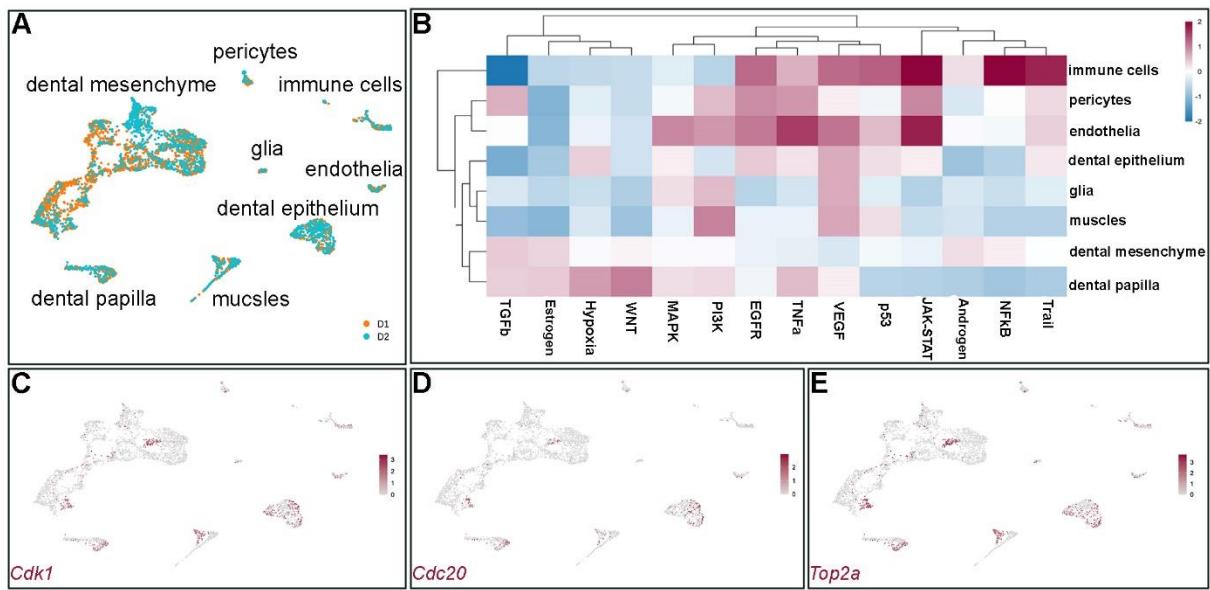


Supplementary Materials for

LGR5 regulates sequential tooth development: evidence from single-cell transcriptomics and a gene inactivation model

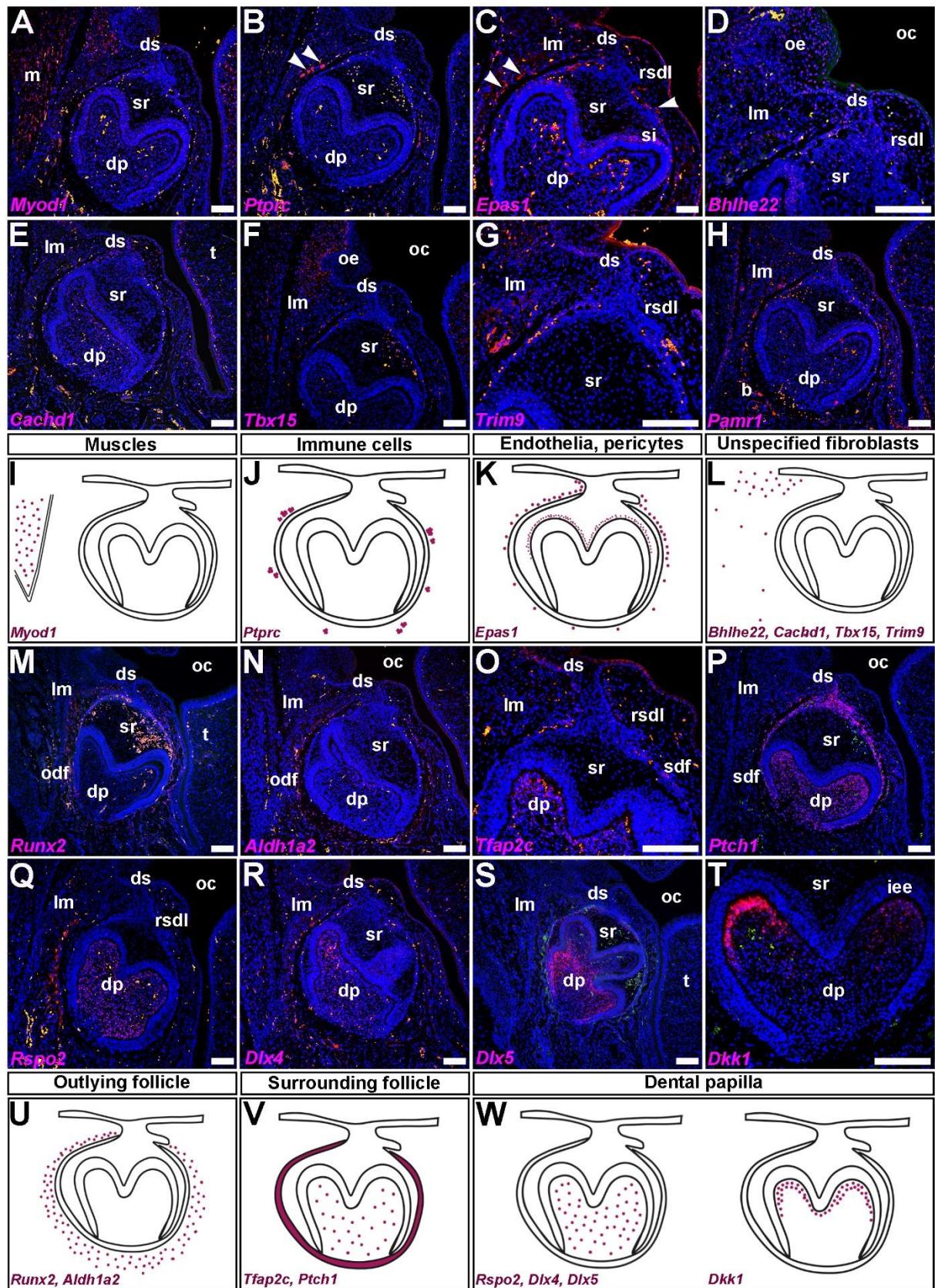
Kristýna Olbertová^{1,2}, Dušan Hrčkulák³, Petra Kompaníková², Petr Tauš⁴, Vítězslav Kříž³, Wojciech Jesionek⁴, Marian Novotný⁵, Lucie Vrlíková¹, Eva Hrubá¹, Denisa Lusková¹, Monika Štastná³, Veronika Jakešová¹, Linda Berková³, Karla Plevová⁴, Jan Křivánek⁶, Jan Kubovčík³, Michal Kolář³, Vítězslav Bryja², Milan Ešner⁴, Vladimír Kořínek³, Marcela Buchtová^{1,2}

¹ *Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic*


² *Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic*

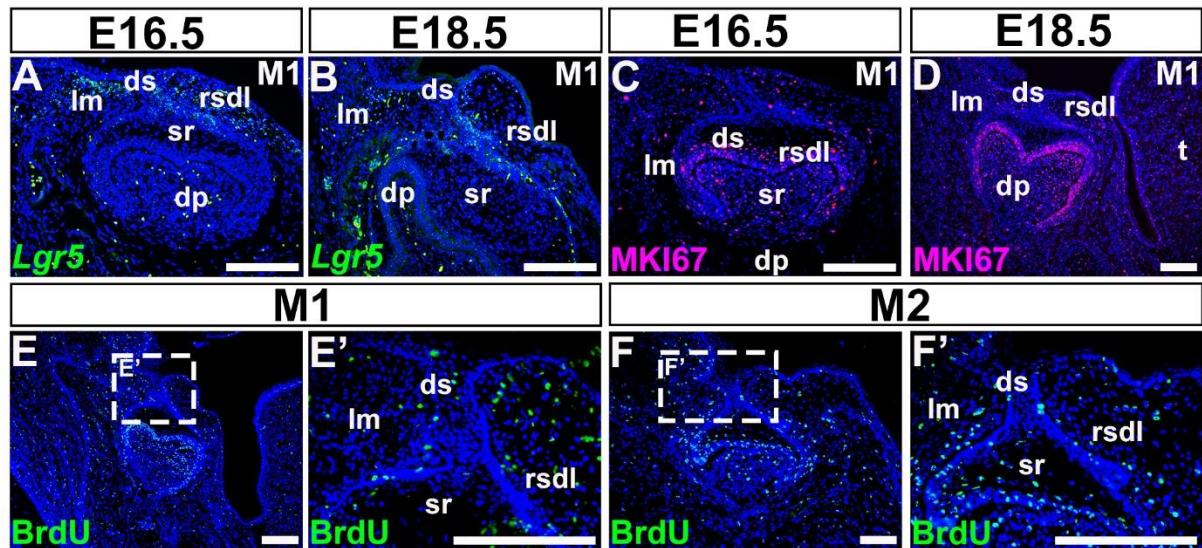
³ *Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic*

⁴ *Central European Institute of Technology, Masaryk University, Brno, Czech Republic*


⁵ *Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic*

⁶ *Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic*

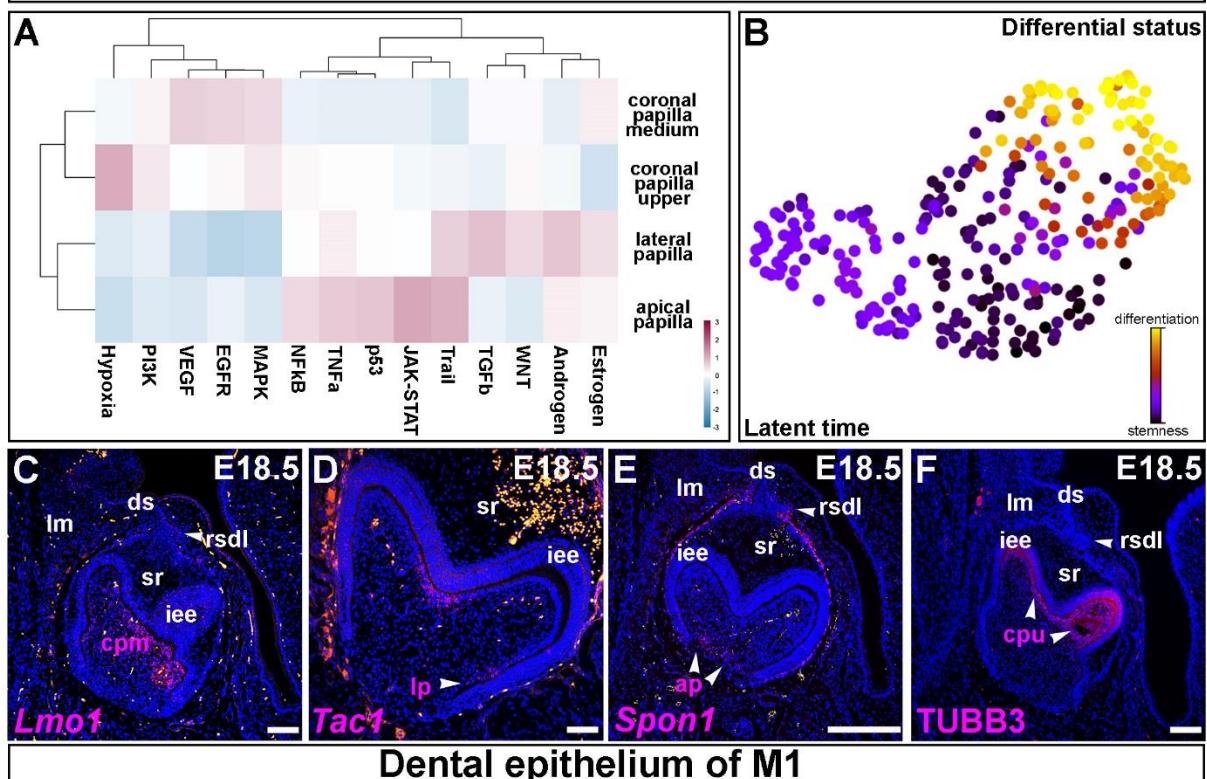
Supplementary Fig. 1 Bioinformatic analysis of single-cell RNA (scRNA-seq) sequencing data from the mouse molar region


To visualize the overlap in cell populations, two independent scRNA-seq datasets were integrated: Dataset 1 (D1, orange) is enriched for cells from the dental follicle and undifferentiated osteoblast clusters, while Dataset 2 (D2, blue) is enriched for cells from the dental epithelium cluster (A). The heatmap displays differences in the expression of genes involved in major developmental signaling pathways (columns) across individual clusters (rows) (B). Uniform Manifold Approximation and Projection (UMAP) visualizations show the expression patterns of *Cdk1* (C), *Cdc20* (D), and *Top2a* (E).

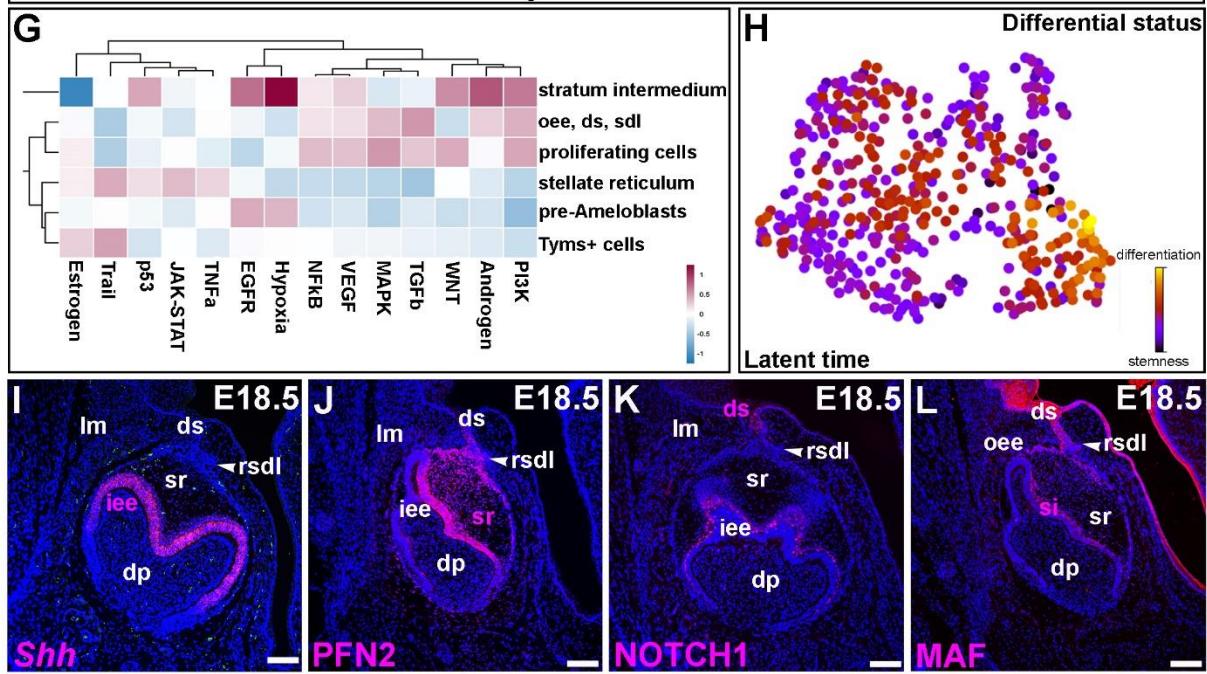
Supplementary Fig. 2 Validation of mesenchymal cell clusters by spatial distribution of marker gene expression

Low-magnification RNA in situ hybridization images illustrate the spatial distribution of marker genes used to define distinct mesenchymal clusters. *Myod1* marks the muscle compartment adjacent to the developing tooth (**A**), while *Ptprc* labels immune cell populations (**B**). *Epas1* expression is enriched in endothelial cells and pericytes (**C**). The expression of *Bhlhe22*, *Cachd1*, *Trim9*, and *Tbx15* (low magnification shown) delineates the cluster of unspecified oral fibroblasts (**D–G**). *Pamr1* marks a population of undifferentiated osteoblasts (**H**). Schematic diagrams summarize the spatial localization of each mesenchymal cluster, including muscles (**I**), immune cells (**J**), endothelial cells/pericytes (**K**), and unspecified fibroblasts (**L**). *Runx2* and *Aldh1a2* are expressed in the outlying dental follicle (**M, N**), as illustrated in panel (**U**). The surrounding dental follicle cluster is validated by *Tfap2c* and *Ptch1* expression (**O, P**), with schematic localization shown in (**V**). The dental papilla is marked by the expression of *Rspo2*, *Dlx4*, *Dlx5*, and *Dkk1* (**Q–T**), and their mRNA distribution is illustrated in (**W**).

Symbols: b, bone; dp, dental papilla; ds, dental stalk; iee, inner enamel epithelium; lm, labial mesenchyme; m, muscles; oc, oral cavity; odf, outlying dental follicle; oe, oral epithelium; sdf, surrounding dental follicle; si, stratum intermedium; sdl, successional dental lamina; si, stratum intermedium; sr, stellate reticulum; t, tongue; scale bars: 100 μ m.

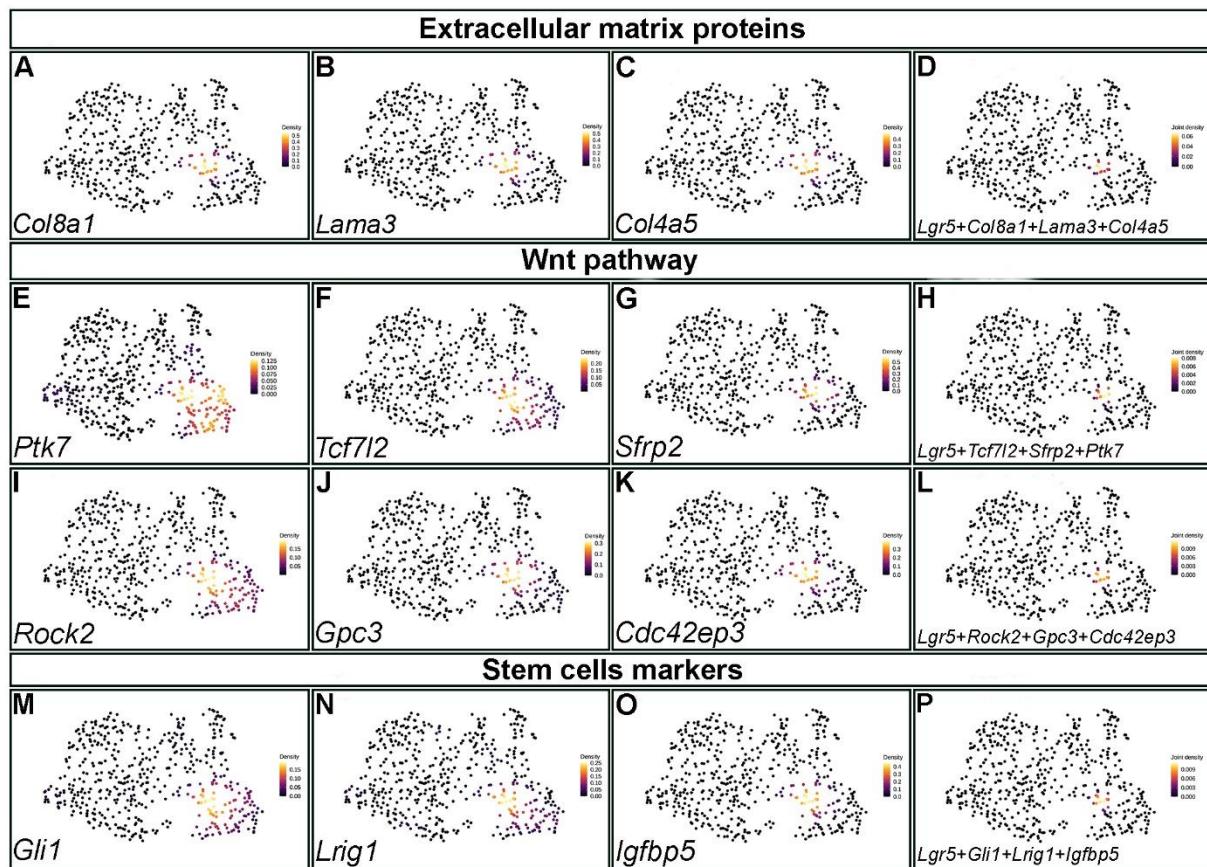


Supplementary Fig. 3 Analysis of *Lgr5* expression and cell proliferation in developing mouse molars at embryonic stages E16.5 and E18.5

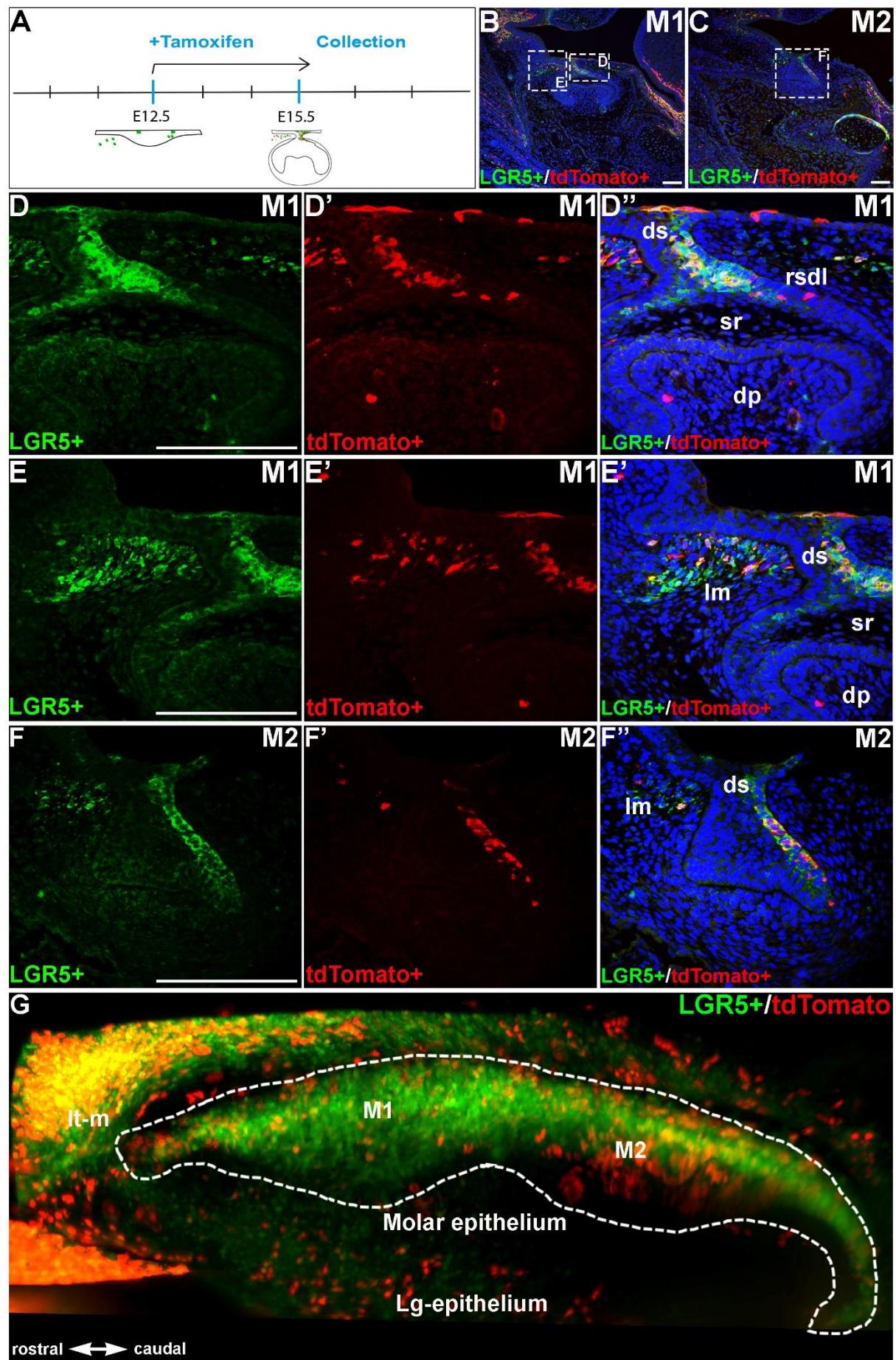

RNA *in situ* hybridization reveals *Lgr5* expression in the lingual epithelium of the dental stalk (DS) and in the labial mesenchyme of the first molar (M1) at E16.5 (A) and E18.5 (B). Immunohistochemical detection of Ki67 marks proliferating cells in M1 at E16.5 (C) and E18.5 (D). A short-term 5-Bromo-2'-Deoxyuridine (BrdU) incorporation assay indicates minimal BrdU uptake in the *Lgr5*-positive regions of the DS and the rudimentary successional dental lamina (RSDL) in M1 (E, E'). In contrast, robust BrdU labeling is observed in the DS and RSDL of the second molar (M2) (F, F'), suggesting higher proliferative activity in M2 compared to M1 during late embryonic development.

Symbols: dp, dental papilla; ds, dental stalk; lm, labial mesenchyme; rsdl, rudimentary successional dental lamina; sr, stellate reticulum; t, tongue; scale bars: 100 μ m.

Dental papilla of M1

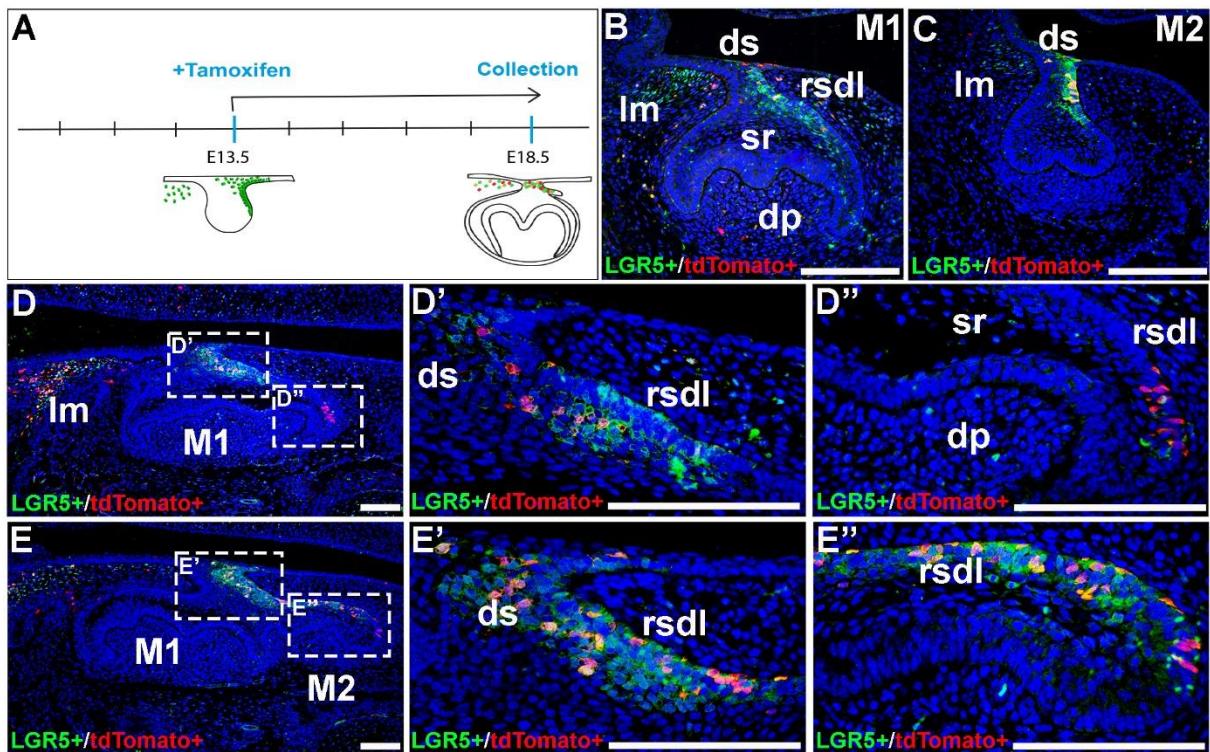

Dental epithelium of M1

Supplementary Fig. 4 Detailed sub-clustering of the dental papilla and dental epithelium in mouse molars at E18.5


Heatmap showing the expression of the genes linked to indicated signaling pathways (columns) across four transcriptionally defined sub-clusters of the dental papilla (**A**). Latent time analysis reveals that cells in the coronal papilla (purple) are less differentiated, whereas those in the apical and lateral papilla (yellow) are more differentiated (**B**). (**C–F**) Validation of dental papilla sub-clusters using marker gene expression. RNA in situ hybridization confirms *Lmo1* expression in the coronal papilla (medium) (**C**), *Tac1* in the lateral papilla (**D**), and *Spon1* in the apical papilla (**E**). Immunohistochemistry for TUBB3 marks the coronal papilla (upper) sub-cluster (**F**). Heatmap showing the expression of genes linked to key signaling pathways (columns) across six sub-clusters of the dental epithelium (**G**). Latent time analysis of the dental epithelium highlights a gradient of differentiation from less differentiated (purple) to more differentiated (yellow) cells (**H**). (**I–L**) Marker gene expression confirms epithelial sub-cluster identities. *Shh* marks the inner enamel epithelium (pre-ameloblasts) (**I**), PFN2 expression identifies the stellate reticulum sub-cluster (**J**), NOTCH1 marks a population comprising the DS, RSDL outer enamel epithelium (OEE), and stratum intermedium (**K**), and MAF is enriched in the stratum intermedium, with additional expression in the DS, RSDL, and OEE (**L**).

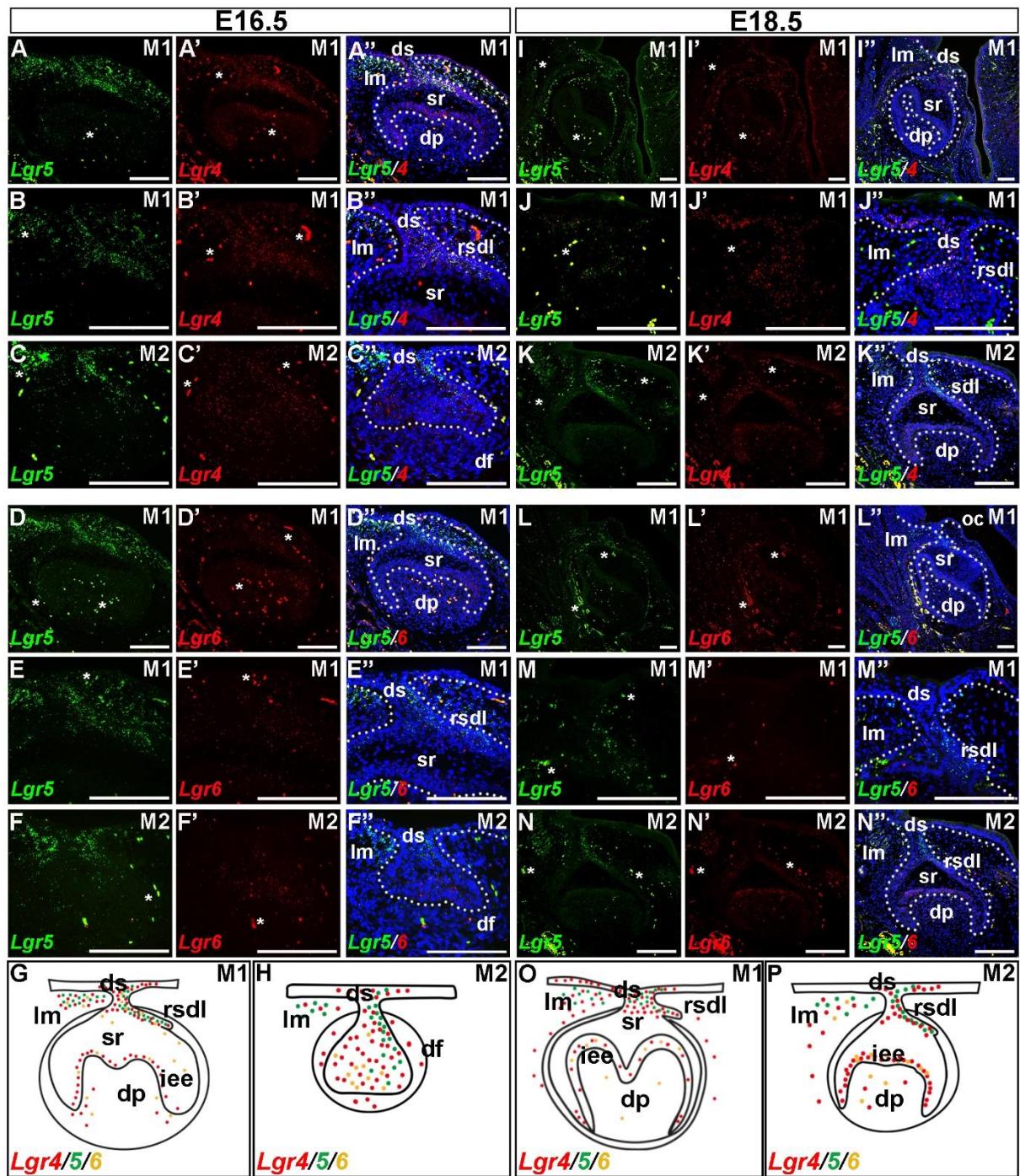
Symbols: ap, apical papilla; cpm, coronal papilla medium; cpu, coronal papilla upper; dp, dental papilla; ds, dental stalk; iee, inner enamel epithelium; lm, labial mesenchyme; lp, lateral papilla; oee, outer enamel epithelium; rsdl, rudimental successional dental lamina; si, stratum intermedium; sr, stellate reticulum; scale bars: 100 μ m.

Supplementary Fig. 5 Co-expression of *Lgr5* with genes involved in extracellular matrix organization, Wnt signaling, and stem cell identity in the dental epithelium


UMAP plots show the spatial expression density of selected genes co-expressed with *Lgr5* in the dental epithelium. **Extracellular matrix-associated genes:** Individual expression patterns of *Col8a1* (A), *Lama3* (B), and *Col4a5* (C) are visualized, along with their combined co-expression with *Lgr5* (D). **Wnt signaling pathway genes:** UMAPs display the expression of canonical and non-canonical Wnt-associated genes, including *Ptk7* (E), *Tcf7l2* (F), *Sfrp2* (G), *Rock2* (I), *Gpc3* (J), and *Cdc42ep3* (K). Their co-expression with *Lgr5* is shown in panels (H) and (L), respectively. **Stem cell-associated markers:** Expression of *Gli1* (M), *Lrig1* (N), and *Igfbp5* (O) is shown, with their overlap with *Lgr5* indicated in panel (P). Color scale bars indicate the expression density or joint density (in co-expression plots).

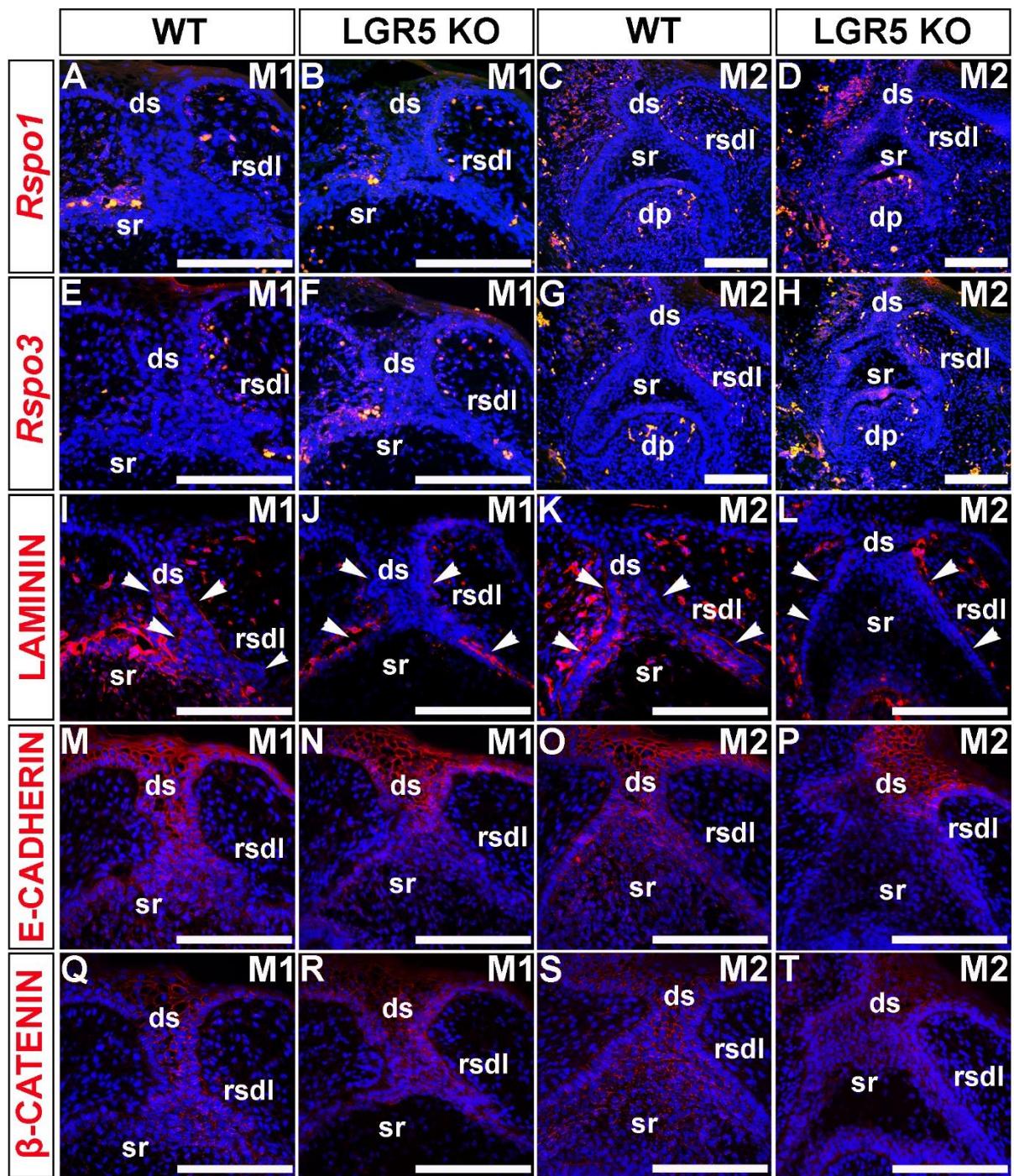
Supplementary Fig. 6 Lineage tracing of LGR5⁺ cells in the developing mouse molars

Schematic timeline showing tamoxifen administration at E12.5 and sample collection at E15.5 in *Lgr5-EGFP-IRES-CreERT2 x Rosa26-tdTomato* reporter mice (A). Transverse sections of M1 and M2 molars at E15.5 showing LGR5⁺ cells (green, EGFP) and lineage-labeled LGR5-derived (LGR5-D) cells (red, tdTomato) (B–C). (D–F) EGFP fluorescence reveals LGR5 expression in the lingual epithelium of the DS and RSDL (D), the labial mesenchyme adjacent to the DS (E), and in both regions of M2 (F). (D'–F') tdTomato⁺ LGR5-D cells mark the descendants of LGR5⁺ cells induced at E12.5. These are detected in the RSDL, labial mesenchyme, and DS epithelium of M1 (D', E') and in the corresponding domains of M2 (F'). (D''–F'') Overlay images demonstrating partial co-localization of LGR5⁺ (EGFP⁺) and LGR5-D (tdTomato⁺) cells in the molar region. Whole-mount view of the mandibular molar epithelium stained for EGFP and tdTomato shows the distribution of LGR5⁺ and LGR5-D cells from M1 to M2, including the lateral and lingual epithelial regions (G).


Symbols: dp, dental papilla; ds, dental stalk; Lg-epithelium, lingual epithelium; lm, labial mesenchyme; lt-m, lateral mesenchyme; rsdl, rudimental successional dental lamina; sr, stellate reticulum; scale bars: 100 μ m.

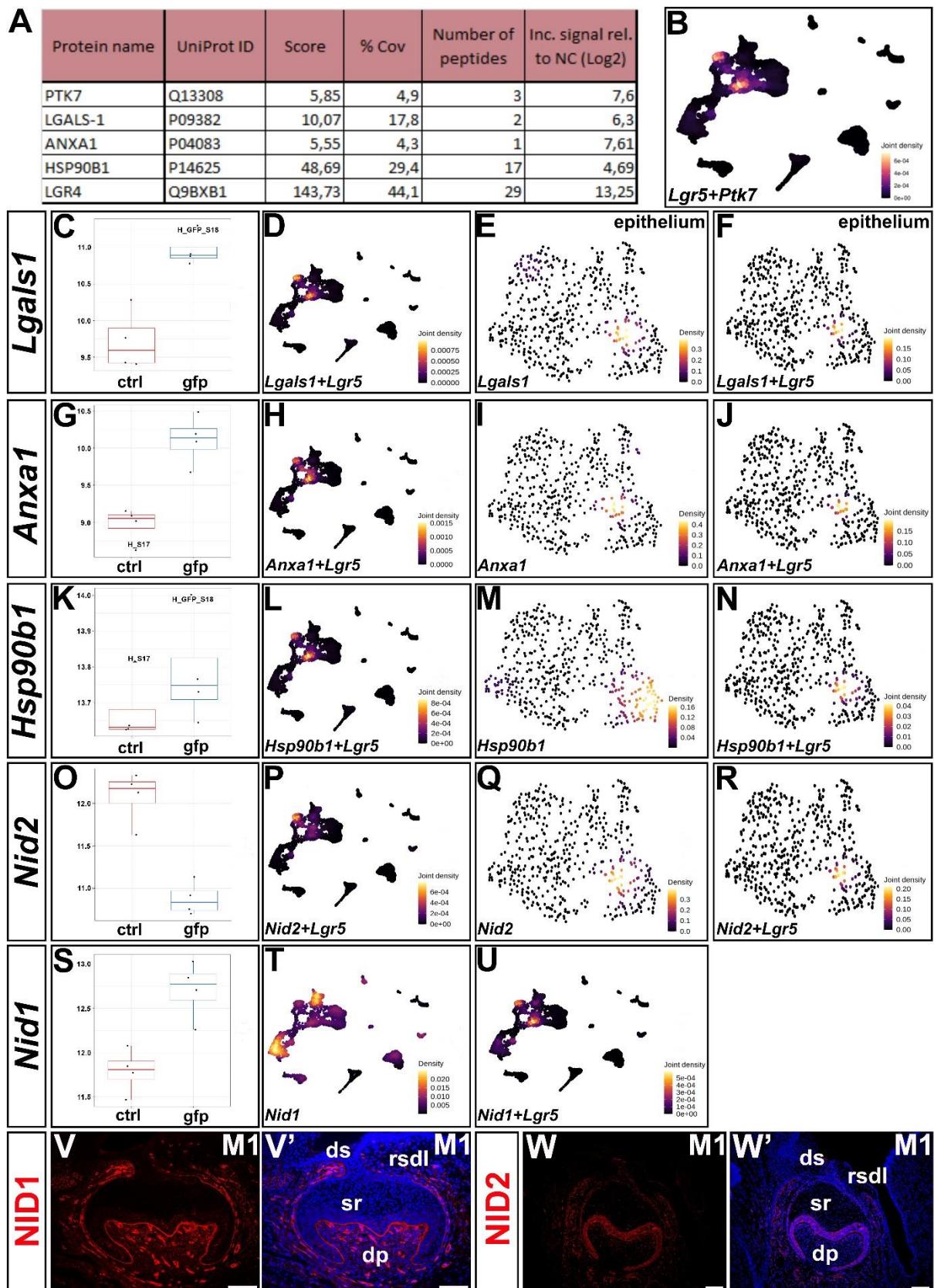
Supplementary Fig. 7 Sagittal view of mouse molars following lineage tracing of LGR5⁺ cells from E13.5 to E18.5

Schematic timeline illustrating the experimental design: tamoxifen was administered at E13.5, and tissues were collected at E18.5 for analysis in *Lgr5-EGFP-IRES-CreERT2 x Rosa26-tdTomato* mice (A). Transverse sections of M1 and M2 at E18.5 show green LGR5⁺ (EGFP⁺) cells and red LGR5-derived (tdTomato⁺) cells. EGFP⁺ cells indicate active *Lgr5* expression at the time of collection, while tdTomato⁺ cells reflect descendants of LGR5⁺ cells labeled during the tracing window (E13.5–E18.5) (B–C). Sagittal section of M1 showing EGFP⁺ cells in the DS epithelium, at the origin of the RSDL, and in the adjacent labial mesenchyme. LGR5-derived (tdTomato⁺) cells are detected in overlapping domains, including the full length of the RSDL and the labial mesenchyme (D–D''). Additional sagittal sections of M1 and M2 confirm the presence of LGR5⁺ cells in the DS, RSDL, and labial mesenchyme. Notably, M2 exhibits a higher number of LGR5⁺ cells within the RSDL compared to M1. LGR5-derived cells are also found in these regions, but in lower numbers, with distribution extending toward the cervical loop of M2 (E–E'').


Symbols: dp, dental papilla; ds, dental stalk; lm, labial mesenchyme; rsdl, rudimentary successional dental lamina; sr, stellate reticulum; scale bars: 100 μ m.

Supplementary Fig. 8 RNA expression levels of *Lgr4*, *Lgr5*, and *Lgr6* in M1 and M2 at E16.5 and E18.5

Transverse sections of developing molars were analyzed at E16.5 and E18.5 to determine the distributions of *Lgr4*, *Lgr5*, and *Lgr6* transcripts. At E16.5, *Lgr5* expression was predominantly observed on the lingual side of the DS, RSDL, and in the labial mesenchyme of M1 (**A**, **A''**, **B**, **B''**, **D**, **D''**, **E**, **E''**). A similar pattern was observed at E18.5 (**I**, **I''**, **J**, **J''**, **L**, **L''**). *Lgr4* displayed a more dispersed expression across the DS and surrounding mesenchyme of M1 at both E16.5 (**A'**, **A''**, **B'**, **B''**) and E18.5 (**I'**, **I''**, **J'**, **J''**). Co-expression of *Lgr5* and *Lgr4* was evident in the DS and RSDL of M1 at E16.5 (**A''**, **B''**, **G**) and E18.5 (**I''**, **J''**, **O**). In M2, *Lgr5* was enriched in the lingual DS and labial mesenchyme at E16.5 (**C**, **C''**, **F**, **F''**) and E18.5 (**K**, **K''**, **N**, **N''**). *Lgr4* was expressed in both the dental epithelium and mesenchyme of M2 at E16.5 (**C'**, **C''**) and E18.5 (**K'**, **K''**). Overlapping expression of *Lgr5* and *Lgr4* was noted in the DS of M2 at E16.5 (**C''**, **H**) and E18.5 (**K''**, **P**). Multiple *Lgr6*-positive cells were detected in the DS and RSDL of M1 at E16.5 (**D'**, **D''**, **E'**, **E''**) and E18.5 (**L'**, **L''**, **M'**, **M''**). No co-expression of *Lgr5* and *Lgr6* was found in M1 at either E16.5 (**D''**, **E''**, **G**) or E18.5 (**L''**, **M''**, **O**). In M2, *Lgr6* showed only weak expression in the dental epithelium at E16.5 (**F'**, **F''**) and was sparsely detected in the inner enamel epithelium (IEE), OEE, and dental papilla at E18.5 (**N'**, **N''**). No co-expression with *Lgr5* was observed in M2 at either E16.5 (**F''**, **H**) or E18.5 (**N''**, **P**). Asterisks indicate erythrocytes.


Symbols: df, dental follicle; dp, dental papilla; ds, dental stalk; iee, inner enamel epithelium; lm, labial mesenchyme; oc, oral cavity; oee, outer enamel epithelium; rsdl, rudimental successional dental lamina; sr, stellate reticulum; scale bars: 100 μ m.

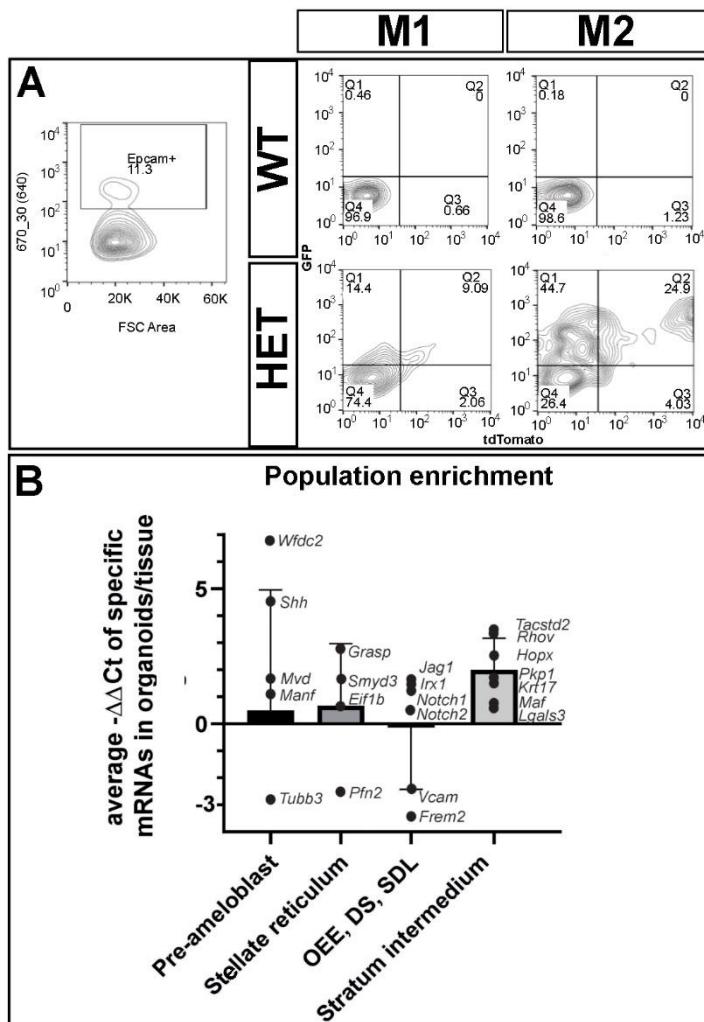
Supplementary Fig. 9 Expression patterns of *Rspo1*, *Rspo2*, LAMININ, E-CADHERIN, β -CATENIN in M1 and M2 molars of *Lgr5*-deficient (LGR5 KO) and wild-type (WT) mouse embryos at E18.5.

RNA in situ hybridization and immunofluorescence analysis was performed to evaluate the localization and expression of selected markers. *Rspo1* expression was detected in the DS and RSDL, with similar expression patterns observed in both WT and LGR5 KO molars (A–D). *Rspo3* was localized to the mesenchyme on the lingual side of the DS and RSDL in WT molars (E, G). In LGR5 KO embryos, *Rspo3* displayed a more dispersed pattern, with reduced spatial restriction in both the mesenchyme and epithelium of M1 and M2 (F, H). **LAMININ** staining highlighted the basal lamina of the DS and RSDL in WT embryos (I, K). In LGR5 KO molars, this expression was disrupted, showing discontinuities or altered intensity in the basal lamina of both M1 and M2 (J, L). Arrowheads indicate the position of the basal lamina. **E-CADHERIN** was detected in the epithelial layers of the DS, RSDL, and stellate reticulum (SR) in WT molars (M, O). In LGR5 KO tissues, E-CADHERIN expression was reduced or absent in the SR, while it remained detectable in the DS and RSDL (N, P). **β -CATENIN** expression was present in the dental epithelium, including the DS and RSDL, in both WT and LGR5 KO molars, with no obvious differences in expression patterns (Q–T).

Symbols: ds, dental stalk; rsdl, rudimental successional dental lamina; sr, stellate reticulum; scale bars: 100 μ m.

Supplementary Fig. 10 Identification and spatial expression of candidate LGR5-binding partners in the mouse molar epithelium.

A table summarizes selected candidate LGR5-interacting proteins identified by mass spectrometry, including UniProt IDs, peptide scores, coverage, and relative signal intensities (A). A joint density UMAP shows spatial co-expression of *Lgr5* and *Ptk7* across the molar tissue (B). Box plots display differential expression of selected candidate genes—*Lgals1*, *Anxa1*, *Hsp90b1*, *Nid2*, and *Nid1*—between control and *Lgr5*-EGFP-positive cells (C, G, K, O, S). Joint density UMAPs illustrate spatial co-expression of *Lgr5* with *Lgals1*, *Anxa1*, *Hsp90b1*, *Nid2*, and *Nid1* in the molar region (D, H, L, P, T). UMAPs show the individual expression patterns of *Lgals1*, *Anxa1*, *Hsp90b1*, *Nid2*, and *Nid1* across the molar epithelium (E, I, M, Q, U). Co-expression of each candidate gene with *Lgr5* in the epithelial compartment is shown in separate joint density plots (F, J, N, R). Immunofluorescence staining indicates that NID1 protein localizes to the basal lamina of M1 at E18.5 (V, V'). NID2 is expressed in the IEE and OEE, with weaker expression in the DS and RSDL of M1 at E18.5 (W, W').


Symbols: dp, dental papilla; ds, dental stalk; rsdl, rudimentary successional dental lamina; sr, stellate reticulum; scale bars: 100 μ m.

Supplementary Fig. 11 LGR5 interacts with PTK7 and regulates its expression in developing mouse molars

A box plot shows differential gene expression of *Ptk7* between EGFP-positive and control cells (**A**). Density plots illustrate the spatial expression of *Ptk7* and *Mmp14*, as well as their overlap with *Lgr5* in the dental epithelial sub-cluster (**B–D**). An *in silico* structural model predicts an interaction between LGR5 and PTK7, with the arrowhead marking the likely contact site in the extracellular/transmembrane region. The table displays the global accuracy of 3D structure prediction for the interaction of LGR5 and its selected partners by the AlphaFold 3 server. The accuracy of prediction is described by PTM and ipTM values and shows that the best accuracy of prediction was achieved for N terminal (without intracellular part) of *Lgr5* with *Rspo3* (**E**). Co-immunoprecipitation (co-IP) assays confirm the interaction between full-length LGR5 tagged with STREP-FLAG (STR FL) and PTK7 tagged with hemagglutinin (HA). LGR5 was used as bait, and PTK7 detected with anti-HA (upper left), with co-IP efficiency validated by FLAG detection of LGR5 (lower left). Conversely, PTK7 was used as bait, and LGR5 detected with anti-FLAG (upper right), with validation via HA detection of PTK7 (lower right) (**F**). Immunofluorescence staining shows PTK7 expression in the mesenchyme surrounding the DS, RSDL, and IEE in M1 of WT embryos (**G, G'**). A reduced PTK7 signal is observed in M1 of *Lgr5*-deficient embryos (**H, H'**). In M2, PTK7 is detected in the epithelium and mesenchyme of the DS, RSDL, and IEE in both WT and LGR5 KO samples (**I–J'**). No clear colocalization of LGR5 and PTK7 is seen in M1 (**K, K'**); however, co-expression is evident in the lingual epithelium of the DS and RSDL in M2 (**L, L'**). MMP14 is expressed in the epithelium of the DS and RSDL in both M1 and M2 of WT and mutant embryos (**M–P'**).

Symbols: dp, dental papilla; ds, dental stalk; iee, inner enamel epithelium; lm, labial mesenchyme; M1, first molar; M2, second molar; rsdl, rudimentary successional dental stalk; sr, stellate reticulum; scale bar: 100 μ m.

Supplementary Fig. 12 Molar epithelium used for establishing organoids contains Lgr5-positive cells, but corresponding subpopulation is being lost during cultivation

Epithelial cells (EpCAM⁺) were isolated from M1 and M2 of Lgr5-EGFP-IRES-CreERT2 x Rosa26-tdTomato embryos 6 days after tamoxifen induction and analyzed by FACS for EGFP and tdTomato expression before embedding in Matrigel (**A**). After several passages, gene expression in M1- and M2-derived organoids was compared to freshly isolated molar epithelium by analyzing representative markers from different epithelial subpopulations identified by scRNA-seq using quantitative PCR (**B**). To estimate the relative enrichment of individual subpopulations in the organoids, the average expression changes of specific marker genes were calculated and presented as $-\Delta\Delta Ct$ values (first normalized to *Actb*, and then to gene expression in the starting tissue). While the genes associated with the preameloblasts, stellate reticulum, and stratum intermedium were differentially enriched, the subpopulation comprising the OEE, DS, and rudimental successional dental lamina (RSDL) — which includes the Lgr5⁺ cells — was the only group that was not enriched in the organoids (**B**). The individual dots show the average expression changes of each gene within the indicated subpopulation.

Supplemental Table 1 List of Abbreviations

ALDH1A2	Aldehyde Dehydrogenase 1 Family Member A2
ALPL	Alkaline Phosphatase, Biomineralization Associated
AMELX	Amelogenin X-Linked
ANXA1	Annexin A1
AP	Apical Papilla
ARID1A	AT-Rich Interaction Domain 1A
ASPRV1	Aspartic Peptidase Retroviral Like 1
ASPN	Asporin
AXIN2	Axin-related protein 2
BHLHE22	Basic Helix-Loop-Helix Family Member E22
BIRC5	Baculoviral IAP Repeat Containing 5
BMP	Bone Morphogenetic Proteins
BrdU	Bromodeoxyuridine
BSA	Bovine Serum Albumin
C1qA	Complement C1q A Chain
CACHD1	Cache Domain Containing 1
CAR2	Carbonic Anhydrase 2
CCNB2	Cyclin B2
CDC20	Cell Division Cycle 20
CDC42EP3	CDC42 Effector Protein 3
CDH1	Cadherin 1
CDK1	Cyclin Dependent Kinase 1
cDNA	complementary Deoxyribonucleic Acid
CLDN5	Claudin 5
Col1A1	Collagen Type I Alpha 1 Chain
Col4A5	Collagen Type IV Alpha 5 Chain
Col8A1	Collagen Type VIII Alpha 1 Chain
Col17	Collagen Type XVII
CPm	Coronal Papilla medium
CPu	Coronal Papilla upper
CRYM	Crystallin Mu
CUBIC	Clear, Unobstructed Brain Imaging Coctails
DAPI	4 [‘] ,6-diamidino-2 [‘] -phenylindole, dyhydrochloride
DAPL1	Death Associated Protein Like 1
DESCs	Dental epithelial stem cells
DKK1	Dickkopf WNT Signaling Pathway Inhibitor 1
DL	Dental lamina
DLX4/5	Distal-Less Homeobox 4/5
DMEM/F12	Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-DNA
DNA	Deoxyribonucleic Acid
DP	Dental Papilla
DS	Dental Stalk
DSC	Desmocollin
DSP	Dentin sialoprotein

E	Embryonic stage
ECM	Extracellular matrix
EDTA	Ethylenediaminetetraacetic acid
EGFP	Green Fluorescent Protein
EGFR	Epidermal Growth Factor Receptor
EIF1B	Eukaryotic Translation Initiation Factor 1B
EMB	Embigin
ENAM	Enamelin
EPAS1	Endothelial PAS Domain Protein 1
EPCAM	Epithelial Cell Adhesion Molecule
ESRP1	Epithelial Splicing Regulatory Protein 1
FABP7	Fatty Acid Binding Protein 7
FACS	Fluorescence-Activated Cell Sorting
FBS	Fetal Bovine Serum
FERMT1	FERM Domain Containing Kindlin 1
FGF3	Fibroblast Growth Factor 3
FREM2	Fras1 Related Extracellular Matrix 2
FXYD3	FXYD Domain Containing Ion Transport Regulator 3
GAS6	Growth Arrest Specific 6
GFRA1/3	GDNF Family Receptor Alpha 1/3
GLI1	GLI Family Zinc Finger 1
GPC3	Glypican 3
HA	Hemagglutinin
HBBS	Hanks' Balanced Salt Solution
HET	Heterozygot
HIGD1B	HIG1 Hypoxia Inducible Domain Family Member 1B
HOPX	HOP Homeobox
HSP90B1	Heat Shock Protein 90 Beta Family Member 1
IEE	Inner Enamel Epithelium
IGF1	Insulin Like Growth Factor 1
IGFBP5	Insulin Like Growth Factor Binding Protein 5
JAG2	Jagged Canonical Notch Ligand 2
JAK/STAT	The Janus Kinase/Signal Transducer and Aktivator of Transcription
KI67	Marker Of Proliferation Ki-67
KLK4	Kallikrein Related Peptidase 4
KRT5/7/14/17	Keratin 5/7/14/17
KO	Knockout
LAMA3/5	Laminin Subunit Alpha 3/5
LAMB3	Laminin Subunit Beta 3
LAMC2	Laminin Subunit Gamma 3
LARS2	Leucyl-TRNA Synthetase 2
LCL	Labial cervical loop
LEF1	Lymphoid Enhancer Binding Factor 1
LGALS1	Galectin 1
LGR4	Leucine Rich Repeat Containing G Protein-Coupled Receptor 4
LGR5	Leucine Rich Repeat Containing G Protein-Coupled Receptor 5
LGR5-D	<i>Lgr5</i> -descendant
LGR6	Leucine Rich Repeat Containing G Protein-Coupled Receptor 6

LHX6	LIM Homeobox 6
LMO1	LIM Domain Only 1
LP	Lateral Papilla
LRIG1	Leucine Rich Repeats And Immunoglobulin Like Domains 1
LRP6	LDL Receptor Related Protein 6
M1	First Molar
M2	Second Molar
M3	Third Molar
MAF	MAF BZIP Transcription Factor
MAPK	Mitogen Activated Protein Kinases
MEIS2	Meis Homeobox 2
MFAP5	Microfibril Associated Protein 5
MGP	Matrix Gla Protein
MKi67	Marker Of Proliferation Ki-67
MMP14	Matrix Metallopeptidase 14
mRNA	messenger Ribonucleic Acid
MSX1	Msh Homeobox 1
MYF5	Myogenic Factor 5
MYOD1	Myogenic Differentiation 1
NF κ B	Nuclear Factor kappa B
NID1	Nidogen 1
NID2	Nidogen 2
NOTCH1	Notch Receptor 1
NOTCH2	Notch Receptor 2
NPNT	Nephronectin
oDF	outlying Dental Follicle
OEE	Outer Enamel Epithelium
P	Postnatal stage
PAMR1	Peptidase Domain Containing Associated With Muscle Regeneration 1
PBS	Phosphate-Buffered Saline
PCA	Principal Component Analysis
PCLAF	PCNA Clamp Associated Factor
PFA	Paraformaldehyde
PFN2	Profilin 2
PIEZ02	Piezo Type Mechanosensitive Ion Channel Component 2
PITX2	Paired Like Homeodomain 2
PI3K	Phosphoinositide 3-kinase
PKP3	Plakophilin 3
PLVAP	Plasmalemma Vesicle ASsociated Protein
POSTN	Periostin
pre-Am	pre-Ameloblasts
PTCH1	Patched 1
PTK7	Protein Tyrosine Kinase 7
PTPRC	Protein Tyrosine Phosphatase Receptor Type C
RAB25	RAB25, Member RAS Oncogene Family
RFP	Red Fluorescent Protein
RGS3/5	Regulator Of G Protein Signaling 3/5
RHOV	Ras Homolog Family Member V

RNA	Ribonucleic Acid
ROCK2	Rho Associated Coiled-Coil Containing Protein Kinase 2
ROR2	Receptor Tyrosine Kinase Like Orphan Receptor 2
RSDL	Rudimental successional dental lamina
RSPO1	Roof Plate-Specific Spondin-1
RSPO2	Roof Plate-Specific Spondin-2
RSPO3	Roof Plate-Specific Spondin-3
RT	Room Temperature
RT-qPCR	Reverse Transcription quantitative Polymerase Chain Reaction
RUNX2	RUNX Family Transcription Factor 2
S100A14	S100 Calcium Binding Protein A14
SCUBE1	Signal Peptide, CUB Domain And EGF Like Domain Containing 1
SCT	Secretin
sc-RNAseq	single-cell RNA sequencing
sDF	surrounding Dental Follicle
SDL	Successional Dental Lamina
SeDL	Sequential Dental Lamina
SERPINB5	Serpin Family B Member 5
SFN	Stratifin
SFRP2	Secreted Frizzled Related Protein 2
SHH	Sonic Hedgehog Signaling Molecule
SI	Stratum Intermedium
SMYD3	SET And MYND Domain Containing 3
SNAI2	Snail Family Transcriptional Repressor 2
SOSTDC1	Sclerostin Domain Containing 1
SOX2/6/10	SRY-Box Transcription Factor 2
SPINT2	Serine Peptidase Inhibitor, Kunitz Type 2
SPON1	Spondin 1
SR	Stellate Reticulum
TAC1	Tachykinin Precursor 1
TACSTD2	Tumor Associated Calcium Signal Transducer 2
TBX15	T-Box Transcription Factor 15
TCEA3	Transcription Elongation Factor A3
TCF7L2	Transcription Factor 7 Like 2
TFAP2B	Transcription Factor AP-2 Beta
TFAP2C	Transcription Factor AP-2 Gamma
TGF β	Transforming Growth Factor beta
TNF α	Tumor Necrosis Factor alpha
TNMD	Tenomodulin
TOP2A	DNA Topoisomerase II Alpha
TRAIL	Tumour necrosis factor (TNF)-Related Apoptosis-Inducing Ligand
TTN	Titin
TUBB3	Tubulin Beta 3 Class III
TWIST1	Twist Family BHLH Transcription Factor 1
TYMS	Thymidylate Synthetase
TYROBP	Transmembrane Immune Signaling Adaptor TYROBP
UMAP	Uniform Manifold Approximation and Projection
UNG	Uracil DNA Glycosylase

VCAN	Versican
VEGF	Vascular Endothelial Growth Factor
WFDC2	WAP Four-Disulfide Core Domain 2
VIM	Vimentin
Wnt	Wingless-related integration site
WNT10A	Wnt Family Member 10A
WT	Wild Type

Supplemental Table 2 List of Antibodies used for IHC

Primary Antibody	Dilution	Cat. Number	Company
Beta-catenin	1:100	8480	Cell Signaling Technology (USA)
BrdU	1:30	B8434	Sigma Aldrich (USA)
c-Maf	1:100	ab243901	Abcam (UK)
E-cadherin	1:30	ab15148	Abcam (UK)
GFP	1:200	ab19970	Abcam (UK)
Ki67	1:100	RBK027	Zytomed systes (Germany)
laminin	1:500	Z0097	Dako, Agilent (Denmark)
MMP14	1:100	PA5-104459	Invitrogen (USA)
Nid1	1:100	ab254325	Abcam (UK)
Nid2	1:100	ab14513	Abcam (UK)
Notch1	1:100	4380P	Cell Signaling Technology (USA)
Notch2	1:100	4530T	Cell Signaling Technology (USA)
Pfn2	1:100	PA5-79812	Invitrogen (USA)
Ptk7	1:200	17799-1-AP	Thermo Fisher Scientific (USA)
RFP	1:200	600-401-379	Rockland (USA)
Sox2	1:100	2748S	Cell Signaling Technology (USA)
Tubb3	1:100	801201	Biolegend (USA)
vimentin	1:100	sc-73259	Santa Cruz (USA)
Secondary Antibody	Dilution	Cat. Number	Company
Alexa Fluor® 488 goat anti-chicken IgG (H+L)	1:200	A11039	Life Technologies (USA)
Alexa Fluor® 488 goat anti-mouse IgG (H+L)	1:200	A11001	Life Technologies (USA)
Alexa Fluor® 594 goat anti-rabbit IgG (H+L)	1:200	A11037	Life Technologies (USA)
Alexa Fluor® 568 goat anti-mouse IgG (H+L)	1:200	A11004	Life Technologies (USA)

Supplemental Table 3 List of probes used for RNAScope

Probe	Dilution	Cat. Number	Company
Aldh1a2		447391	Advanced Cell Diagnostics (USA)
Axin2	1:50	400331	Advanced Cell Diagnostics (USA)
Bhlhe22		467641	Advanced Cell Diagnostics (USA)
Cachd1		558751	Advanced Cell Diagnostics (USA)
Dkk1		402521	Advanced Cell Diagnostics (USA)
Dlx4		575531	Advanced Cell Diagnostics (USA)
Dlx5		478151	Advanced Cell Diagnostics (USA)
Epas1		314371	Advanced Cell Diagnostics (USA)
Lgr4	1:50	318321	Advanced Cell Diagnostics (USA)
Mm-Lgr5		312171	Advanced Cell Diagnostics (USA)
Ss-Lgr5		455391	Advanced Cell Diagnostics (USA)
Lgr6	1:50	404961	Advanced Cell Diagnostics (USA)
Lmo1	1:50	511211	Advanced Cell Diagnostics (USA)
Myod1	1:50	316081	Advanced Cell Diagnostics (USA)
Pamr1	1:50	491431	Advanced Cell Diagnostics (USA)
Ptch1		402811	Advanced Cell Diagnostics (USA)
Ptprc		318651	Advanced Cell Diagnostics (USA)
Rspo1	1:50	479591-C2	Advanced Cell Diagnostics (USA)
Rspo2	1:50	402001	Advanced Cell Diagnostics (USA)
Rspo3		483781	Advanced Cell Diagnostics (USA)
Runx2		414021	Advanced Cell Diagnostics (USA)
Scube1		488131	Advanced Cell Diagnostics (USA)
Shh		314361	Advanced Cell Diagnostics (USA)
Spon1	1:50	492671	Advanced Cell Diagnostics (USA)
Tac1		410351	Advanced Cell Diagnostics (USA)
Tbx15		558761	Advanced Cell Diagnostics (USA)
Tfap2c	1:50	488861	Advanced Cell Diagnostics (USA)
Trim9		479071	Advanced Cell Diagnostics (USA)

Supplemental Table 4 List of primers used for qPCR

Mouse target gene symbol	Forvard primer sequence (5'-3')	Reverse primer sequence (5'-3')
Maf	CAACCCTCCTCTCCCGAAT	GCGAGTTGTCCAAGGTACC
Hopx	TTAGTCAGACGCGCACGGACC	CACTCTGCCAGGCGCTGCTT
Rhov	CCTCATCGTCAGCTACACCT	CGGGTAGCAGAGAGAACGAA
Pkp1	GCTTGCCCTCTGACCAAAA	TTGTCAGCCAGCCCATCATA
Lgals3	GCCCGGGGAAAAGAGTACTA	TGCACCCGGATATCCTGAG
Krt17	GATTGGTACCAGAACGCAGGC	AGCCTGCTCTGTCTCAAAC
Notch1	TGCCCCGTGGGCTTCAATGG	CGAGTCGCACCAGCGCACAA
Notch2	AGTGTCGAGGTGGTCAAGAG	AGGGGTGAGAGGTGGAGTAT
Irx1	CCAACTACAGCGCCTCTTG	TCCCCGTATTGAAACTGACCA
Frem2	TGGCTACCTTCTCAACCTGG	GATCCACGCCAATTAGTC
Vcam	AGTCCGTTCTGACCATGGAG	CTGGAGCCAAACACTGACC
Jag1	CTTCAATCTCAAGGCCAGCC	TTTCAGTGTCTGCCATTGCC
Pfn2	CGTTGATGGTACTGCACAA	CCTCCATGGACCCCTTCTT
Smyd3	GCAGGGTTATCGTCAAGCTG	TGAGACGCATCCTGGATCTC
Eif1b	ACACTAGTGTGCGATGTCCA	TGCGCTGCTGGATCCTTATA
Grasp	GCAGCACTGGAGGACTATCA	TGGATCTCGAAGCCAAAGGT
Shh	TTCTGTGAAAGCAGAGAACTCC	GGGACGTAAGTCCTCACCA
Manf	GCTGCCACCAAGATCATCAA	CTGTGCTCAGGTCAATCTGC
Wfdc2	TGGACCGAGCGAAGGAGAGC	GGGGCAGGTGCCCTGCTTT
Tubb3	AACCTGGAACCATGGACAGT	CCCTCCGTATAGTGCCCTT
Mvd	GGGACTCCAGCATCTCAGTT	AGGAGTTGATGGGCAGGATC
Tacstd2	GAACCCACCACATCCTCATT	ATGGTGGGCTCCTCATAGTG
Ubb	ATGTGAAGGCCAAGATCCAG	TAATAGCCACCCCTCAGACG
Ctnnb	GGCATCCTCACCTGAAGTA	AGGTGTGGTGCCAGATTTTC

Supplemental Table 5 Genes characteristic for non-dental clusters

	Gene name	Map	Function/evidence	Reference
Surrounding non-molar clusters				
MUSCLE	<i>Myf5</i>		a transcription factor, which plays a crucial role in muscle development and differentiation	Braun et al., 1989 [1]
	<i>Ttn</i>		a very large protein, which plays role in the structure and function of muscle cells	Maruyama K., 1997 [2]
	<i>Tnnt1</i>		protein, which plays a crucial role in the regulation of muscle contraction	Filatov et al., 1999 [3]

IMMUNE CELL	<i>C1qa</i>		a component of the complement system, an important part of the immune system	Wang et al., 2012 [4]
	<i>Tyrobp</i>		an important transmembrane adaptor protein, it plays a crucial role in activating immune cells	Lanier et al., 1998 [5]
	<i>Fcer1g</i>		a high affinity IgE receptor, a key molecule involved in allergic reaction	Le Coniat et al., 1990 [6]
PERICYTES	<i>Rgs5</i>		a regulator of G protein signaling, important in vascular biology, it is highly expressed in vascular smooth muscle cells and pericytes	Bondjers et al., 2003 [7]
	<i>Higd1b</i>		protein, which plays a role in regulation of mitochondrial function; a potential marker of pericytes in lung and heart	Baek et al., 2022 [8]
	<i>Cpa1</i>		an enzym that belongs to the carboxypeptidase family with role in protein digestion in the small intestine	Clauser et al., 1988 [9]

ENDOTHELIAL CELLS	<i>Cldn5</i>		a key component of tight junction in epithelial and endothelial cells	Morita et al., 1999 [10]
	<i>Pivap</i>		an endothelial cell-specific membrane protein with role in microvascular permeability	Denzer et al., 2023 [11]
	<i>Kdr</i>		a receptor, also known as a VEGFR, is a major growth factor for endothelial cells	Kroll et al., 1997 [12]
GLIAL CELLS	<i>Sox10</i>		a transcription factor that is involved in the development of glial cells in the nervous system	Kuhlbrod et al., 1998 [13]
	<i>Gfra3</i>		a receptor for artemin, plays an important role in glial cells, particularly astrocytes	Naveilan et al., 1998 [14]
	<i>Fabp7</i>		an important protein primarily expressed in various types of glial cells, with crucial role in lipid metabolism	Avraham et al., 2020 [15]

[1] Braun T, Buschhausen-Denker G, Bober E, Tannich E, Arnold HH. A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. *EMBO J.* 1989 Mar;8(3):701-9. doi: 10.1002/j.1460-2075.1989.tb03429.x. PMID: 2721498; PMCID: PMC400865.

[2] Maruyama K. Connectin/titin, giant elastic protein of muscle. *FASEB J.* 1997 Apr;11(5):341-5. doi: 10.1096/fasebj.11.5.9141500. PMID: 9141500.

[3] Filatov VL, Katrukha AG, Bulargina TV, Gusev NB. Troponin: structure, properties, and mechanism of functioning. *Biochemistry (Mosc).* 1999 Sep;64(9):969-85. PMID: 10521712.

[4] Wang Y, Tong X, Zhang J, Ye X. The complement C1qA enhances retinoic acid-inducible gene-I-mediated immune signalling. *Immunology.* 2012 May;136(1):78-85. doi: 10.1111/j.1365-2567.2012.03561.x. PMID: 22260551; PMCID: PMC3372759.

[5] Lanier LL, Corliss B, Wu J, Phillips JH. Association of DAP12 with activating CD94/NKG2C NK cell receptors. *Immunity.* 1998 Jun;8(6):693-701. doi: 10.1016/s1074-7613(00)80574-9. PMID: 9655483.

[6] Le Coniat M, Kinet JP, Berger R. The human genes for the alpha and gamma subunits of the mast cell receptor for immunoglobulin E are located on human chromosome band 1q23. *Immunogenetics.* 1990;32(3):183-6. doi: 10.1007/BF02114971. PMID: 2146219.

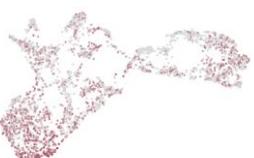
[7] Bondjers C, Kalén M, Hellström M, Scheidl SJ, Abramsson A, Renner O, Lindahl P, Cho H, Kehrl J, Betsholtz C. Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells. *Am J Pathol.* 2003 Mar;162(3):721-9. doi: 10.1016/S0002-9440(10)63868-0. PMID: 12598306; PMCID: PMC1868109.

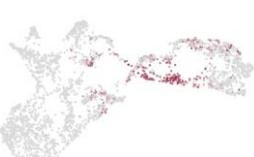
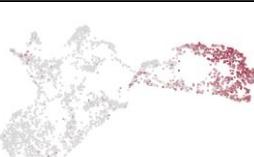
[8] Baek SH, Maiorino E, Kim H, Glass K, Raby BA, Yuan K. Single Cell Transcriptomic Analysis Reveals Organ Specific Pericyte Markers and Identities. *Front Cardiovasc Med.* 2022 Jun 1;9:876591. doi: 10.3389/fcvm.2022.876591. PMID: 35722109; PMCID: PMC9199463.

[9] Clauser E, Gardell SJ, Craik CS, MacDonald RJ, Rutter WJ. Structural characterization of the rat carboxypeptidase A1 and B genes. Comparative analysis of the rat carboxypeptidase gene family. *J Biol Chem.* 1988 Nov 25;263(33):17837-45. PMID: 3182872.

[10] Morita K, Sasaki H, Furuse M, Tsukita S. Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. *J Cell Biol.* 1999 Oct 4;147(1):185-94. doi: 10.1083/jcb.147.1.185. PMID: 10508865; PMCID: PMC2164984.

[11] Denzer L, Muranyi W, Schroten H, Schwerk C. The role of PLVAP in endothelial cells. *Cell Tissue Res.* 2023 May;392(2):393-412. doi: 10.1007/s00441-023-03741-1. Epub 2023 Feb 13. PMID: 36781482; PMCID: PMC10172233.


[12] Kroll J, Waltenberger J. The vascular endothelial growth factor receptor KDR activates multiple signal transduction pathways in porcine aortic endothelial cells. *J Biol Chem.* 1997 Dec 19;272(51):32521-7. doi: 10.1074/jbc.272.51.32521. PMID: 9405464.



[13] Kuhlbrodt K, Herbarth B, Sock E, Hermans-Borgmeyer I, Wegner M. Sox10, a novel transcriptional modulator in glial cells. *J Neurosci.* 1998 Jan 1;18(1):237-50. doi: 10.1523/JNEUROSCI.18-01-00237.1998. PMID: 9412504; PMCID: PMC6793382.

[14] Naveilhan P, Baudet C, Mikaela A, Shen L, Westphal H, Ernfors P. Expression and regulation of GFRalpha3, a glial cell line-derived neurotrophic factor family receptor. *Proc Natl Acad Sci U S A.* 1998 Feb 3;95(3):1295-300. doi: 10.1073/pnas.95.3.1295. PMID: 9448325; PMCID: PMC18749.

[15] Avraham O, Deng PY, Jones S, Kuruvilla R, Semenkovich CF, Klyachko VA, Cavalli V. Satellite glial cells promote regenerative growth in sensory neurons. *Nat Commun.* 2020 Sep 29;11(1):4891. doi: 10.1038/s41467-020-18642-y. PMID: 32994417; PMCID: PMC7524726.

Supplemental Table 6 Genes characteristic for molar mesenchyme

	Gene name	Map	Function/evidence	Reference
Molar mesenchyme				
MESENCHYME	<i>Col1a1</i>		a major component of connective tissues like bone, skin, tendons, ligaments, and the cornea	Karsenty and Park, 1995 [1]
	<i>Twist1</i>		a transcription factor that maintains the viability of cells and their undifferentiated mesenchymal status	Bildsoe et al., 2016 [2]
UNSPECIFIED ORAL FIBROBLASTS	<i>Bhlhe22</i>		a member of the Olig family and plays an important role in neuronal and glial differentiation and maturation	Dennis et al., 2019 [3]
	<i>Cachd1</i>		involved in the transmembrane transport of calcium ions and is a binding partner of the Wnt receptor FZD7 and the co-receptor LRP6. It was found to be expressed in neuron progenitors	Powell et al., 2024 [4]
	<i>Trim9</i>		a regulator of neuronal morphogenesis in cortical neurons, it is expressed in neural precursors	Winkle et al., 2016 [5]
UNDIFFERENTIATED OB	<i>Meis2</i>		a transcription factor, which controls skeletal formation in the hyoid region and plays a critical role during cranial neural crest cells development	Mahon et al., 2015 [6]; Fabik et al., 2022 [7]
	<i>Mfap5</i>		a protein that plays a role in the regulation of bone mineralization	Li et al., 2021 [8]
	<i>Itih5</i>		a component of extracellular matrix, which is crucial for bone formation and remodeling; a modulator of inflammatory response	Huth et al., 2020 [9]

LGR5+ CELLS	<i>Tcea3</i>		an elongation factor that is involved in transcriptional regulation, it can control cell fate of mice embryonic stem cells	Park et al., 2013 [10]
	<i>Emb</i>		a transmembrane glycoprotein; it plays a role in a transition of progenitor cells to differentiated sebocytes in the sebaceous gland	Sipilä et al., 2022 [11]
	<i>Ptx4</i>		a pentraxin family member, is related to PTX3, which supports osteogenic and odontogenic differentiation and stem cell migration	Kim et al., 2019 [12]
OUTLYING DENTAL FOLLICLE	<i>Alpl</i>		a member of alkaline phosphatase family, it contributes to dentin mineralization	Kramer et al., 2021 [13]
	<i>Runx2</i>		a transcription factor that plays role in tooth root development	Wen et al., 2020 [14]
	<i>Pappa2</i>		a metalloproteinase that have roles in the regulation of growth factors, particularly IGFs and it is involved in various biological processes	Barios et al., 2021 [15]
SURROUNDING DENTAL FOLLICLE	<i>Ptch1</i>		a receptor of the HH signalling pathway, which is important in embryonic development; it is expressed in mice dental mesenchyme at E14.5	Cobourne et al., 2009 [16]
	<i>Tfap2c</i>		a transcription factor, which was described highly expressed in the early mice molar development, mainly in the dental mesenchyme	Liu et al., 2024 [17]
	<i>Ibsp</i>		a non-collagenous protein found in cementum; it is expressed during early tooth root development by cells on the surface of the teeth root	Lao et al., 2006 [18]

[1] Bildsoe H, Fan X, Wilkie EE, Ashoti A, Jones VJ, Power M, Qin J, Wang J, Tam PP, Loebel DA. Dataset of TWIST1-regulated genes in the cranial mesoderm and a transcriptome comparison of cranial mesoderm and cranial neural crest. *Data Brief*. 2016 Sep 12;9:372-375. doi: 10.1016/j.dib.2016.09.001. PMID: 27699189; PMCID: PMC5035339.

[2] Karsenty G, Park RW. Regulation of type I collagen genes expression. *Int Rev Immunol*. 1995;12(2-4):177-85. doi: 10.3109/08830189509056711. PMID: 7650420.

[3] Dennis DJ, Han S, Schuurmans C. bHLH transcription factors in neural development, disease, and reprogramming. *Brain Res*. 2019 Feb 15;1705:48-65. doi: 10.1016/j.brainres.2018.03.013. Epub 2018 Mar 12. PMID: 29544733.

[4] Powell GT, Faro A, Zhao Y, Stickney H, Novellasdemunt L, Henriques P, Gestri G, Redhouse White E, Ren J, Lu W, Young RM, Hawkins TA, Cavodeassi F, Schwarz Q, Dreosti E, Raible DW, Li VSW, Wright GJ, Jones EY, Wilson SW. Cachd1 interacts with Wnt receptors and regulates neuronal asymmetry in the zebrafish brain. *Science*. 2024 May 3;384(6695):573-579. doi: 10.1126/science.ade6970. Epub 2024 May 2. PMID: 38696577; PMCID: PMC7615972.

[5] Winkle CC, Olsen RH, Kim H, Moy SS, Song J, Gupton SL. Trim9 Deletion Alters the Morphogenesis of Developing and Adult-Born Hippocampal Neurons and Impairs Spatial Learning and Memory. *J Neurosci*. 2016 May 4;36(18):4940-58. doi: 10.1523/JNEUROSCI.3876-15.2016. PMID: 27147649; PMCID: PMC4854964.

[6] Machon O, Masek J, Machonova O, Krauss S, Kozmik Z. Meis2 is essential for cranial and cardiac neural crest development. *BMC Dev Biol*. 2015 Nov 6;15:40. doi: 10.1186/s12861-015-0093-6. PMID: 26545946; PMCID: PMC4636814.

[7] Fabik J, Psutkova V, Machon O. Meis2 controls skeletal formation in the hyoid region. *Front Cell Dev Biol*. 2022 Sep 28;10:951063. doi: 10.3389/fcell.2022.951063. PMID: 36247013; PMCID: PMC9554219.

[8] Li H, Zhou W, Sun S, Zhang T, Zhang T, Huang H, Wang M. Microfibrillar-associated protein 5 regulates osteogenic differentiation by modulating the Wnt/β-catenin and AMPK signaling pathways. *Mol Med*. 2021 Dec 5;27(1):153. doi: 10.1186/s10020-021-00413-0. PMID: 34865619; PMCID: PMC8647299.

[9] Huth S, Huth L, Marquardt Y, Fietkau K, Dahl E, Esser PR, Martin SF, Heise R, Merk HF, Baron JM. Inter-α-Trypsin Inhibitor Heavy Chain 5 (ITIH5) Is a Natural Stabilizer of Hyaluronan That Modulates Biological Processes in the Skin. *Skin Pharmacol Physiol*. 2020;33(4):198-206. doi: 10.1159/000509371. Epub 2020 Aug 14. PMID: 32799206.

[10] Park KS, Cha Y, Kim CH, Ahn HJ, Kim D, Ko S, Kim KH, Chang MY, Ko JH, Noh YS, Han YM, Kim J, Song J, Kim JY, Tesar PJ, Lanza R, Lee KA, Kim KS. Transcription elongation factor TceA3 regulates the pluripotent differentiation potential of mouse embryonic stem cells via the Lefty1-Nodal-Smad2 pathway. *Stem Cells*. 2013 Feb;31(2):282-92. doi: 10.1002/stem.1284. PMID: 23169579; PMCID: PMC3572291.

[11] Sipilä K, Rognoni E, Jokinen J, Tewary M, Vietri Rudan M, Talvi S, Jokinen V, Dahlström KM, Liakath-Ali K, Mabasseri A, Du-Harpur X, Käpylä J, Nutt SL, Salminen TA, Heino J, Watt FM. Embigin is a fibronectin receptor that affects sebaceous gland differentiation and metabolism. *Dev Cell*. 2022 Jun 20;57(12):1453-1465.e7. doi: 10.1016/j.devcel.2022.05.011. Epub 2022 Jun 6. PMID: 35671757; PMCID: PMC9616737.

[12] Kim Y, Park JY, Park HJ, Kim MK, Kim YI, Kim HJ, Bae SK, Bae MK. Pentraxin-3 Modulates Osteogenic/Odontogenic Differentiation and Migration of Human Dental Pulp Stem Cells. *Int J Mol Sci*. 2019 Nov 17;20(22):5778. doi: 10.3390/ijms20225778. PMID: 31744201; PMCID: PMC6887979.

[13] Kramer K, Chavez MB, Tran AT, Farah F, Tan MH, Kolli TN, Dos Santos EJL, Wimer HF, Millán JL, Suva LJ, Gaddy D, Foster BL. Dental defects in the primary dentition associated with hypophosphatasia from biallelic ALPL mutations. *Bone*. 2021 Feb;143:115732. doi: 10.1016/j.bone.2020.115732. Epub 2020 Nov 4. PMID: 33160095; PMCID: PMC7769999.

[14] Wen Q, Jing J, Han X, Feng J, Yuan Y, Ma Y, Chen S, Ho TV, Chai Y. Runx2 Regulates Mouse Tooth Root Development Via Activation of WNT Inhibitor NOTUM. *J Bone Miner Res*. 2020 Nov;35(11):2252-2264. doi: 10.1002/jbm.4120. Epub 2020 Aug 3. PMID: 32569388; PMCID: PMC7689689.

[15] Barrios V, Chowen JA, Martín-Rivada Á, Guerra-Cantera S, Pozo J, Yakar S, Rosenfeld RG, Pérez-Jurado LA, Suárez J, Argente J. Pregnancy-Associated Plasma Protein (PAPP)-A2 in Physiology and Disease. *Cells*. 2021 Dec 18;10(12):3576. doi: 10.3390/cells10123576. PMID: 34944082; PMCID: PMC8700087.

[16] Cobourne MT, Xavier GM, Depew M, Hagan L, Sealby J, Webster Z, Sharpe PT. Sonic hedgehog signalling inhibits palatogenesis and arrests tooth development in a mouse model of the nevoid basal cell carcinoma syndrome. *Dev Biol*. 2009 Jul 1;331(1):38-49. doi: 10.1016/j.ydbio.2009.04.021. Epub 2009 Apr 24. PMID: 19394325; PMCID: PMC2696601.

[17] Liu LW, Han X, Zhu ZW, Wang ZL. [Transcription factor activator protein 2C contribute to molar development in mice]. *Zhonghua Kou Qiang Yi Xue Za Zhi*. 2024 Jul 9;59(7):706-714. Chinese. doi: 10.3760/cma.j.cn112144-20240511-00198. PMID: 38949139.

[18] Lao M, Marino V, Bartold PM. Immunohistochemical study of bone sialoprotein and osteopontin in healthy and diseased root surfaces. *J Periodontol*. 2006 Oct;77(10):1665-73. doi: 10.1902/jop.2006.060087. PMID: 17032108.

Supplemental Table 7 Genes characteristic for dental papilla

APICAL PAPILLA	<i>Postn</i>		an extracellular matrix protein, primarily expressed in the periosteum and PDL of mice molar, but it was also found to be expressed in the pre-odontoblasts and in cells surrounding the root close to the cervical loop	Kruzynska-Frejtag et al., 2004 [6] Du and Li, 2019 [7]
	<i>Lhx6</i>		a transcription factor, expressed in the dental papilla during mice molar development to the postnatal stages, moreover from E16.5 its expression was enriched in the apical region	He et al., 2021 [8]
CORONAL PAPILLA MEDIUM	<i>Crym</i>		Crystallin, which is primarily known for its function in maintaining lens transparency and refraction in the eye, but it is expressed also in dental mesenchyme, where it regulates cellular metabolism and differentiation of odontoblasts	Wistow et al., 2012 [9] Hallen et al., 2011 [10]
	<i>Piezo2</i>		a component of a mechanosensitive channel and it mediates mechanotransduction in the peripheral pulp of molars	Han et al., 2022 [11]
CORONAL PAPILLA UPPER	<i>Gfra1</i>		acts as a co-receptor for glial cell line-derived neurotrophic factor (GDNF), during teeth development it is linked to the growth and patterning of the dental mesenchyme, particularly dental papilla and follicle	Leda et al., 2007 [12]
	<i>Sct</i>		a member of glucagon family of peptides which may regulate cellular signaling pathway that influence the differentiation and activity of odontoblasts and dental pulp cells	Wang et al., 2020 [13]
LATERAL PAPILLA	<i>Snai2</i>		a zinc finger transcription factor that can trigger EMT during the formation of the mesoderm and of the neural crest in vertebrate embryos; it is widely present in stem cells and essential for osteoblast differentiation	Jiang et al., 2021 [14] Martínez-Alvarez et al., 2004 [15]
	<i>Rgs3</i>		a transcription factor, known for its role in vascular biology; it is expressed in pericytes of the dental pulp of rat postnatal molars and incisors; it is important for vascular-derived stem cells during pulp healing	Lovschall et al., 2007 [16]

[1] Kawasaki M, Porntaveetus T, Kawasaki K, Oomen S, Otsuka-Tanaka Y, Hishinuma M, Nomoto T, Maeda T, Takubo K, Suda T, Sharpe PT, Ohazama A. R-spondins/Lgrs expression in tooth development. *Dev Dyn.* 2014 Jun;243(6):844-51. doi: 10.1002/dvdy.24124. Epub 2014 Mar 24. PMID: 24616052.

[2] Wu D, Mandal S, Choi A, Anderson A, Prochazkova M, Perry H, Gil-Da-Silva-Lopes VL, Lao R, Wan E, Tang PL, Kwok PY, Klein O, Zhuan B, Slavotinek AM. DLX4 is associated with orofacial clefting and abnormal jaw development. *Hum Mol Genet.* 2015 Aug 1;24(15):4340-52. doi: 10.1093/hmg/ddv167. Epub 2015 May 7. PMID: 25954033; PMCID: PMC4492397.

[3] Zhao Z, Stock D, Buchanan A, Weiss K. Expression of Dlx genes during the development of the murine dentition. *Dev Genes Evol.* 2000 May;210(5):270-5. doi: 10.1007/s004270050314. PMID: 11180832.

[4] Raju R, Piña JO, Roth DM, Chattaraj P, Kidwai FK, Faucz FR, Iben J, Fridell G, Dale RK, D'Souza RN. Profiles of Wnt pathway gene expression during tooth morphogenesis. *Front Physiol.* 2024 Jan 10;14:1316635. doi: 10.3389/fphys.2023.1316635. PMID: 38274045; PMCID: PMC10809389.

[5] Kettunen P, Laurikkala J, Itäranta P, Vainio S, Itoh N, Thesleff I. Associations of FGF-3 and FGF-10 with signaling networks regulating tooth morphogenesis. *Dev Dyn.* 2000 Nov;219(3):322-32. doi: 10.1002/1097-0177(2000)9999:9999<::AID-DVDPY1062>3.0.CO;2-J. PMID: 11066089.

[6] Kruzynska-Frejtag A, Wang J, Maeda M, Rogers R, Krug E, Hoffman S, Markwald RR, Conway SJ. Periostin is expressed within the developing teeth at the sites of epithelial-mesenchymal interaction. *Dev Dyn.* 2004 Apr;229(4):857-68. doi: 10.1002/dvdy.10453. PMID: 15042709.

[7] Du J, Li M. Functions of Periostin in Dental Tissues and Its Role in Periodontal Tissue Regeneration. *Adv Exp Med Biol.* 2019;1132:63-72. doi: 10.1007/978-981-13-6657-4_7. PMID: 31037625.

[8] He J, Jing J, Feng J, Han X, Yuan Y, Guo T, Pei F, Ma Y, Cho C, Ho TV, Chai Y. Lhx6 regulates canonical Wnt signaling to control the fate of mesenchymal progenitor cells during mouse molar root patterning. *PLoS Genet.* 2021 Feb 17;17(2):e1009320. doi: 10.1371/journal.pgen.1009320. PMID: 33596195; PMCID: PMC7920342.

[9] Wistow, G. The human crystallin gene families. *Hum Genomics* 6, 26 (2012). <https://doi.org/10.1186/1479-7364-6-26>

[10] Hallen A, Cooper AJ, Jamie JF, Haynes PA, Willows RD. Mammalian forebrain ketimine reductase identified as μ -crystallin; potential regulation by thyroid hormones. *J Neurochem.* 2011 Aug;118(3):379-87. doi: 10.1111/j.1471-4159.2011.07220.x. Epub 2011 Mar 15. PMID: 21332720.

[11] Han HM, Jeong SY, Cho YS, Choi SY, Bae YC. Expression of Piezo2 in the Dental Pulp, Sensory Root, and Trigeminal Ganglion and Its Coexpression with Vesicular Glutamate Transporters. *J Endod.* 2022 Nov;48(11):1407-1413. doi: 10.1016/j.joen.2022.07.012. Epub 2022 Aug 8. PMID: 35952898.

[12] Ledda, F., Paratcha, G., Sandoval-Guzmán, T. et al. GDNF and GFR α 1 promote formation of neuronal synapses by ligand-induced cell adhesion. *Nat Neurosci* 10, 293–300 (2007). <https://doi.org/10.1038/nn1855>

[13] Wang L, Zhang L. Involvement of Secretin in the Control of Cell Survival and Synaptic Plasticity in the Central Nervous System. *Front Neurosci.* 2020 May 6;14:387. doi: 10.3389/fnins.2020.00387. PMID: 32435180; PMCID: PMC7218122.

[14] Jiang R, Wang M, Shen X, Huang S, Han J, Li L, Xu Z, Jiang C, Zhou Q, Feng X. SUMO1 modification of IGF-1R combining with SNAI2 inhibited osteogenic differentiation of PDLSCs stimulated by high glucose. *Stem Cell Res Ther.* 2021 Oct 18;12(1):543. doi: 10.1186/s13287-021-02618-w. PMID: 34663464; PMCID: PMC8522165.

[15] Martínez-Alvarez C, Blanco MJ, Pérez R, Rabadán MA, Aparicio M, Resel E, Martínez T, Nieto MA. Snail family members and cell survival in physiological and pathological cleft palates. *Dev Biol.* 2004 Jan 1;265(1):207-18. doi: 10.1016/j.ydbio.2003.09.022. PMID: 14697364.

[16] Lovschall H, Mitsiadis TA, Poulsen K, Jensen KH, Kjeldsen AL. Coexpression of Notch3 and Rgs5 in the pericyte-vascular smooth muscle cell axis in response to pulp injury. *Int J Dev Biol.* 2007;51(8):715-21. doi: 10.1387/ijdb.072393hl. PMID: 17939118.

Supplemental Table 8 Genes characteristic for dental epithelium

	Gene name	Map	Function/evidence	Reference
Dental epithelium				
STRATUM INTERMEDIUM	<i>Hopx</i>		a transcription factor which is expressed in both embryonic and adult stem cells in various tissues to regulate biological processes	Caspa Gokulan et al., 2022 [1]
	<i>Rhov</i>		a GTPase of the Rho family required for the full differentiation of NCS and it is necessary for the migration process. In the dental context, it is found to be expressed in cells of the stratum intermedium	Faure et al., 2015 [2] Hermans et al., 2022 [3]
PRE-AMELOBLASTS	<i>Tubb3</i>		a member of beta tubulin protein family forming microtubules; during odontogenesis it is expressed in both ameloblasts and odontoblasts	Oshima and Yawaka, 2019 [4]
	<i>Wfdc2</i>		a component of the innate immune defences of the lung, nasal and oral cavities	Bingle et al., 2006 [5]
STELLATE RETICULUM	<i>Smyd3</i>		a histon methyltransferase works as a chromatin regulator with oncogenic activity; it is implicated as a transcriptional activator in various types of cancers	Yang et al., 2023 [6]
	<i>Eif1b</i>		a translation factor, which is involved in the initiation phase of translation; its expression was found in the uveal melanoma	Demirci et al., 2013 [7]
TYMS+ CELLS	<i>Tyms</i>		an enzym, which catalyzes the methylation of deoxyuridylate to deoxythymidylate	Costi et al., 2005 [8]
	<i>Birc5</i>		a member of the inhibitor of apoptosis gene family; highly expressed during fetal development	Ambrosini et al., 1997 [9]
	<i>Pclaf</i>		a regulator of DNA repair during DNA replication; involved in cell cycle progression	Povlsen et al., 2013 [10] Emanuele et al., 2011 [11]

OEE, DS, SDL	<i>Lars2</i>		a synthetase, which catalyzes the attachment of leucin to its cognate tRNA	Riley et al., 2015 [12]
			a member of the SWI/SNF family, which is involved in transcriptional activation and repression of select genes by chromatin remodeling	Li et al., 2010 [13]
	<i>Frem2</i>		an extracellular matrix protein that plays a role in epidermal-dermal interaction; mutations in this gene are associated with Fraser syndrome, cryptophthalmos, dental anomalies and oral vestibule defects; it was shown to be expressed in the developing tooth and vestibular lamina	Kunz et al., 2020 [14] Kantaputra et al., 2022 [15]
	<i>Vcan</i>		a large proteoglycan and a major component of the extracellular matrix; it was found to be expressed in the dental epithelium during mice molar development	Jiang et al., 2010 [16]
	<i>Notch1</i>		a transmembrane receptor that plays a role in the development of numerous cell and tissue types; during molar development it is expressed in epithelial structures such as outer enamel epithelium or stratum intermedium	Mitsiadis et al., 1995 [17]

[1] Caspa Gokulan R, Yap LF, Paterson IC. HOPX: A Unique Homeodomain Protein in Development and Tumor Suppression. *Cancers (Basel)*. 2022 Jun 2;14(11):2764. doi: 10.3390/cancers14112764. PMID: 35681746; PMCID: PMC9179269.

[2] Faure S, Fort P. Atypical RhoV and RhoU GTPases control development of the neural crest. *Small GTPases*. 2015 Oct 2;6(4):174-7. doi: 10.1080/21541248.2015.1025943. Epub 2015 Oct 9. PMID: 26555387; PMCID: PMC4905279.

[3] Hermans F, Bueds C, Hemeryck L, Lambrichts I, Bronckaers A, Vankelecom H. Establishment of inclusive single-cell transcriptome atlases from mouse and human tooth as powerful resource for dental research. *Front Cell Dev Biol*. 2022 Oct 10;10:1021459. doi: 10.3389/fcell.2022.1021459. PMID: 36299483; PMCID: PMC9590651.

[4] Oshima, S., Yawaka, Y. (2019). Class III β -tubulin expression during hard tissue formation in developing mouse teeth. *Pediatric Dental Journal* 2019, 30, 9-16. <https://doi.org/10.1016/j.pdj.2019.12.002>.

[5] Bingle L, Cross SS, High AS, Wallace WA, Rassl D, Yuan G, Hellstrom I, Campos MA, Bingle CD. WFDC2 (HE4): a potential role in the innate immunity of the oral cavity and respiratory tract and the development of adenocarcinomas of the lung. *Respir Res*. 2006 Apr 6;7(1):61. doi: 10.1186/1465-9921-7-61. PMID: 16600032; PMCID: PMC1459147.

[6] Yang Z, Liu F, Li Z, Liu N, Yao X, Zhou Y, Zhang L, Jiang P, Liu H, Kong L, Lang C, Xu X, Jia J, Nakajima T, Gu W, Zheng L, Zhang Z. Histone lysine methyltransferase SMYD3 promotes oral squamous cell carcinoma tumorigenesis via H3K4me3-mediated HMGA2 transcription. *Clin Epigenetics*. 2023 May 26;15(1):92. doi: 10.1186/s13148-023-01506-9. PMID: 37237385; PMCID: PMC10223939.

[7] Demirci H, Reed D, Elner VM. Tissue-based microarray expression of genes predictive of metastasis in uveal melanoma and differentially expressed in metastatic uveal melanoma. *J Ophthalmic Vis Res*. 2013 Oct;8(4):303-7. PMID: 24653816; PMCID: PMC3957035.

[8] Costi MP, Ferrari S, Venturelli A, Calò S, Tondi D, Barlocco D. Thymidylate synthase structure, function and implication in drug discovery. *Curr Med Chem*. 2005;12(19):2241-58. doi: 10.2174/0929867054864868. PMID: 16178783.

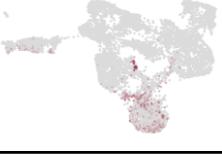
[9] Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. *Nat Med*. 1997 Aug;3(8):917-21. doi: 10.1038/nm0897-917. PMID: 9256286.

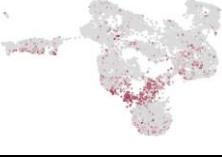
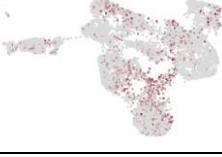
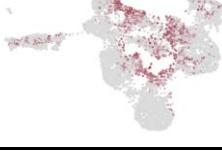
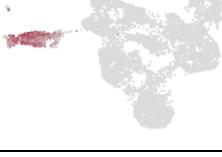
[10] Povlsen LK, Beli P, Wagner SA, Poulsen SL, Sylvestersen KB, Poulsen JW, Nielsen ML, Bekker-Jensen S, Mailand N, Choudhary C. Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass. *Nat Cell Biol*. 2012 Oct;14(10):1089-98. doi: 10.1038/ncb2579. Epub 2012 Sep 23. PMID: 23000965.

[11] Emanuele MJ, Ciccia A, Elia AE, Elledge SJ. Proliferating cell nuclear antigen (PCNA)-associated KIAA0101/PAF15 protein is a cell cycle-regulated anaphase-promoting complex/cyclosome substrate. *Proc Natl Acad Sci U S A*. 2011 Jun 14;108(24):9845-50. doi: 10.1073/pnas.1106136108. Epub 2011 May 31. PMID: 21628590; PMCID: PMC3116415.

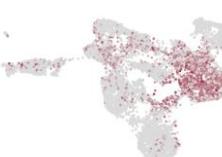
[12] Riley LG, Rudinger-Thirion J, Schmitz-Abe K, Thorburn DR, Davis RL, Teo J, Arbuckle S, Cooper ST, Campagna DR, Frugier M, Markianos K, Sue CM, Fleming MD, Christodoulou J. LARS2 Variants Associated with Hydrops, Lactic Acidosis, Sideroblastic Anemia, and Multisystem Failure. *JIMD Rep*. 2016;28:49-57. doi: 10.1007/8904_2015_515. Epub 2015 Nov 5. PMID: 26537577; PMCID: PMC5059179.

[13] Li XS, Trojer P, Matsumura T, Treisman JE, Tanese N. Mammalian SWI/SNF--a subunit BAF250/ARID1 is an E3 ubiquitin ligase that targets histone H2B. *Mol Cell Biol*. 2010 Apr;30(7):1673-88. doi: 10.1128/MCB.00540-09. Epub 2010 Jan 19. PMID: 20086098; PMCID: PMC2838063.


[14] Kunz F, Kayserili H, Midro A, de Silva D, Basnayake S, Güven Y, Borys J, Schanze D, Stellzig-Eisenhauer A, Bloch-Zupan A, Zenker M. Characteristic dental pattern with hypodontia and short roots in Fraser syndrome. *Am J Med Genet A*. 2020 Jul;182(7):1681-1689. doi: 10.1002/ajmg.a.61610. Epub 2020 Jun 2. PMID: 32488952.





[15] Kantaputra PN, Wangtiraumnuay N, Ngamphiw C, Olsen B, Intachai W, Tucker AS, Tongsimma S. Cryptophthalmos, dental anomalies, oral vestibule defect, and a novel FREM2 mutation. *J Hum Genet*. 2022 Feb;67(2):115-118. doi: 10.1038/s10038-021-00972-4. Epub 2021 Aug 19. PMID: 34408272.

[16] Jiang BZ, Yokohama-Tamaki T, Wang ZL, Obara N, Shibata S. Expression, localisation and synthesis of versican by the enamel organ of developing mouse molar tooth germ: an *in vivo* and *in vitro* study. *Arch Oral Biol*. 2010 Dec;55(12):995-1006. doi: 10.1016/j.archoralbio.2010.07.021. Epub 2010 Sep 1. PMID: 20813348.


[17] Mitsiadis TA, Lardelli M, Lendahl U, Thesleff I. Expression of Notch 1, 2 and 3 is regulated by epithelial-mesenchymal interactions and retinoic acid in the developing mouse tooth and associated with determination of ameloblast cell fate. *J Cell Biol*. 1995 Jul;130(2):407-18. doi: 10.1083/jcb.130.2.407. PMID: 7615640; PMCID: PMC2199945.

Supplemental Table 9 Markers of GFP dataset at E16.5 and E18.5

	Gene name	Map	Function/evidence	Reference
GFP dataset E16.5 and E18.5				
DENTAL EPITHELIUM	<i>Epcam</i>		a protein that is primarily expressed on the surface of epithelial cells. It plays an important role in various cellular processes such as cell adhesion, proliferation, differentiation, and migration.	Balzar et. al., 1999 [1]
	<i>Krt7</i>		a protein that is well-known to be situated in dental epithelium in both incisors and molars	Zhao et al., 2024 [2]
	<i>Dsp</i>		an extracellular matrix protein primarily observed in odontoblasts and dentin, but it is found to be located also in pre-ameloblasts. It is important for regulation of mineralization or matrix formation.	Bronckers et al., 1993 [3]
SURROUNDING DENTAL FOLLICLE	<i>Ptch1</i>		a receptor of the HH signalling pathway, which is important in embryonic development; it is expressed in mice dental mesenchyme at E14.5	Cobourne et al., 2009 [4]
	<i>Car2</i>		an enzyme, which catalyzes reversible hydration of carbon dioxide. It is expressed in both mesenchyme and epithelium during tooth development.	Reibring et al., 2014 [5] Wang et al., 2022 [6]
	<i>Tnmd</i>		a cartilage-specific glycoprotein, which acts on the maturation and maintenance of the periodontal ligaments by regulating cell adhesion	Komiyama et al., 2013 [7]

OUTLYING DENTAL FOLLICLE	<i>Npnt</i>		an extracellular matrix protein localizes in a basal lamina. During tooth development it is expressed in the basal lamina on the buccal side of the tooth germ.	Arai et al., 2017 [8]
	<i>Gas6</i>		a member of the vitamin K-dependent protein family, which is described to be expressed in the outer layers of the oral epithelium during odontogenesis.	Nassar et al., 2017 [9]
	<i>Mgp</i>		an extracellular matrix protein that plays a role as a negative regulator for mineral apposition in the tooth, specifically in the dental cementum.	Hashimoto et al., 2001 [10]
PROLIFERATING CELLS	<i>Mki67</i>		a protein associated with cellular proliferation	Gerdes et al., 1983 [11]
	<i>Top2a</i>		an important enzyme that plays a role in the controlling of DNA structure during replication, transcription or chromosome segregation.	Downes et al., 1994 [12]
	<i>Pclaf</i>		a nucleoprotein involved in DNA replication and repair processes	Yu et al., 2001 [13]

LABIAL MESENCHYME	<i>Sostdc1</i>		a protein, which is studied in the context of tooth development, kidney disease, hair follicle formation and ect. It is described as a BMP and Wnt antagonist and it influences the behaviour of mesenchymal stem cells in response to bone injury.	Collette et al., 2016 [14]
	<i>Tcea3</i>		a transcription elongation factor, which controls self-renewal and/or pluripotent differentiation potential of mice embryonic stem cells	Park et al., 2013 [15]
	<i>Tfap2b</i>		a transcription factor known to regulate neural crest and melanocyte development in the mouse. It is required for melanocyte regeneration from Mesenchymal Stem Cells, providing a functional role in stem cell potential.	Brombin et al., 2022 [16]
UNSPECIFIED ORAL FIBROBLASTS	<i>Sp9</i>		a transcription factor studied in the context of bone development. Its paralog is SP8, which influences craniofacial malformations and proliferation of neural crest cells	Kasberg et al., 2013 [17]
	<i>Tbx18</i>		a transcription factor, which plays a role in embryonic developmental processes such as a regulation development of the epicardium, craniofacial area or angiogenesis	Wu et al., 2013 [18] Sun et al., 2023 [19]
	<i>St8sia2</i>		an enzyme synthesizes polysialic acid, which is essential for brain development	Ikegami et al., 2019 [20]
CILP+ CELLS	<i>Cilp</i>		a matrix glycoprotein that is primarily found in the cartilage, where it plays an important role in regulating the metabolism of the extracellular matrix, specifically in an invertebral disc	Liu et al., 2021 [21]
	<i>Scx</i>		a transcription activator that plays an important role in a growth of tendons after mechanical loading by production of extracellular matrix components and the commitment and the expansion of new tenocytes	Gumucio et al., 2020 [22]
	<i>Prg4</i>		a large proteoglycan that is synthesized by chondrocytes. It is needed to prevent protein deposition onto cartilage from synovial fluid, the protection of joints and tendons surfaces, and the control of synovial cell growth	Rhee et al., 2005 [23]

SIM2+ CELLS	<i>Sim2</i>		a transcription factor, which is an important regulator of neurogenesis. It was described as an important player in limb muscle formation.	Coumailleau and Duprez, 2009 [24]
	<i>Foxd1</i>		a transcription factor, which is selectively expressed in neuroepithelial cells of the prethalamus and hypothalamus	Newman et al., 2018 [25]
	<i>Scn3a</i>		a voltage-gated sodium channel important for cortical organization and neuronal migration, especially in speech and language areas	Smith et al., 2018 [26]
LATE PRE-OSTEOBLASTS	<i>Tnxb</i>		an extracellular matrix glycoprotein, The deficiency of this protein causes bone resorption and significant bone loss	Kajitani et al., 2019 [27]
	<i>Ccn3</i>		a small secreted cysteine-rich protein, which is associated with the extracellular matrix protein. It inhibits osteoblast differentiation and plays a role in bone regeneration.	Matsushita et al., 2013 [28]
	<i>Fst</i>		a glycoprotein, which was reported to inhibit bone formation and enhances crucial processes needed for bone repair	Fahmy-Garcia et al., 2019 [29]
EARLY PRE-OSTEOBLASTS	<i>Bmp7</i>		a member of the TGFb superfamily, which plays role in the formation and repair of endochondral bone.	Salazar et al., 2016 [30]
	<i>Hand2</i>		a protein that is implicated in the development of the neural crest, and involved in craniofacial development. It plays role in regulation of osteoblast differentiation in branchial arch development.	Funato et al., 2009 [31]
	<i>Thy1</i>		a cell surface glycoprotein, which plays role as a positive regulator of osteoblast differentiation and modulates bone homeostasis.	Paine et al., 2018 [32]

NEFL+ CELLS	<i>Nefl</i>		a neurofilament protein important for intracellular transport to axons and dendrites. It plays a role in the maturation of regenerating myelinated axons.	Zhu et al., 1997 [33]
	<i>Gfra1</i>		a member of the glial cell line-derived neurotrophic factor receptor, which promotes dendritic growth in hippocampal neurons and it is essential for proper hippocampal circuit development	Irala et al., 2016 [34]
	<i>Nefm</i>		a neurofilament protein, which is specifically expressed in large myelinated axons and is important for normal axonal function and remyelination.	Zhang et al., 2023 [35]

[1] Balzar, M., Winter, M., de Boer, C. et al. The biology of the 17-1A antigen (Ep-CAM). *J Mol Med* 77, 699–712 (1999). <https://doi.org/10.1007/s001099900038>

[2] Zhao Y, Chen S, Liu X, Chen X, Yang D, Zhang J, Wu D, Zhang Y, Xie S, Li X, Wang Z, Feng B, Qin D, Pei D, Wang Y, Cai J. Single-cell RNA-seq of in vitro expanded cells from cranial neural crest reveals a rare odontogenic sub-population. *Cell Prolif.* 2024 Jun;57(6):e13598. doi: 10.1111/cpr.13598. Epub 2024 Jan 9. PMID: 38196265; PMCID: PMC1150137.

[3] Bronckers AL, D'Souza RN, Butler WT, Lyaruu DM, van Dijk S, Gay S, Wöltgens JH. Dentin sialoprotein: biosynthesis and developmental appearance in rat tooth germs in comparison with amelogenins, osteocalcin and collagen type-I. *Cell Tissue Res.* 1993 May;272(2):237–47. doi: 10.1007/BF00302729. PMID: 8513478.

[4] Cobourne MT, Xavier GM, Depew M, Hagan L, Sealby J, Webster Z, Sharpe PT. Sonic hedgehog signalling inhibits palatogenesis and arrests tooth development in a mouse model of the nevoid basal cell carcinoma syndrome. *Dev Biol.* 2009 Jul 1;331(1):38–49. doi: 10.1016/j.ydbio.2009.04.021. Epub 2009 Apr 24.

[5] Reibring CG, El Shahawy M, Hallberg K, Kannius-Janson M, Nilsson J, Parkkila S, Sly WS, Waheed A, Linde A, Gritli-Linde A. Expression patterns and subcellular localization of carbonic anhydrases are developmentally regulated during tooth formation. *PLoS One.* 2014 May 1;9(5):e96007. doi: 10.1371/journal.pone.0096007. PMID: 24789143; PMCID: PMC4006843.

[6] Wang Y, Zhao Y, Chen S, Chen X, Zhang Y, Chen H, Liao Y, Zhang J, Wu D, Chu H, Huang H, Wu C, Huang S, Xu H, Jia B, Liu J, Feng B, Li Z, Qin D, Pei D, Cai J. Single cell atlas of developing mouse dental germs reveals populations of CD24+ and Plac8+ odontogenic cells. *Sci Bull (Beijing).* 2022 Jun 15;67(11):1154–1169. doi: 10.1016/j.scib.2022.03.012. Epub 2022 Mar 18. PMID: 36545982.

[7] Komiyama Y, Ohba S, Shimohata N, Nakajima K, Hojo H, Yano F, Takato T, Docheva D, Shukunami C, Hiraki Y, Chung UI. Tenomodulin expression in the periodontal ligament enhances cellular adhesion. *PLoS One.* 2013 Apr 10;8(4):e60203. doi: 10.1371/journal.pone.0060203. PMID: 23593173; PMCID: PMC3622668.

[8] Arai C, Yoshizaki K, Miyazaki K, Saito K, Yamada A, Han X, Funada K, Fukumoto E, Haruyama N, Iwamoto T, Takahashi I, Fukumoto S. Nephronectin plays critical roles in Sox2 expression and proliferation in dental epithelial stem cells via EGF-like repeat domains. *Sci Rep.* 2017 Mar 27;7:45181. doi: 10.1038/srep45181. PMID: 28345658; PMCID: PMC5366923.

[9] Nassar M, Tabib Y, Capucha T, Mizraji G, Nir T, Pevsner-Fischer M, Zilberman-Schapira G, Heyman O, Nussbaum G, Bercovier H, Wilensky A, Elinav E, Burstyn-Cohen T, Hovav AH. GAS6 is a key homeostatic immunological regulator of host-commensal interactions in the oral mucosa. *Proc Natl Acad Sci U S A.* 2017 Jan 17;114(3):E337–E346. doi: 10.1073/pnas.1614926114. Epub 2017 Jan 3. PMID: 28049839; PMCID: PMC5255577. [10] Hashimoto F, Kobayashi Y, Kobayashi ET, Sakai E, Kobayashi K, Shibata M, Kato Y, Sakai H. Expression and localization of MGP in rat tooth cementum. *Arch Oral Biol.* 2001 Jul;46(7):585–92. doi: 10.1016/s0003-9969(01)00022-x. PMID: 11369313.

[11] Gerdes J, Schwab U, Lemke H, Stein H. Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. *Int J Cancer.* 1983 Jan 15;31(1):13–20. doi: 10.1002/ijc.2910310104. PMID: 6339421.

[12] Downes CS, Clarke DJ, Mullinger AM, Giménez-Abián JF, Creighton AM, Johnson RT. A topoisomerase II-dependent G2 cycle checkpoint in mammalian cells. *Nature.* 1994 Dec 1;372(6505):467–70. doi: 10.1038/372467a0. Erratum in: *Nature* 1994 Dec 15;372(6505):467–70. PMID: 7527313.

[13] Yu P, Huang B, Shen M, Lau C, Chan E, Michel J, Xiong Y, Payan DG, Luo Y. p15(PAF), a novel PCNA associated factor with increased expression in tumor tissues. *Oncogene.* 2001 Jan 25;20(4):484–9. doi: 10.1038/sj.onc.1204113. PMID: 11313979.

[14] Collette NM, Yee CS, Hum NR, Murugesh DK, Christiansen BA, Xie L, Economides AN, Manilay JO, Robling AG, Loots GG. Sostdc1 deficiency accelerates fracture healing by promoting the expansion of periosteal mesenchymal stem cells. *Bone.* 2016 Jul;88:20–30. doi: 10.1016/j.bone.2016.04.005. Epub 2016 Apr 19. PMID: 27102547; PMCID: PMC6277141.

[15] Park KS, Cha Y, Kim CH, Ahn HJ, Kim D, Ko S, Kim KH, Chang MY, Ko JH, Noh YS, Han YM, Kim J, Song J, Kim JY, Tesar PJ, Lanza R, Lee KA, Kim KS. Transcription elongation factor Tceac3 regulates the pluripotent differentiation potential of mouse embryonic stem cells via the Lefty1-Nodal-Smad2 pathway. *Stem Cells.* 2013 Feb;31(2):282–92. doi: 10.1002/stem.1284.

[16] Brombin A, Simpson DJ, Travnickova J, Brunsdon H, Zeng Z, Lu Y, Young AJ, Chandra T, Patton EE. Tfap2b specifies an embryonic melanocyte stem cell that retains adult multifate potential. *Cell Rep.* 2022 Jan 11;38(2):110234. doi: 10.1016/j.celrep.2021.110234. PMID: 35021087; PMCID: PMC8764619.

[17] Kasberg AD, Brunskill EW, Steven Potter S. SP8 regulates signaling centers during craniofacial development. *Dev Biol.* 2013 Sep 15;381(2):312-23. doi: 10.1016/j.ydbio.2013.07.007. Epub 2013 Jul 18. PMID: 23872235; PMCID: PMC4078980.

[18] Wu SP, Dong XR, Regan JN, Su C, Majesky MW. Tbx18 regulates development of the epicardium and coronary vessels. *Dev Biol.* 2013 Nov 15;383(2):307-20. doi: 10.1016/j.ydbio.2013.08.019. Epub 2013 Sep 7. PMID: 24016759; PMCID: PMC4172450.

[19] Sun J, Lin Y, Ha N, Zhang J, Wang W, Wang X, Bian Q. Single-cell RNA-Seq reveals transcriptional regulatory networks directing the development of mouse maxillary prominence. *J Genet Genomics.* 2023 Sep;50(9):676-687. doi: 10.1016/j.jgg.2023.02.008. Epub 2023 Feb 24. PMID: 36841529.

[20] Ikegami K, Saigoh K, Fujioka A, Nagano M, Kitajima K, Sato C, Masubuchi S, Kusunoki S, Shigeyoshi Y. Effect of expression alteration in flanking genes on phenotypes of St8sia2-deficient mice. *Sci Rep.* 2019 Sep 20;9(1):13634. doi: 10.1038/s41598-019-50006-5. PMID: 31541165; PMCID: PMC6754417.

[21] Liu L, He J, Liu C, Yang M, Fu J, Yi J, Ai X, Liu M, Zhuang Y, Zhang Y, Huang B, Li C, Zhou Y, Feng C. Cartilage intermediate layer protein affects the progression of intervertebral disc degeneration by regulating the extracellular microenvironment (Review). *Int J Mol Med.* 2021 Feb;47(2):475-484. doi: 10.3892/ijmm.2020.4832. Epub 2020 Dec 24. PMID: 33416131; PMCID: PMC7797476.

[22] Gumucio JP, Schonk MM, Kharaz YA, Comerford E, Mendias CL. Scleraxis is required for the growth of adult tendons in response to mechanical loading. *JCI Insight.* 2020 Jul 9;5(13):e138295. doi: 10.1172/jci.insight.138295. PMID: 32463804; PMCID: PMC7406294.

[23] Rhee DK, Marcelino J, Baker M, Gong Y, Smits P, Lefebvre V, Jay GD, Stewart M, Wang H, Warman ML, Carpten JD. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. *J Clin Invest.* 2005 Mar;115(3):622-31. doi: 10.1172/JCI22263. PMID: 15719068; PMCID: PMC548698.

[24] Coumillaud P, Duprez D. Sim1 and Sim2 expression during chick and mouse limb development. *Int J Dev Biol.* 2009;53(1):149-57. doi: 10.1387/ijdb.082659pc. PMID: 19123137.

[25] Newman EA, Kim DW, Wan J, Wang J, Qian J, Blackshaw S. Foxd1 is required for terminal differentiation of anterior hypothalamic neuronal subtypes. *Dev Biol.* 2018 Jul 15;439(2):102-111. doi: 10.1016/j.ydbio.2018.04.012. Epub 2018 Apr 19. PMID: 29679559; PMCID: PMC5964039.

[26] Smith RS, Kenny CJ, Ganesh V, Jang A, Borges-Monroy R, Partlow JN, Hill RS, Shin T, Chen AY, Doan RN, Anttonen AK, Ignatius J, Medne L, Bönnemann CG, Hecht JL, Salonen O, Barkovich AJ, Poduri A, Wilke M, de Wit MCY, Mancini GMS, Sztriha L, Im K, Amrom D, Andermann E, Paetau R, Lehesjoki AE, Walsh CA, Lehtinen MK. Sodium Channel SCN3A (NaV1.3) Regulation of Human Cerebral Cortical Folding and Oral Motor Development. *Neuron.* 2018 Sep 5;99(5):905-913.e7. doi: 10.1016/j.neuron.2018.07.052. Epub 2018 Aug 23. PMID: 30146301; PMCID: PMC6226006.

[27] Kajitani N, Yamada T, Kawakami K, Matsumoto KI. TNX deficiency results in bone loss due to an increase in multinucleated osteoclasts. *Biochem Biophys Res Commun.* 2019 May 14;512(4):659-664. doi: 10.1016/j.bbrc.2019.03.134. Epub 2019 Mar 25. PMID: 30922562.

[28] Matsushita Y, Sakamoto K, Tamamura Y, Shibata Y, Minamizato T, Kihara T, Ito M, Katsume K, Hiraoka S, Koseki H, Harada K, Yamaguchi A. CCN3 protein participates in bone regeneration as an inhibitory factor. *J Biol Chem.* 2013 Jul 5;288(27):19973-85. doi: 10.1074/jbc.M113.454652. Epub 2013 May 7. PMID: 23653360; PMCID: PMC3707697.

[29] Fahmy-Garcia S, Farrell E, Witte-Bouma J, Robbesom-van den Berghe I, Suarez M, Mumcuoglu D, Walles H, Kluijtmans SGJM, van der Eerden BCJ, van Osch GJVM, van Leeuwen JPTM, van Driel M. Follistatin Effects in Migration, Vascularization, and Osteogenesis in vitro and Bone Repair in vivo. *Front Bioeng Biotechnol.* 2019 Mar 1;7:38. doi: 10.3389/fbioe.2019.00038. PMID: 30881954; PMCID: PMC6405513.

[30] Salazar VS, Gamer LW, Rosen V. BMP signalling in skeletal development, disease and repair. *Nat Rev Endocrinol.* 2016 Apr;12(4):203-21. doi: 10.1038/nrendo.2016.12. Epub 2016 Feb 19. PMID: 26893264.

[31] Funato N, Chapman SL, McKee MD, Funato H, Morris JA, Shelton JM, Richardson JA, Yanagisawa H. Hand2 controls osteoblast differentiation in the branchial arch by inhibiting DNA binding of Runx2. *Development.* 2009 Feb;136(4):615-25. doi: 10.1242/dev.029355. Epub 2009 Jan 14. PMID: 19144722.

[32] Paine A, Woeller CF, Zhang H, de la Luz Garcia-Hernandez M, Huertas N, Xing L, Phipps RP, Ritchlin CT. Thy1 is a positive regulator of osteoblast differentiation and modulates bone homeostasis in obese mice. *FASEB J.* 2018 Jun;32(6):3174-3183. doi: 10.1096/fj.201701379R. Epub 2018 Jan 17. PMID: 29401595; PMCID: PMC5956243.

[33] Zhu Q, Couillard-Després S, Julien JP. Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments. *Exp Neurol.* 1997 Nov;148(1):299-316. doi: 10.1006/exnr.1997.6654. PMID: 9398473.

[34] Irala D, Bonafina A, Fontanet PA, Alsina FC, Paratcha G, Ledda F. The GDNF-GFR α 1 complex promotes the development of hippocampal dendritic arbor and spines via NCAM. *Development.* 2016 Nov 15;143(22):4224-4235. doi: 10.1242/dev.140350. Epub 2016 Oct 5. PMID: 27707798.

[35] Zhang C, Ye W, Zhao M, Long L, Xia D, Fan Z. KDM6B Negatively Regulates the Neurogenesis Potential of Apical Papilla Stem Cells via HES1. *Int J Mol Sci.* 2023 Jun 25;24(13):10608. doi: 10.3390/ijms241310608. PMID: 37445785; PMCID: PMC10341966.

Supplemental Table 10 Genes expressed in the epithelium of LGR5-positive cells

	Gene name	Map	Function/evidence	Reference
Epithelial Lgr5-positive cells from E16.5 and E18.5 scRNAseq				
TYPICAL COMPONENT OF EPITHELIAL CELLS	<i>Krt15</i>		Keratin 15, as other keratins it is responsible for the structural integrity of epithelial cells.	Leube et al., 1988 [1]
	<i>Dapl1</i>		Death Associated Protein Like 1, early epithelial differentiation-associated protein.	Ma et al., 2017 [2]
	<i>Asprv1</i>		Filaggrin is a structural protein that is crucial for the development and maintenance of the skin.	Hildenbrand et al., 2010 [3]
DESMOSOME-DEPENDENT ADHESION	<i>Pkp3</i>		Plakophilin 3, contains numerous armadillo repeats, localizes to cell desmosomes and nuclei, and participates in linking cadherins to intermediate filaments in the cytoskeleton	Schmidt et al., 1999 [4]
	<i>Dsp</i>		Desmoplakin, a component of functional desmosomes	Jones et al., 1986 [5]
	<i>Rab25</i>		a protein that maintains integrin alpha-V/beta-1 at the tips of extending pseudopodia	Caswell et al., 2007 [6]
	<i>Klc3</i>		Kinesin Light Chain 3, molecular motors involved in the transport of cargo along microtubules	Junco et al., 2001 [7]
	<i>Cdh1</i>		Cadherin 1, calcium-dependent cell-cell adhesion protein	Vestweber et al., 1987 [8]

ACTIN-ASSOCIATED GENES	<i>Fermt1</i>		FERM Domain Containing Kindlin 1, involved in integrin signaling and linkage of the actin cytoskeleton to the ECM, required for normal keratinocyte proliferation	Siegel et al., 2003 [9]
	<i>Tacstd2</i>		<i>Trop2</i> , cell surface receptor that transduces calcium signals	Smith et al., 2024 [10]
	<i>S100A14</i>		S100 Calcium Binding Protein A14, which contains an EF-hand motif and binds calcium	Pietas et al., 2002 [11]
	<i>Fxyd3</i>		FXYD Domain Containing Ion Transport Regulator 3, a membrane protein that regulates the function of ion-pumps an ion-channels and the activity of the sodium/potassium-transporting ATPase	Crambert et al., 2003 [12]
ION CHANNELS	<i>Sox2</i>		a transcription factor which is involved in a determination of cell fate	Ellis et al., 2004 [13]
	<i>Sox6</i>		a transcription factor, which plays an important role in cell proliferation, differentiation and cell fate determination. It's not a typical stem cells marker, but it is implicated in the regulation of certain types of stem and progenitor cells such as adipose and neural tissues or skin.	Du et al., 2023 [14]
	<i>Pitx2</i>		Paired Like-Homeodomain 2, a transcription factor, which is not a typical stem cell marker, but it regulates progenitor oral/dental epithelial cells together with SOX2. Moreover, it plays a role in a regulation of muscle stem cells during muscle regeneration.	Yu et al., 2020 [15] L'honoré et al., 2018 [16]
STEM CELLS MARKERS	<i>Sfn</i>		Stratifin, encodes a cell cycle checkpoint protein, a regulator of mitotic translation, plays a role in preventing DNA errors during mitosis, it regulates protein synthesis and epithelial cell growth by stimulating Akt/mTOR pathway	Bridges and Moorhead, 2005 [17]
	<i>Serpinb5</i>		Maspin, plays a role in regulation of epithelial cell proliferation and extracellular matrix organization	Zoe et al., 1994 [18]
CELL CYCLE REGULATORS				

BASAL MEMBRANE	<i>Lama5</i>		an extracellular matrix glycoproteins, major non-collagenous constituents of basement membranes	Hohenester and Yurchenco, 2013 [19]
	<i>Lamb3</i>			
	<i>Lamc2</i>			
	<i>Col17a1</i>		a structural component of hemidesmosomes, multiprotein complexes at the dermal-epidermal basement membrane zone, that mediate adhesion of keratinocytes to the underlying membrane were is also expressed.	Franzke et al., 2003 [20]
REGULATORS OF OTHER SIGNALING PATHWAYS	<i>Esrp1</i>		Epithelial Splicing Regulatory Protein 1, specifically regulates the expression of FGFR2-IIIb, an epithelial cell-specific isoform of FGFR2	Warzecha et al., 2009 [21]
	<i>Spint2</i>		a transmembrane protein that inhibits a HGF activator, which prevents the formation of active hepatocyte growth factor, it inhibits serine protease activity of ST14/matriptase	Qin et al., 1998 [22]
	<i>Jag2</i>		a member of the Notch gene family	Shawber et al., 1996 [23]

[1] Leube RE, Bader BL, Bosch FX, Zimbelmann R, Achtstaetter T, Franke WW. Molecular characterization and expression of the stratification-related cytokeratins 4 and 15. *J Cell Biol.* 1988 Apr;106(4):1249-61. doi: 10.1083/jcb.106.4.1249. PMID: 2452170; PMCID: PMC2114990.

[2] Ma X, Li H, Wang Y, Wang J, Zheng Q, Hua J, Yang J, Pan L, Lu F, Qu J, Hou L. DAPL1, a susceptibility locus for age-related macular degeneration, acts as a novel suppressor of cell proliferation in the retinal pigment epithelium. *Hum Mol Genet.* 2017 May 1;26(9):1612-1621. doi: 10.1093/hmg/ddx063. PMID: 28334846.

[3] Hildenbrand M, Rhiemeier V, Hartenstein B, Lahrmann B, Grabe N, Angel P, Hess J. Impaired skin regeneration and remodeling after cutaneous injury and chemically induced hyperplasia in *tags*-transgenic mice. *J Invest Dermatol.* 2010 Jul;130(7):1922-30. doi: 10.1038/jid.2010.54. Epub 2010 Mar 18. PMID: 20237492.

[4] Schmidt A, Langbein L, Prätzel S, Rode M, Rackwitz HR, Franke WW. Plakophilin 3--a novel cell-type-specific desmosomal plaque protein. *Differentiation.* 1999 Jun;64(5):291-306. doi: 10.1046/j.1432-0436.1999.6450291.x. PMID: 10374265.

[5] Jones JC, Yokoo KM, Goldman RD. A cell surface desmosome-associated component: identification of tissue-specific cell adhesion molecule. *Proc Natl Acad Sci U S A.* 1986 Oct;83(19):7282-6. doi: 10.1073/pnas.83.19.7282. PMID: 3532108; PMCID: PMC386700.

[6] Caswell PT, Spence HJ, Parsons M, White DP, Clark K, Cheng KW, Mills GB, Humphries MJ, Messent AJ, Anderson KI, McCaffrey MW, Ozanne BW, Norman JC. Rab25 associates with alpha5beta1 integrin to promote invasive migration in 3D microenvironments. *Dev Cell.* 2007 Oct;13(4):496-510. doi: 10.1016/j.devcel.2007.08.012. PMID: 17925226.

[7] Junco A, Bhullar B, Tarnasky HA, van der Hoorn FA. Kinesin light-chain KLC3 expression in testis is restricted to spermatids. *Biol Reprod.* 2001 May;64(5):1320-30. doi: 10.1095/biolreprod64.5.1320. PMID: 11319135; PMCID: PMC3161965.

[8] Vestweber D, Gossler A, Boller K, Kemler R. Expression and distribution of cell adhesion molecule uvomorulin in mouse preimplantation embryos. *Dev Biol.* 1987 Dec;124(2):451-6. doi: 10.1016/0012-1606(87)90498-2. PMID: 3315781.

[9] Siegel DH, Ashton GH, Penagos HG, Lee JV, Feiler HS, Wilhelmsen KC, South AP, Smith FJ, Prescott AR, Wessagowitz V, Oyama N, Akiyama M, Al Abdou D, Al Abdou K, Al Githami A, Al Hawsawi K, Al Ismaily A, Al-Suwaid R, Atherton DJ, Caputo R, Fine JD, Frieden IJ, Fuchs E, Haber RM, Harada T, Kitajima Y, Mallory SB, Ogawa H, Sahin S, Shimizu H, Suga Y, Tadini G, Tsuchiya K, Wiebe CB, Wojnarowska F, Zaghloul AB, Hamada T, Mallipeddi R, Eady RA, McLean WH, McGrath JA, Epstein EH. Loss of kindlin-1, a human homolog of the *Caenorhabditis elegans* actin-extracellular-matrix linker protein UNC-112, causes Kindler syndrome. *Am J Hum Genet.* 2003 Jul;73(1):174-87. doi: 10.1086/376609. Epub 2003 Jun 3. PMID: 12789646; PMCID: PMC1180579.

[10] Smith AO, Frantz WT, Preval KM, Edwards YJK, Ceol CJ, Jonassen JA, Pazour GJ. The Tumor-Associated Calcium Signal Transducer 2 (TACSTD2) oncogene is upregulated in cystic epithelial cells revealing a potential new target for polycystic kidney disease. *PLoS Genet.* 2024 Dec 12;20(12):e1011510. doi: 10.1371/journal.pgen.1011510. PMID: 39666736; PMCID: PMC11670935.

[11] Pietas A, Schlüns K, Marenholz I, Schäfer BW, Heizmann CW, Petersen I. Molecular cloning and characterization of the human S100A14 gene encoding a novel member of the S100 family. *Genomics.* 2002 Apr;79(4):513-22. doi: 10.1006/geno.2002.6744. PMID: 11944983.

[12] Crambert G, Geering K. FXYD proteins: new tissue-specific regulators of the ubiquitous Na,K-ATPase. *Sci STKE.* 2003 Jan 21;2003(166):RE1. doi: 10.1126/stke.2003.166.re1. PMID: 12538882.

[13] Ellis P, Fagan BM, Magness ST, Hutton S, Taranova O, Hayashi S, McMahon A, Rao M, Pevny L. SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. *Dev Neurosci.* 2004.

[14] Du SY, Hu L, Zhou BH, Zhang Z, Li MC, Chang D, Xu CJ, Dou X. Sox6 impairs the adipogenic commitment of mesenchymal stem cells by targeting lysyl oxidase and preadipocyte factor 1. *Biochem Biophys Res Commun.* 2023 Nov 12;681:225-231. doi: 10.1016/j.bbrc.2023.09.084. Epub 2023 Sep 27. PMID: 37783121.

[15] Yu W, Sun Z, Sweat Y, Sweat M, Venugopalan SR, Eliason S, Cao H, Paine ML, Amendt BA. Pitx2-Sox2-Lef1 interactions specify progenitor oral/dental epithelial cell signaling centers. *Development.* 2020 Jun 4;147(11):dev186023. doi: 10.1242/dev.186023. PMID: 32439755; PMCID: PMC7286298.

[16] L'honoré A, Commère PH, Negroni E, Pallafacchina G, Friguet B, Drouin J, Buckingham M, Montarras D. The role of Pitx2 and Pitx3 in muscle stem cells gives new insights into P38 α MAP kinase and redox regulation of muscle regeneration. *Elife.* 2018 Aug 14;7:e32991. doi: 10.7554/elife.32991. PMID: 30106373; PMCID: PMC6191287.

[17] Bridges D, Moorhead GB. 14-3-3 proteins: a number of functions for a numbered protein. *Sci STKE.* 2005 Aug 9;2005(296):re10. doi: 10.1126/stke.2962005re10. PMID: 16091624.

[18] Zou Z, Anisowicz A, Hendrix MJ, Thor A, Neveu M, Sheng S, Rafidi K, Seftor E, Sager R. Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. *Science.* 1994 Jan 28;263(5146):526-9. doi: 10.1126/science.8290962. PMID: 8290962.

[19] Hohenester E, Yurchenco PD. Laminins in basement membrane assembly. *Cell Adh Migr.* 2013 Jan-Feb;7(1):56-63. doi: 10.4161/cam.21831. Epub 2012 Oct 17. PMID: 23076216; PMCID: PMC3544787.

[20] Franzke CW, Tasanen K, Schumann H, Bruckner-Tuderman L. Collagenous transmembrane proteins: collagen XVII as a prototype. *Matrix Biol.* 2003 Jun;22(4):299-309. doi: 10.1016/s0945-053x(03)00051-9. PMID: 12935815.

[21] Warzecha CC, Sato TK, Nabet B, Hogenesch JB, Carstens RP. ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. *Mol Cell.* 2009 Mar 13;33(5):591-601. doi: 10.1016/j.molcel.2009.01.025. PMID: 19285943; PMCID: PMC2702247.

[22] Qin L, Denda K, Shimomura T, Kawaguchi T, Kitamura N. Functional characterization of Kunitz domains in hepatocyte growth factor activator inhibitor type 2. *FEBS Lett.* 1998 Sep 25;436(1):111-4. doi: 10.1016/s0014-5793(98)01105-3. PMID: 9771903.

[23] Shawber C, Boulter J, Lindsell CE, Weinmaster G. Jagged2: a serrate-like gene expressed during rat embryogenesis. *Dev Biol.* 1996 Nov 25;180(1):370-6. doi: 10.1006/dbio.1996.0310. PMID: 8948600.

List of additional supplementary material:

Supplementary material 1 Top 150 markers of the main clusters
Supplementary material 2 Top 150 markers of the mesenchymal clusters
Supplementary material 3 Top 150 markers of the dental papilla clusters
Supplementary material 4 Top 150 markers of the dental epithelium clusters
Supplementary material 5 Top 30 markers of the GFP dataset