xt € B}, ToA 1= tir>1£{xt ¢ A} (6)

We are particularly interested in the small-noise limit § — 0.
The main objective of this work is to quantify how strong non-normality of the Jacobian J(x) := Df(x)
modifies the asymptotic behavior of P°.



C. Large-Deviation Framework

For any fixed time horizon 7 > 0, the law of the process (x):c[o,-] satisfies a Large-Deviation Principle (LDP)
on the space C([0, 7]; RY), characterized by the good rate function (action functional)

1 T
Sl =5 [ b —tx)|'de, x< (0.7 RY). (7)
0
According to Freidlin—Wentzell theory, the transition probability admits the asymptotic representation

P? = exp (S) , S := inf inf Srx], (8)

) 7>0 x(0)=a, x(1)€B

where S is the quasi-potential between the equilibrium a and the set B. The second infy(g)—a, x(r)ep in (8) is
taken over all paths starting from x(0) and ending in domain B.

To ensure the validity of the large-deviation approximation and the asymptotic expansions employed, we
impose the following assumptions:

e (A1) Smoothness: The drift f is twice continuously differentiable (f € C?) and satisfies a sub-quadratic
growth bound, i.e. [|f(x)] < C(1 + ||x])).

¢ (A2) Hyperbolicity: The Jacobians Df(a) and Df(b) are hyperbolic, meaning that all their eigenvalues
have strictly negative real parts.

e (A3) Unique Minimizer: The optimization problem in (8) admits a unique minimizing path x*.

e (A4) Local Uniformity: The asymptotic expansions derived later remain uniformly valid in the scaling
parameter k within a local neighborhood of interest.

Under (A1)—(A3), the LDP and associated saddle-point approximations are rigorous. Assumption (A4)
ensures uniformity in the large shear introduced by non-normality, as measured by k.

Different approaches can be used to evaluate the quasi-potential S. One possibility is to identify the instanton
path by minimizing the Lagrangian

L(%,x) = &||x — £(x)| %, (9)

which leads to the Euler-Lagrange equation

d OL oL

- = —. (10)

dt 0% ox
Alternatively, and more conveniently for our analysis, one may adopt the Hamilton—Jacobi formalism. Assuming
the minimizing action can be represented as a scalar field S(x), for each infinitesimal time step d0t, the optimal
path moves with velocity v and continues optimally thereafter from the updated position x — v 6t

S(x) = iergN{S(x —vit) + L(v,x) 6t + O(5t2)} (11)
- viergN{S(x) — v - Vi S(x) 6t + L(v, %) 6t + 0(&2)}, (12)
= 0= viergN{L(v, X) — v - VxS(x) + (9(&)}. (13)

Canceling S(x) and retaining terms of order 6¢, the Hamiltonian is obtained via a Legendre transform

H(x,p) = sgp{p V- L(WX)}, p = VxS(x), (14)
—p-£(x) + [p|% (15)
The minimizing action S(x) is therefore characterized by the Hamilton-Jacobi PDE
H(%,VxS) = [VxS&)|2 + £(x) - VxS (x) = 0. (16)
This equation is equivalent to the leading-order stationary Fokker—Planck equation

§ AxP(x) — Vx - [f(x)P(x)] =0, (17)



where P(x) is the stationary density. With the ansatz P(x) = e~5®)/% the PDE becomes
[VxS(x)* + f(x) - VxS(x) = §[AxS(x) + Vi - f(x)]. (18)
In the small-noise limit § — 07, solutions of (18) converge to the Hamilton—Jacobi solution (16).

We conclude that, in systems governed by an LDP, the central task is to extract the leading-order contribution
to the quasi-potential S, which directly determines the exponential scaling of escape probabilities and transition
rates.

D. Summary & Main Statement

We have now formalized the dynamical system of interest (1), and expressed the problem of estimating escape
probabilities in terms of the quasi-potential S, as a function of the degree of non-normality x. When xk = 1, the
system is normal; in the limit kK — oo, the system is “highly” non-normal. The LDP framework highlights that
the key objective is to determine the leading-order dependence of S on k.

Proposition. In the limit of a highly non-normal system, i.e. k> K. where k. is a critical threshold beyond
which non-normal effects dominate the dynamics, the quasi-potential can be expressed as

S = (%)QSeﬁ + o((=)"). (19)

At leading order in k/k., the exponent in

—~~

8) therefore simplifies to

- Seff
~ 5

SSRY!

) 5ej‘f ~ H25, (20)

showing that non-normality effectively renormalizes the noise scale in Kramers-type problems, producing a sig-
nificant amplification of escape rates.

The derivation of this proposition is given below. This result extends the framework of [4], which established
a unifying description of amplification mechanisms in non-normal linear systems, to the more general case of
non-normal nonlinear systems subject to Gaussian (thermal) fluctuations.

2 2
The parameter k. = w/f, where w := 685);4 (28¢) and S := Bayd;y (28a) quantifies the balance
y=y~ y=y~

between two competing processes: the restorative tendency of the potential well, governed by the curvature
w, and the shear imposed by the non-normal coupling, set by 8. Physically, . acts as a threshold separating
regimes where fluctuations are either suppressed or strongly amplified. For k < k., restoring forces dominate
and the system behaves like a conventional stable equilibrium, with noise producing only small perturbations.
Once k exceeds k., however, the shear overwhelms the local curvature, so that noise is effectively multiplied and
escape rates increase dramatically. In this sense, k. marks the critical degree of non-normality beyond which
the system undergoes a qualitative change of regime, despite its eigenvalues remaining stable.

II. NON-NORMAL AMPLIFICATION OF STOCHASTIC NOISE

Amplification of stochastic noise in linear non-normal systems has been studied extensively in the past [3-5].
The interplay between non-normality and nonlinearity has also been noted in hydrodynamic contexts [6].

The purpose of this section is to demonstrate that, in the limit of a “highly” non-normal system, the noise
variance rescaled by the factor 2. In particular, assuming the existence of a unique non-normal mode [3], the
dynamics can be reduced to two dimensions: one associated with the non-normal mode itself, and the other
with its reaction mode. In this reduced setting, the matrix potential A from (2) can be written as

A=, Q= (" ). v =rn) -k ) (21)

Note that the scalar potential ¢ (x) is separable in « and y. We also assume a separable scalar potential for ¢,
ie. ¢(x) = ¢z(x) + ¢y(y). The generalized force (2) then takes the form

f(x) = —Vo(x) + QVy(x). (22)

Accordingly, the Jacobian of f at each point x = (z,y) is given by

J(x) == Df(x) = <;?§§$£2) ig%ﬁ%%) ' =



The corresponding eigenvalues are

Ao (%) = —1(0260(2) + 026, (1) + 1/ (020 () — 320, () + 422, (y) 246u (). (24)

Remarkably, the degree of non-normality x does not appear in the spectrum. Thus, we obtain a reduced two-
dimensional nonlinear system in which the stability is governed solely by the potentials ¢; and ¥; (i = x,y),
while non-normality manifests exclusively through a shear controlled by . As k increases, the magnitude of
this shear grows.

Our objective in what follows is to analyze how the quasi-potential S depends on «, and thereby deduce the
scaling of transition rates with the degree of non-normality.

A. Effective Quasi-Potential

For the system defined by (1) with the force field given by (22), the action functional (7) can be decomposed
as

Srlx] = S7lz,y) + 57z, yl, (25a)
SEl,y] = / & + Duha () — K Dyby ()| dt, (25b)
S’/ ZL’ y / Hy + a’y¢y ) - H_laxwx || dt. (25C)

To minimize the action (7), the force f(x) must remain of order O(1) along the optimal trajectory. This requires
the non-normal shear contribution x 0y, (y) to remain at most O(1).

In the limit kK — oo, the dynamics along the non-normal mode can be expanded near an equilibrium point y*
as

y=y"+r 2+ 0(?), with  9y¢yl,_,. = 0. (26)
Expanding the non-normal shear term in powers of x~! yields
K Oythy(y) = K Oythy (¥™) + 857%(?4*) z+ O(“_l)- (27)

Since &y, (y*) must remain at most O(1), y* must also be a zero of d,1,. Thus, the action functionals
simplify to

1412
STz, y] = / Hx + 0ptpu(x) — Bz + Ok 1)H dt, B = 8§¢y‘y=y* , (28a)
SY[x,y] = k™ 2S%[x, 2], (28b)
SZ|x, 2] / |2+ wz — Optha (@) + O(k™) H dt, w:i= 8§¢y‘y=y* : (28¢)
Since SY[x,y] = O(k~2) while SZ[z,y] = O(1), minimizing the action with respect to z gives, up to O(1),
1
T+ 0ppe(r) B2+ 0K H=0 = 2= 3 [@ 4+ 0p0p0(2)] + O(k71). (29)
This cancels the leading-order contribution from SZ, leaving the reduced problem
S [x] = k287 [x, 2] + O(k™3), subject to & + 0y, (z) = Bz. (30)
Substituting this constraint into the reduced action, and using
2= 5[+ 0da(x) 2], (31)
we obtain the effective action functional
Seft[z] = 7 / [ + (0260 (z) + w)E + w Dy () — B Optdn ()] dt. (32)
Hence, the quasi-potential takes the asymptotic form
S =K"2Ser +O(k™). (33)

In summary, the quasi-potential S admits an effective one-dimensional representation, where the impact of
non-normality appears solely as a £~2 scaling. Thus, in the highly non-normal regime, the escape problem is
reduced to an effective single-mode description, with « controlling the rescaling of the noise amplification.



B. Leading-Order Dynamics

In the previous section, we established that the leading-order behavior of the quasi-potential S scales as k2.

This follows from the observation that, at leading order, the influence of 3 vanishes, so that the action functional
contributes only at order £~2.
Here, we derive the effective leading-order dynamics. We begin by expanding the dynamics of y around its

equilibrium y*
g = =0,y (y) + K Outhu(w) + V201, (34)

Introducing the rescaled coordinate z as in (26), we obtain

2= —wz+ 0. (x) + n\/ﬁny +0O(k™Y), (35)

where w 1= 82¢, (y*).
In the fast-recovery regime w > 1, this reduces to

2=~ Ouala) + VB, + O, (36)

Substituting into the dynamics of x yields

i = —0,0.(z) + gaxwm(w) + %5@ Ny + V250, + O(k™), (37)

with 5 := 3§¢y(y*)

Neglecting O(k~1) terms, the effective leading-order dynamics becomes

b= -0u0,(0) + 0t + VB =0(14(2) ), = (39)

This result is consistent with the effective action derived in (32), valid in the regime s > k. and under the
assumption of fast mean reversion along the z direction, i.e. w > |92¢,(x)|. In this limit, the quasi-potential
takes the form

Ke 2

Swzi()afp+@%w—;@ww dt. (39)

K

Thus, by invoking the fast-recovery approximation for the non-normal mode, we recover a rescaling of the
noise amplitude & by a factor of k2. Consequently, the quasi-potential S is rescaled by x~2, which captures the
leading-order behavior in the limit x > k..

C. Hamilton—Jacobi

In the previous section, we showed that the leading-order behavior of the quasi-potential S scales as k™2,

since at this order the influence of ¢ vanishes, and the action functional contributes only at order x~2.
We now recover the same scaling using the Hamilton-Jacobi framework (16). As before, we assume that ¢,
and 1, share the same equilibrium y*, and employ the expansions in (3) and (27). Under these assumptions,

the Hamilton—Jacobi equation (16) becomes

(0y9) + (0:5)% + (K Oythy — 0203) 08 + (k™' 0pthy — Oyy) 0yS = 0, (40a)
= K2(0.9)° +(0:9)* + (Bz — 0u04(2) + O(k™1)) 8,9
+ £ (Optpy —wz + O(k™1))(k9.S) =0, since 0, = £k 0, (40b)

with 8 := 924, (y*) and w = 92¢, (y*).

Asymptotic expansion. Note that £9,5 is not O(k) but O(1), since if S(x,y) is smooth in y and y =
y* + k12, then

= Z\ "™ 1 0m8
Sy =2 sV (1) sWw=g50] (41)
n=0 ’ y=y*



Hence

k0.8 = i(nJrl)S("H)(x) (g)" (42)
n=0

Expanding the Hamilton—Jacobi equation in powers of z/k, the O(1) term yields
(SD (@) + (2.5 (2))? + (B2 — Dpa(w)) 0,5 () = 0. (43)

Since the coefficients S (z) are independent of z, this forces 9,5 (z) = 0, so that S is constant, and also
S (x) = 0. Thus, the leading-order structure of S is

S(z,y) =89 + k725 (2) 22 + O(k™3). (44)

Next order. At O(k~2), the Hamilton—Jacobi equation becomes
422(SP(2))? + (B2 — 0uu()) 2% 0,53 (@) + (0pthn () — w2) 2 5P (z) = 0. (45)

Since S (z) is independent of z, one would naively set 9,5 (z) = 0, implying S®(z) = 0. However, this
contradicts the previous results. To resolve this, we incorporate the trajectory constraint

z= %aqux(x). (46)

Substituting yields

25@ () = 1 (% Bpa () — Dty (x)) . (47)

First-order solution. The Hamilton—Jacobi solution then reads

(o) =50+ 5 (%) 22 0,6, - Lowato). (18)

2\ K w

where k. = w/f.
This expression is fully consistent with the previous derivations: the leading-order correction scales as (k./k)?,
and involves the same combination of potentials 0, ¢, (x) — -0,1, () as in (32) and (39).

c

D. Validity of the WKB Approximation

In the previous sections, we have shown three complementary methods leading to the same conclusion: the
quasi-potential S admits a leading-order term proportional to (k./k)?. Equivalently, this scaling corresponds
to a rescaling of the noise amplitude by a factor (k/k.)? in the limit x > k.. Thus, the effective noise level is
given by Seg ~ x26. However, this derivation relied on a WKB approximation, which assumes that the noise
intensity ¢ is sufficiently small. To justify this approximation, we show that the amplification of § by x2 occurs
only at leading order, and not in the full expansion.

Two-scale expansion. From the Fokker—Planck equation (18), we expand the quasi-potential in powers of §

n=0
At each order we obtain
O1): [|[VxSo(x)||* 4 £(x) - VxSo(x) = 0, (50a)
O(0) 1 2VxSo(x) - Vi S1(x) + f(x) - Vi 51(x) = AxSo(x) + Vi - £(x), (50Db)

O0") : ZVxSk(x) “VxSn—k(x) + £(x) - ViSn(x) = AxSp-1(x), n>2. (50¢)
k=0



For each coefficient S, (x,y), we introduce a second expansion in 1/x

Salz,y) = Y k7SI (2,y). (51)
m=0

Conclusion. The scaling d.g ~ x2§ emerges only at the leading order in both in both § and 1/x. Higher-order
corrections in the two-scale expansion do not introduce additional amplifications of this type, but instead con-
tribute subdominant terms. This shows that the apparent growth of the effective noise level with x reflects a
leading-order renormalization rather than a breakdown of the asymptotics. Consequently, the WKB approxi-
mation remains internally consistent: although d.g may become significantly larger than the bare noise J, the
expansion is still controlled by the small parameter J, ensuring the validity of the quasi-potential analysis and
of the WKB approximation in this regime.

E. Kramers Escape Rate

We now focus on the escape rate of the system. Neglecting terms of order O(k~1), the two-dimensional
dynamics in (z,y) reduce to an effective one-dimensional dynamics in x

& = —Ug() + v/20em 1, (52a)
1 k)2
elsz(x) = aacd%c(x) - ;ax¢x(z)7 Oef = 0 (1 + <I€) ) . (521:))
If x; denotes a stable equilibrium and x; the corresponding unstable point, the Kramers escape rate is
1 AEeff
I'= g\/ Ulgs(i) |Ulgg( )| exp {— P } . where ABog = Uegr(z) — Uer(;) (53)

is the effective potential barrier height.

Discussion. This derivation is formally valid only in the small-noise regime. Here, however, the effective noise
Seft is rescaled by (k/k.)?. Whether the Kramers formula remains valid depends on the balance between § and
K/Ke.

For example, suppose initially 28 ~ 1072AE.g. In the normal case k& < k., the escape rate is extremely small,
I' ~ 3 x 107*, implying that the system remains in its initial state for all practical purposes: the expected
transition time is so large that one would need to wait astronomical timescales to observe a single escape. Now,
if (k/ke)? = 50, then 20eg ~ AFEeg/2, so that deg ~ AEeg/4. In this regime, the exponential suppression is
much weaker, and we obtain I' ~ 0.13.

Thus, the system transitions from near-perfect stability to escaping on timescales of order 10 in dimensionless
units. Even though non-normality rescales the noise amplitude, the dynamics remain within the validity domain
of the Kramers problem, while the escape rate can increase by many orders of magnitude.

F. Generalization with Momentum

So far, our discussion of non-normal amplification has focused on overdamped Langevin dynamics. To demon-
strate that the effect is not restricted to this limit, we now consider the more general underdamped case, where
inertia plays a role. Specifically, we study the coupled dynamics

T4y = —0,0.(x) + £ Oythy(y) + V261, (54a)
y+yy=— y¢1/<y) + H_laxwm(x) + mnyv (54b)

where 7 is the linear friction coefficient. This system is the natural generalization of the overdamped equations
(Sec. ITA), now including second-order derivatives.
Action functional. Following the Onsager-Machlup formulation, the action functional is

ST[xv y] = Sf[:z:,y] + Sg[x’y]v (558,)

ﬂmmziAW+w+@%uww@%@Wm, (55b)

%mm:ié[yww+@%@%w*&mmﬂ%r (55¢)



As in the overdamped case, we expand around a reference point y = y* satisfying 0y¢,(y*) = 9,y (y*) = 0,

and parametrize y = y* + k12 + O(k72).

Expansion. To leading order in 71,

Selol =} [ 1400+ 0.0a(0)— B ar + O, 5o B lu) (56a)
Stlo] = gt [ [k = Bu@l dr + O), wi= 86,0) (56b)
Eliminating 2z at leading order gives
z:%ﬁ+w+m%@m (57)
so that
S lw,y] = %ST[:U, 4+ 0, (582)
S,fz,2] = 1 /0 "k ws — Outha (@) dr (58b)

Inserting the constraint for z yields a fourth-order functional in z, consistent with the fact that boundary data
must be specified for both positions and velocities (x, &, y, 9).

Fast mean-reversion limit. Under the assumption of fast relaxation in y (i.e. w > 1), and defining the
critical ratio k. := w/[3, the action reduces to

LrkeN2 [T7., . 2
Sz, y] = 1 (;) / [x + I+ Op oz () — R%axwx(x)] dr. (59)
0 .
This is precisely the underdamped Kramers action, but with a renormalized noise amplitude rescaled by (k/k.)?
and a modified potential term.

Equivalent Langevin dynamics. In the same limit, y relaxes to

1
y%BPFWWA@+V%%} (60)
Substituting into (54) gives
1
498~ —0,0a(2) + —Otha(w) +1/20(1+ (2)2) m, (61)

which reproduces the effective action (59).

Conclusion. Thus, even in the presence of inertia, non-normal coupling rescales the effective noise amplitude
in exactly the same way as in the overdamped limit (Sec. I A). The amplification mechanism is therefore a
general feature of non-normal stochastic systems, independent of whether momentum is included.

G. Conclusion

In this section, we have analyzed how non-normality amplifies stochastic noise and reshapes the escape
dynamics of nonlinear systems. Starting from the action functional and its Hamilton—Jacobi formulation, we
demonstrated that, in the highly non-normal regime x > k., the quasi-potential S is rescaled by a factor
k~2. Equivalently, the system experiences an effective noise level de ~ K26, so that non-normality acts as a
multiplicative noise-amplification mechanism.

We confirmed this result using three complementary approaches: (i) direct minimization of the action func-
tional, (ii) analysis of the leading-order dynamics under a fast-recovery approximation, and (iii) expansion of
the Hamilton—Jacobi equation. All methods consistently yield the same scaling law, validating both the internal
consistency of the analysis and the robustness of the conclusion. Furthermore, by performing a double expansion
in 0 and 1/k, we justified the use of the WKB approximation and clarified that the rescaling applies only at
leading order, ensuring asymptotic validity.

Finally, we applied these results to the Kramers escape problem, showing that the escape rate can increase
by many orders of magnitude when x grows, while still remaining within the validity domain of the small-noise
approximation. This implies that non-normality not only destabilizes equilibria through deterministic shear,
but also drastically enhances stochastic transitions by renormalizing the effective noise scale. As a consequence,
systems that would otherwise appear nearly stable may exhibit frequent noise-induced escapes once non-normal
amplification is taken into account.

In summary, non-normality provides a universal and quantitatively precise mechanism for stochastic amplifi-
cation: it rescales the quasi-potential barrier by (k./k)? and the noise intensity by 2, leading to exponentially
enhanced transition rates in the highly non-normal regime.
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III. NUMERICAL APPLICATION

To test the validity of our theoretical derivations, we now turn to numerical experiments. We construct a
minimal nonlinear model with two potential wells along the reaction (z), for which we can explicitly control the
degree of non-normality x and compare simulations with theoretical predictions.

A. Symmetric Potential Well

The minimal scalar potential with two stable equilibria and one unstable equilibrium is defined by
o) = Ta’(@® = 2), w>0, (62)

where w controls the mean-reversion rate at the stable points. This potential has symmetric wells with stable
equilibria at z = +1 and an unstable point at =z = 0.
For simplicity, we take

Pz(x) = 0(2),  ¢y(y) = o(y), (63)

so that, in the absence of a solenoidal component, the system admits four stable equilibria (+1,£1) and two
unstable axes along = 0 and y = 0.
To introduce a solenoidal contribution that preserves the equilibrium structure, we define

Y(a) = Sa(3 —a?), (64)

for which 9,4 (x = +1) = 0. Hence, the solenoidal component does not alter equilibrium stability. We then set

Yu(2) = ¥(x) and 1y (y) = ¥ (y).
The full system reads

&= —0,0(x) + KA (y) + V201, (65a)
§=—0y0(y) + £ 0xtb(x) + V20, (65b)

where 7,7, are independent unit white noises.
One can also note that, in the neighborhood of any stable equilibrium, the Jacobian of the generalized force

field takes the form
_[(—w £B
J_<:tﬁ —w>’ (66)

where the sign £ depends on which equilibrium (z,y) = (£1,41) the system is linearized around. The corre-
sponding eigenvalues can be written, without loss of generality, as

with x = 1 for the equilibria on the diagonal (x = y = +1) and x = ¢ for the off-diagonal equilibria (z = —y =
+1).

Recall that we defined the critical degree of non-normality as k. = w/f. This recovers the same notion of
criticality introduced in [4]: pseudo-critical amplification occurs when s > k., with %, scaling proportionally to
the distance from criticality (w) and inversely to the degree of degeneracy (8). Thus, the framework of unified
amplification in linear systems naturally extends to the nonlinear setting considered here.

Finally, to ensure the stability of the diagonal equilibria (x = y = =+1), the parameters must satisfy
w> |8 >0.

In the regime where y ~ +1 is “almost stable,” the effective dynamics of = reduces to

&= —Ulg(x) + /20es 7, (68)

2
K w
1 — = —. 69
() ] o=t (69)
The sign in Ueg(z) depends on the choice y* = +1.
For an escape from z; = £1 to 2y = 0, the effective barrier and prefactor are

1 1 1 |w 1
AEeﬁ‘CU|:8:F2K%:|, C—iﬂ_ (1:!:1%2> (70)

with

V() = (@) F —(a). b=

Thus, the dynamics is controlled by four parameters:



11

=
~

=
N

Non-Normal Mode
o
[o0]

Non-Normal Mode
=
o

-20 -15 -1.0 =05 00 05 1.0 15 2.0 -2.0 -15 -1.0 -05 00 05 1.0 15 2.0
Reaction Reaction
15 1.5
1.0 1.0 | il
0.51 0.51
C C
o i)
T 0.0 T 0.0
[(v] [(v]
Q Q
o o
—0.5 —0.51
-1.0 —1.07
-1.5 | | | | -15 | | ) ) |
0 100 200 300 400 500 0 100 200 300 400 500
time time

FIG. 1. Simulation of a nonlinear two-dimensional system described in Section III A, with parameters w = 1, § = 0.01,
and k. = 10. The left panels correspond to xk = k./10, while the right panels correspond to k = 5kec.

Top panels: dynamics in phase space, where the horizontal axis denotes the reaction coordinate (z) and the vertical axis
the non-normal mode (y). Red dots mark the stable equilibria (z,y) = (£1,1), blue arrows indicate the force vector
field, and the dashed red line at x = 0 denotes the unstable manifold along the reaction direction.

Bottom panels: time series of the reaction variable (x). Continuous red lines mark the stable equilibria at z = +1, and
the dashed red line marks the unstable equilibrium at = 0.

All simulations are performed over a time horizon T" = 500 with integration step At = 0.1, corresponding to N = 5000
time steps.

e w : mean-reversion rate around equilibria.
e § : amplitude of the input noise.
e k. : critical threshold for the restoring amplitude to non-normal shear.

e x : actual strength of the non-normal shear.

B. Numerical Result

Figure 1 shows trajectories for § = 1072, w = 1, k. = 10, with xk = k. (left) and x = 5k, (right). The top
row displays the phase space trajectories, while the bottom row shows the dynamics of x. For k = k., the
system remains trapped in a single well for the entire simulation, whereas for kK = 5k., it transitions ~ 20 times
between x = £1 over the duration 7' = 500 of the simulations.

A systematic scan over k, shown in Figure 2, confirms this transition. For k < k., escapes are very rare as the
transition rate is exceedingly small, and the variance of x remains close to the Ornstein-Uhlenbeck prediction
Vo0/w =1/10. At Kk = K¢, a qualitative shift occurs: the system begins to transition between wells while the
input noise level remains constant at a very small level, and the variance abruptly increases to ~ 1. For k > k.,
the measured escape rate converges to the theoretical prediction (70), validating both the rescaling deg ~ K28
and the overall large-deviation framework.
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FIG. 2. Escape rate (left panel) and standard deviation (right panel) of the reaction variable (z) for the dynamics
described in Section III A, with parameters w = 1, 6 = 0.01, and k. = 10, as a function of . Simulations are performed
for k ranging from k./10 to 5kc.

Each simulation runs over a total time T' = 10° with integration step At = 0.1, corresponding to N = 10° data points.
The escape rate is estimated as I' = 1/(7), where (7) is the mean first-passage time from x > 0 to < 0 (or vice versa).
Black dots denote numerical measurements, and the red curve shows the theoretical escape rate given by Eq. (53). The
vertical dashed blue line marks the critical value kK = k.. In the right panel, the lower horizontal blue line indicates the
theoretical standard deviation of an Ornstein-Uhlenbeck approximation near equilibrium, /é/w = 0.1, while the upper
blue line (= 1) corresponds to the variance of a process equally likely to be near x = +1.

C. Asymmetric Potential Well

In the previous section, we studied the symmetric case, where the dynamics of the reaction variable x is
nearly symmetric, so that the transition rates between the two stable equilibria are identical. We now introduce
an asymmetry by modifying the scalar and solenoidal potentials along z, defined as

w 1 4 1 3
¢u(z) = 1+AZ$2 x2+§(A—l)x72A ) %(z):l_i_%gm 12+§(A71)x—3A ) (71)
whose derivatives are
Outs(@) = [x ale ~ D@ +A),  dthala) = fA<x —1)(@ + A). (72)
For A > 1, the system retains one unstable equilibrium at x = 0, but the two stable equilibria are now located
at x = 1 and x = —A. Crucially, the heights of the potential barriers separating these equilibria are no longer
identical.

Keeping the potentials along the y-direction unchanged from Section I1I A, the critical degree of non-normality
remains £, = w/B. The effective potential barrier from z = 1 to = 0 is then

w 1 1
AE =—— | —=(1+2A)— —(1+3A)]|. 73
et 1+AL2( +24) 6/12( * )] (73)
For A = 1, this reduces to the symmetric case of Eq. (70), while in the limit A — oo, the barrier remains of
order O(1).
In contrast, the effective barrier from z = —A to x =0 is
wA? [1 1
AV I N —(A+2)+ —(A 4
s = 1 A+ D+ (a3, (74)

which grows as O(A?) in the limit A — oo.

Thus, the asymmetric potential well provides a bistable system in which non-normality can induce sufficiently
large fluctuations to overcome the barrier in one direction, while the reverse transition remains exponentially
suppressed. This construction highlights how non-normal amplification can break reversibility in noise-induced
transitions.

D. Conclusion

Through the numerical study of symmetric and asymmetric bistable potentials, we have validated the theoret-
ical prediction that the quasi-potential is rescaled by a factor (k./x)?, where the critical degree of non-normality
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ke = w/p acts as the threshold separating regimes where non-normal amplification is negligible (k < k) or
dominant (k > k). This provides a clear interpretation of k.: it links the strength of non-normal shear to
the intrinsic stability of the system, so that criticality in the reversible (gradient) part of the dynamics and the
non-normal amplification mechanism are tied together.

Studying bistable potentials is particularly insightful, since transitions between stable equilibria are the most
direct manifestation of stochastic fluctuations. In the symmetric case, we observed that the onset of non-
normality induces a sudden increase in transition rates, while in the asymmetric case, the same mechanism
selectively amplifies fluctuations in one direction, leading to irreversible dynamics where escape is favored only
from one potential well. This demonstrates that non-normal amplification not only accelerates noise-induced
transitions, but can also fundamentally alter the symmetry and reversibility of the system’s long-term behavior.

Finally, although we restricted the analysis to quartic potentials generating bistability, the framework is not
limited to this case. Higher-order polynomials can be used to construct systems with multiple stable equilibria,
thus extending the analysis to multistable landscapes. In all cases, however, the transitions along the reaction
coordinate are expected to obey the same rule: their rates are governed by the balance between the potential
restoring force and the shear strength (measured respectively by w and ) combined in the critical degree of
non-normality k. = w/ and non-normal shear (measured by ). This shows that x/x. provides a universal
coefficient controlling the strength and impact of non-normal amplification across a broad class of nonlinear
stochastic systems.

IV. APPLICATION TO DNA METHYLATION

DNA methylation is a key epigenetic mechanism that modulates gene regulation and cellular identity. Yet
methylation patterns can switch states on unexpectedly fast timescales — sometimes within minutes in response
to environmental cues — challenging predictions from classical variational Kramers-type models [7]. Several
biological features plausibly contribute to this rapidity: (i) chromatin architecture locally boosts DNMT access
and activity, creating methylation hotspots [8], (ii) stochastic metabolic fluctuations (e.g., transient surges
in S-adenosylmethionine) amplify reaction propensities [7], and (iii) positive feedback, whereby methylation
at one CpG promotes methylation in neighboring regions, supports rapid propagation of marks (chemical
modifications on DNA or histones that modulate gene expression without changing sequence) [9, 10]. External
signals (oxidative stress, pathway activation) further reshape the methylation landscape dynamically.

Viewed through the lens of non-normal stochastic dynamics, these observations admit a parsimonious ex-
planation. In non-normal systems, the solenoidal/rotational component of the force field transiently amplifies
perturbations, which renormalizes the effective noise level and, in turn, the escape kinetics. Concretely, in the
small-noise limit used throughout this SM, the dynamics along the reaction coordinate obeys an effective 1D
Langevin equation, so that the Kramers rate inherits the standard form with ¢ replaced by deg i.e. see (52b)
and (53). This renormalization explains how methylation transitions can occur on minute timescales despite
modest thermal noise: transient amplification effectively raises the temperature experienced along the escape
path, while preserving the system’s bistability structure.

Empirical features of DNA methylation are consistent with the three hallmarks of non-normality:

1. Asymmetry. DNMTs preferentially target specific sequence and chromatin contexts, biasing local dy-
namics.

2. Hierarchy. Local positive feedback enables cascading spread from hemimethylated to fully methylated
regions.

3. Stochastic fluctuations. Variability in methyl-donor availability and enzymatic activity injects extrinsic
and intrinsic noise.

Together, these place methylation dynamics squarely within the class of non-variational, highly non-normal
systems. In what follows, we make this connection explicit by embedding an established bistable model of CpG
dyads within our framework, adding Langevin noise, and quantifying how non-normal amplification (k/k.)
accelerates transitions while maintaining bistability.

A. Model

To make the connection with DNA methylation explicit, we start from the nonlinear model in [11]. This
framework was developed to describe the coexistence of unmethylated, hemimethylated, and methylated CpG
dyads, thereby rationalizing the experimentally observed bistability of methylation. This model captures how
localized interactions and cooperative enzymatic processes drive transitions between hypo- and hypermethylated
states. In its original form, the dynamics are deterministic, and noise is absent; however, the authors noted the
importance of incorporating stochasticity to reflect uncertainty in methylation levels. Here, by uncertainty we
mean fluctuations around the attractors corresponding to unmethylated, hemimethylated, and fully methylated
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CpG dyads. We extend their formulation by explicitly embedding stochastic fluctuations within an overdamped
Langevin framework, which allows us to characterize not only the variance of methylation levels but also the
noise-driven transition rates between epigenetic states.

Stochastic embedding. The model in [11] can be naturally embedded into our non-normal stochastic frame-
work. Introducing Gaussian noise terms, we obtain the coupled equations

. iid
] with ,n3 ~ N(0,1), 75
T3 = 70’331% + a320x§ —a31x3 + a300 — bgg.’E%l‘l — b31£L'1 + mng, 113 ( ) ( )

{5501 = —a137} + a12Ca} — anxy + a10C — bisaizs — biyxs + V201,
where z1 and z3 denote the numbers of unmethylated and methylated dyads, respectively, and the hemimethy-
lated count is x93 = C' — x1 — z3, with C' > 0 the total number of CpG dyads.

Hyper-parameters. The coefficients a;; and b;; are defined in terms of transition rates k;; as

a13 = ksa — k12, a1z =ksa, a11 =k +ks1 + 5D, awo=ksi+ 3D, bis=kss, by =ks+ 3D,
(76a)

a3z = kog — ka2, asz = koo, a31 =koy +k41 +D, azo=ka1, b3z =kaa, b3 = ko, (76Db)

with k;; denoting reaction rates, in the notation of [11]. Biologically, ko1 represents the effective methylation
rate of hemimethylated dyads, k31 the active demethylation rate, and D the cell-division rate (which contributes

to passive demethylation when maintenance is incomplete). The parameter values used in [11] are summarized
in Table I.

ki1 ki2 kot | koo |k3i| ka2 |kar ka2 C |D
21(2%x107°/10(1072] 1 |1072] 4 |2 x 107*|100]| 1

TABLE 1. Parameter values used in the model of [11].

Simplifications. Using Table I together with definitions (76), several simplifications follow
C>1, a1z A~ agz A aiz = agz = big = bss, an =~ ai ~ b, as1 ~ ago ~ bs1. (77)
Since z1, 23 € (0,C), it is natural to rescale
z1 = Cy, z3 = Cys, (78)

yielding

(79)

U = —C?y2laizyr + bisys — a1a) — a11y1 + a1 — burys + C~ V281,
U3 = —C?y3lassys + basy1 — ase) — az1ys + aso — baryr + C~ V25 7s.

From the parameter hierarchy, note that a3, ass ~ C~', and k12, k32 and k4o are orders of magnitude lower
than the other parameters. This leads to the reduced form

i1 =—[Cy} +wi](y1+ys—1) — kyr + C~V26 s, (80)
Uz = —[Cy3 +ws] (y1 +ys — 1) — kys + C~ V20 ns,
where
w; = a0 = bs1, k=~ ki, kar. (81)

Here, we consolidate k11 and k41 into a single effective parameter k, reducing the dimensionality of the hyper-
parameter set.
Time rescaling. Introducing a rescaling ¢ — C't simplifies the system to

Ywi(y1 +ys — 1) + k] + C~3/2V25m,,

i =—yi(y +ys—1) - C~ (82)
— C ws(y1 +y3 — 1) + kys] + C~3/2V/2013.

Us =—y3(y1 +ys — 1)

Summary. Equation (82) is the reduced stochastic model that we analyze throughout this section. In the
next steps, we (i) identify stable and unstable equilibria, (ii) characterize the non-normal mode and its reaction
variable, and (iii) quantify the strength of the non-normal shear that determines when non-normal amplification
of transition rates occurs.
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B. Equilibrium Points

Our next step is to approximate the stable equilibria of the reduced model (82). Identifying these equilibria

is crucial for two reasons: (i) the line connecting the two stable fixed points defines the reaction coordinate,
and (ii) the non-normal mode must be orthogonal to this line. This construction provides a geometric way to
separate the reaction direction from the non-normal shear.
Location of equilibria. From [11], the system admits two stable fixed points: one with 21 ~ C, z3 ~ 1, and
the other with x1 ~ 1, 3 ~ C. In the rescaled variables y; = x;/C, and in the large-C' limit, these equilibria
correspond to (y1,y3) ~ (1,C~1) and (y1,y3) =~ (C~1,1). Both are close to the line y; + y3 = 1. We therefore
introduce rotated coordinates (21, z3) defined by

zl:*(yl‘f'yS_l)’ y1:*(21+2’3)
7
1 (83)

+

S,_. SH
l\J\»—' [\J\r—-

f(lh —y3), Y3z =

This transformation consists of a translation plus a rotation, so it preserves the system’s non-normality.
Dynamics in the rotated basis. In the (21, z3) variables, the deterministic part of the dynamics becomes

2
,él:*[(21+%) +Z§] 217071(W++k)21 c- 17

. h ) Wi = w1 + ws. (84)
23 = —2 (21 + ﬁ) 2321 — C~ (w,zl + k23)7
Asymptotic expansion. Because equilibria satisfy 21 = 23 = 0, we expand
n =014 P02 r00C?), =" +2Yc+00C?). (85)

Substituting into (84) and matching powers of C 1 gives recursive equations for z%j ) and zéj )

Order O(C~1). At leading order,

1 (O)y2y (1) | k& _ (1) 1 _ _k
{<2+((1) ) <o>+f Y= { 0 _ e {Z?m Y (86)
(fZ ) Z3 = 07 - 0 Z3 = i%
Order O(C~2). Proceeding to next order yields
{( + (= (0)) ) (2) 4 22§0)z§1)z§1) (1) (\[z(l) +wy + k) , (87)
fz3 zl (\fz +k zél) = — (1)(2,25 )z(o) +w_).
From this, the equilibria are
Z50) _ _\/ikc—l + 0(0—2)’ Zgi) — _LC—l + 0(0—2)7 )
or
—V2w_C~1 + 0(C~2), A =l - LO N (Hhtw, —w )+ O(C72).

Jacobian analysis. Linearizing (84) about each equilibrium yields Jacobians

Jo=— <1é 2 8) +c <3’“;“+ 2) +o(C), (89a)

(10 . % + w_ +(—k) L
Je=- (ﬁ:l o) +C (i(3k+w+)—w 0 > TOE), (89b)

where Jo and J are respectively the Jacobian estimated at zg = (21,0, 23,0), and 21 = (21,4, 231 ).
Their eigenvalues are

{m = 1+ 0Bk —wy) +O(C7), {Mi B P R G TR,

Ao =C"k+0(C™?), A1 =—2kC~14+0(C™?).
Conclusion. The point z, is unstable, while zy are stable equilibria. We interpret z as the methylated state

and z_ as the unmethylated state. To obtain transition between the two states z+, we need to estimate if the
system is non-normal, and it is required to have the reaction aligned along the z3-axis.
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C. Non-Normality of the System

To quantify the non-normality of the reduced dynamics (82), we compute the eigenvectors of the Jacobian at
each equilibrium point zo (unstable) and z1 (stable). Expanding to order O(C~!) yields

N I e e L ) - _ (o 1, (1 _
V2 (il) MV <i(3k+w+)—w_w2+> +0(C™?), p-x= <1> +207 1k <0> +0(C7?),

P++ =
(91a)
Do = (;) — 20w (g) +0(C?), p_o= (‘i) +20 % (é) +0(C?),
(91h)

Condition number and non-normal index. The degree of non-normality is captured by the condition
number of the eigenbasis [3],

1+ P+, Pl

KR; = s 92
L= |pyi Pl %2)
where i € {0, £} denotes the equilibrium point [4]. We obtain
_ -1 -2 _ -1 W4 -2
Ro= 14207 k—wi| +0(C™), k= (V2+1) [1= VIO (£(5k+wi) —w - 7)] +O(C?),
(93)

therefore, close to the stable equilibrium, the system is always non-normal, but near the unstable equilibrium the
system is almost normal. In all cases k; > 1, confirming that the system is non-normal near each equilibrium.
A convenient scalar measure is the non-normal index [4]

Ki = % (Kli — K,Z-_l) . (94)
Comparing K; with its critical threshold
2
R Qi — 1 | At
KC»Z i o — \/ﬁ, Q= A i—A_ | (95)

identifies whether the system is pseudo-critical, meaning that transient perturbations are amplified along the
reaction coordinate before decaying. For the stable equilibria, we obtain

in — 23/4 (%)1/4 + 0(0—3/4), (96)

so that K4 /K.+ = O(C'/*). Thus, the non-normal amplification grows with system size C. The unstable
equilibrium zg is naturally unstable, so perturbations there grow exponentially regardless of non-normality.
Conclusion. The DNA methylation model is strongly non-normal near its equilibria. This ensures transient
deviations in the linearized dynamics, raising the key question: do these deviations enhance the transition rates
between the unmethylated and methylated states?

D. Reaction and Non-Normal Mode

The stable equilibria lie near z; =~ 0, z3 &~ 41, but to identify how transitions occur we must separate the
reaction direction from the non-normal mode that drives transient deviations [3].
SVD approach. Let P. = (p4 4+, p— +) be the eigenbasis matrix. Its singular value decomposition reads
Py = UiEiVL where Uy and Vi are unitary matrices, and ¥ is a diagonal matrix composed of the
singular value. We identify the column of U_ associated with the largest singular value as the reaction, and
the column associated with the smallest singular value as the non-normal mode.

To leading order in C~!, P is upper triangular, giving

1 (1 1
oo t() o

Hence & = (1, 1)/v2, = (1, —1)/v/2.
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Implications. The reaction coordinate is therefore not aligned with the geometric axis z; = 0 connecting the
equilibria. Instead, we have to estimate if non-normal amplification pushes the system toward the separatrix,
the curve separating the two basins of attraction.

Near the unstable equilibrium zg, the separatrix is tangent to the stable eigenvector p4 o =~ (1, 0), which is
aligned along 21, and the more the system gets close to the unstable equilibrium, the more the system is normal,
and so non-normal amplification will not affect the stability of the system. In this limit, the zj-axis remains
stable, while the dynamics along z3 is unstable, so that transitions between the states z3 ~ +1 and z3 ~ —1
occur through Brownian-like fluctuations. Thus, although the system is non-normal around stable equilibria,
its linearized non-normality alone cannot guarantee accelerated switching, in this given model.

E. Bistability and Non-Normal Acceleration

The original goal in [11] was to demonstrate the bistability of DNA methylation dynamics. Their model
explains the coexistence of hypo- and hypermethylated states but cannot account for experimentally observed
fast transitions (on the order of ~ 10 minutes) [7]. In the original framework, transitions occur only near
criticality, when a Jacobian eigenvalue crosses zero and the potential barrier vanishes, allowing noise to induce
switching.

Beyond criticality. Our analysis combines three ingredients:
1. the system is bistable, with two long-lived methylation states;
2. transitions can occur at criticality, when a barrier disappears;
3. even away from criticality, non-normality can amplify fluctuations, renormalizing the effective noise.

To reconcile bistability with observed rapid switching, we propose the following modification
2= —wiz1 + K1 B(z3 — 23,4 ) (23 — 23, ) + V2011, (98)
23 = —ws(z3 — 23,0)(23 — 23,4 )(23 — 23, ) + KB21 + V2013,

with equilibria at (0, z3 +) and unstable point (0, z3), such that z3 4y > 2309 > 23 _. This construction pre-
serves the equilibria and their stability, but alters the flow structure so as to introduce genuine non-normal
amplification, in line with Ref. [11]. This formulation reproduce the coexistence of long-term memory and fast
stochastic transitions observed in methylation dynamics while preserving the equilibria and their stability. The
dynamical system (98) provides an illustrative case where we minimally modify an existing model to suggest
how non-normal phase transitions could manifest in biology. More broadly, DNA methylation is paradigmatic
because it simultaneously exhibits “classical” bistability (which secures epigenetic memory) and “fast” stochas-
tic switching (which enables rapid adaptation). Our framework is unique in reconciling these two features.
Furthermore, by linking the non-normality index « to the biochemical balance of DNMTs versus TET enzymes,
the model acquires a direct mechanistic interpretation. In this way, we hope to attract the attention of the
community to fully resolve the kinetics of DNA methylation from the non-normal dynamics perspective.

Interpretation.
e Along z1, the system is linearly stable, consistent with [11].
e Along z3, bistability arises from the cubic nonlinearity, with two stable equilibria and one unstable saddle.
e Asw; = 0T or z3 4+ — 230, the system approaches criticality.

o If kK > k. = w1/fB, the system enters a pseudo-critical regime: non-normality renormalizes the effective
noise, enabling rapid switching even far from true criticality.

Numerical Analysis. In Figure 3, we show two simulations of the ratio of methylated and unmethylated sites,
i.e. the (y1,y2) space defined in (83), obtained by simulating (98) with x = £./10 and x = 2k.. To introduce
asymmetry, we choose parameters such that |z3 + — z30| > |23 — 23,0 When & < k., the system remains
stable around both equilibria. However, as x approaches k., the system exits the stable equilibrium 23 — and
becomes trapped around the second stable equilibrium z3 ;. This occurs because the mean-reversion rate of
the dynamics of z3 near z3 4 is stronger than near z3 _, as the potential barrier between 23 ; and z3 ¢ is higher
than the one between 23 _ and z3¢.

This asymmetry between the two transition rates is made explicit in Figure 4, where we plot the measured
transition rates from each equilibrium as a function of k/k.. For instance, when k = 4k,., the transition rate
from z = 23 _ to 234 in the considered time unit is I'., __,,,  ~ 5 x 1072, whereas the reverse rate is only
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FIG. 3. Simulation of a nonlinear two-dimensional system described in the (21, 23) by (98), with parameters z3,0 = —0.2,

23+ = 0.6, 23, = —0.6 w1 = w3 =1, § = 0.001, and k. = 10. The left panels correspond to kK = k./10, while the right

panels correspond to Kk = 2ke.

Top panels: dynamics in phase space (y1,ys) (83), where the horizontal axis denotes the ratio of methylated site (y3)
and the vertical axis the ratio of unmethylated site (y1). Red dots mark the stable equilibria, blue arrows indicate the
force vector field, and the dashed red line the axis z; and the blue dashed line the axis z3, which crosses each other at
the unstable equilibrium.

Bottom panels: time series of the reaction variable (z3). Continuous red lines mark the stable equilibria at z3,+ = 0.6,
and the dashed red line marks the unstable equilibrium at z30 = —0.2.

All simulations are performed over a time horizon T = 500 with integration step At = 0.1, corresponding to N = 5000
time steps.

Doy vz & 10~°. Thus, non-normality can explain the rapid transitions between states, but such transitions
are not necessarily reversible due to the asymmetry of the potential landscape.

Conclusion. Non-normality thus reconciles bistability with rapid dynamics: DNA methylation can be both
stable (supporting epigenetic memory) and fast-adapting (enabling minute-scale responses) through transient
amplification of stochastic fluctuations.

F. Conclusion

We have shown how an existing nonlinear model of CpG dyads [11] can be extended with explicit stochastic-
ity and analyzed through the lens of non-normality. This approach reveals how a purely deterministic bistable
model, once augmented by a non-normal control parameter s, can amplify thermal fluctuations and thereby
accelerate transitions between unmethylated and methylated states without altering the system’s spectral sta-
bility. In this way, non-normality provides a mechanistic explanation for the rapid DNA methylation dynamics
observed experimentally [7], while preserving the underlying bistability that supports epigenetic memory.
Biological interpretation of x. The parameter x quantifies the strength of non-normal amplification in
our reduced model. Biologically, it integrates the balance between DNA methyltransferases (DNMTs) and
TET demethylases. DNMT3a and DNMT3b establish new methylation marks, DNMT1 maintains them during
replication, while TET enzymes actively remove them via iterative oxidation of 5-methylcytosine. Thus, elevated
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FIG. 4. Escape rate of the reaction variable z3 as a function of k/k.. Plain dots (“-”) denote transitions from z5 > 23
to z3 < 23,0, while crosses (“+”) denote the reverse transitions. The dynamics follow (98) with parameters z30 = —0.2,
z3,+ = 0.6, z3 - = —0.6, w1 = w3 =1, 6 = 0.001, and k. = 10. Simulations are performed for s ranging from k./10 to
10k., each run covering a total time T = 10° with integration step At = 0.1, corresponding to N = 10° sampled points.
The escape rate is computed as I' = 1/(7), where (7) is the mean first-passage time across the unstable saddle z3 0.

DNMT activity or reduced TET activity can correspond to high x, whereas the converse produces low k.

Low-x regimes. If 1 < x < k¢, fluctuations are not strongly amplified, and fare from the criticality the
system stays asymptotically stable. The only way for the system to transit between equilibrium, is to spectral
criticality.

High-~ regimes. When k 2 k., non-normality strongly renormalizes effective noise, enabling rapid switching.
This regime can arise through:

e DNMT overexpression or TET downregulation: observed in several cancers [12, 13], leading to accelerated
conversion of hemimethylated sites into fully methylated ones.

e Efficient maintenance methylation: when DNMT1 rapidly restores methylation after replication and
demethylation processes are weak, as observed in certain adult tissues and tumor cell lines [13].

e TET hyperactivity or reduced DNMT expression: producing a net bias toward demethylation, as seen in
promoters of constitutively hypomethylated genes [14, 15].

e Passive demethylation: inefficient DNMT1 activity, particularly during aging, leads to progressive loss of
methylation across divisions [14].

The difference between the regime can be quantify by the asymmetry in the potential (98).

Closing. In summary, DNA methylation provides a compelling application of our extended non-variational
Kramers framework. The degree of non-normality x can, in principle, be inferred from empirical measurements of
methylation state transitions. Evidence from both normal and pathological contexts suggests that methylation
dynamics frequently operate in the high-x regime, where transient amplification drives rapid state switching.
By extending the model in [11] to include Gaussian noise and non-normal amplification, we reconcile bistability
with fast epigenetic responses, providing a theoretical basis for the sudden methylation transitions observed in
vivo [7].
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V. OVERDAMPED KRAMER ESCAPE RATE

In this section, we introduce the mathematical framework used to derive the escape rate in the overdamped
limit. We are borrowing from the derivation made by H.A. Kramer (1940) [16] of the escape rate of a particle
in a one dimensional potential well in the overdamped limit.

We consider a system described by z, evolving in a potential U(z) with a minimum at z; and a potential
barrier at xy. Therefore, in the overdamped limit, we can write a one-dimensional Langevin equation as

&= -U'(z) + V20n(t). (99)
For this problem, we know that the probability density function P(x,t) satisfies the Fokker-Planck equation
0P = 0, [U'(z)P] + 00*P = —0,.J, (100a)
where J(x,t) = —U'(z)P — 60, P (100b)
is the probability current. If the probability is constant and the current is equal to zero (J(z,t) = 0), the
solution of the Fokker-Planck equation is given by the Boltzmann distribution i.e. P(x) ~ e~V (®)/
To obtain the escape rate of the particle from the potential well, we search for an almost stationary solution

of the Fokker-Planck equation i.e. 0;P & 0, which allows us to assume that the probability current is almost
constant and uniform i.e. J(z,t) = J. This leads to

J=—U'(z)P — §0,P = —6e~ 50, [e 5 P} (101)

= 0O {e@P} = ze@.

(102)
Integrating the last equation from the bottom of the potential well at x; to a point 2/, even beyond the potential
barrier at x ¢, and assuming that the probability density is almost zero at z’, the probability current is obtained
from

J e’ EY z’ (z3)

g/ eUES)da::eU(é)P[x:x']—eUé Plx = z] (103a)
' U(zy) . ,

~ —e 5 Plr=ux;] since Plz =1 =0, (103b)

U(z;)

Pl =
S ) Sl L (104)
f,, e da

The escape rate I' is given by the probability current per unit of time, conditional to having the particle in
the well. Denoting the probability that the particle is in the well as pg, the probability current is J = pgl.
Under the hypothesis that the barrier is high enough, the probability that the particle is in the well can be
approximated by

xzi+9
Po =/ P(z)dx (105)
z;—08
z;+0 .
~ Plz = ;] / e s W@=U)) qp (106)
z;—0
:t7‘,+5 1 " 2
~ Pz = xl]/ ez U @)y (107)
z;—08
+oo 1 ” 2
~ Pz = xl]/ e~ 2s U (@) (@—2i)" g5 (108)
276
On the other hand, the integral in the denominator of the probability current (104) can be approximated by
/ esV@) dg ~ e%U(If)/ e U @) E—2p)* qp (110)
" Yoo ]
~ 3U) / -2V @)la—20)? g (111)
~ L(Se%U(ff) ) (112)

U ()]
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We thus obtain the escape rate as

1
= U @)U (ep)] e 3, (113)
™

where AE = U(zy) — U(z;) is the height of the potential barrier.
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