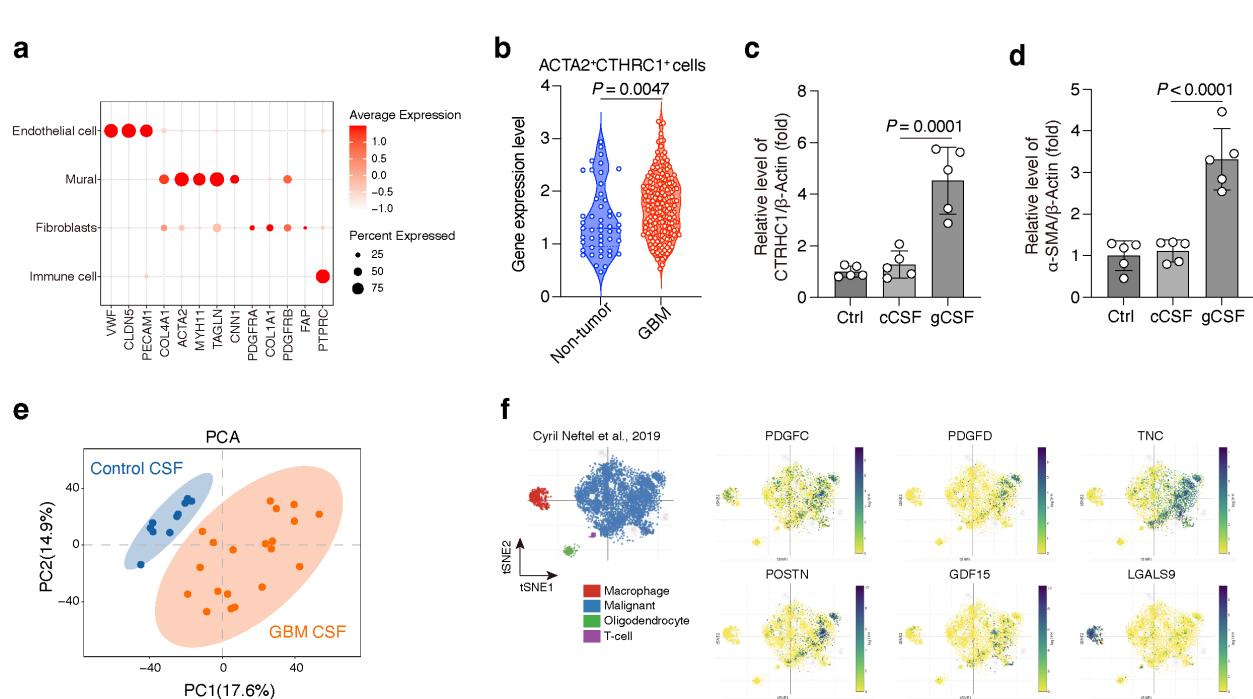


Extended Data Fig. 1 | Dynamics of cerebrospinal fluid in GBM-bearing mice.

a, Schematic of tumor resection in the orthotopic GBM tumor-bearing mouse model under microscopy.

b, Schematic of lateral ventricle catheter implantation and tracer (FITC-dextran, 3 kDa) injection methodology, with tracer administration and monitoring performed in awake mice.

c, Dynamic fluorescence signal changes of CSF tracers in the cortical region for Sham, GBM, and GBM-removal groups (n = 3 mice per group). Figure created with BioRender.com.


d-e, Age and sex distribution of non-tumor controls (reference) and GBM patients included in phase-contrast MRI (PC-MRI) analysis.

f, Bar graphs showing lateral ventricle flow velocity changes in non-tumor control individuals (mean \pm s.d., n = 15), GBM patients (mean \pm s.d., n = 20), and postoperative GBM patients (mean \pm s.d., n = 6).

14 **g**, Left: Representative fluorescence images of deep cervical lymph nodes in Sham and GBM
15 tumor-bearing mouse models after CSF injection with the tracer Ovalbumin-AF647. Scale bar,
16 500 μ m. Right: Bar graphs showing the fluorescent coverage area of deep cervical lymph nodes
17 (mean \pm s.d., n = 8 mice per group).

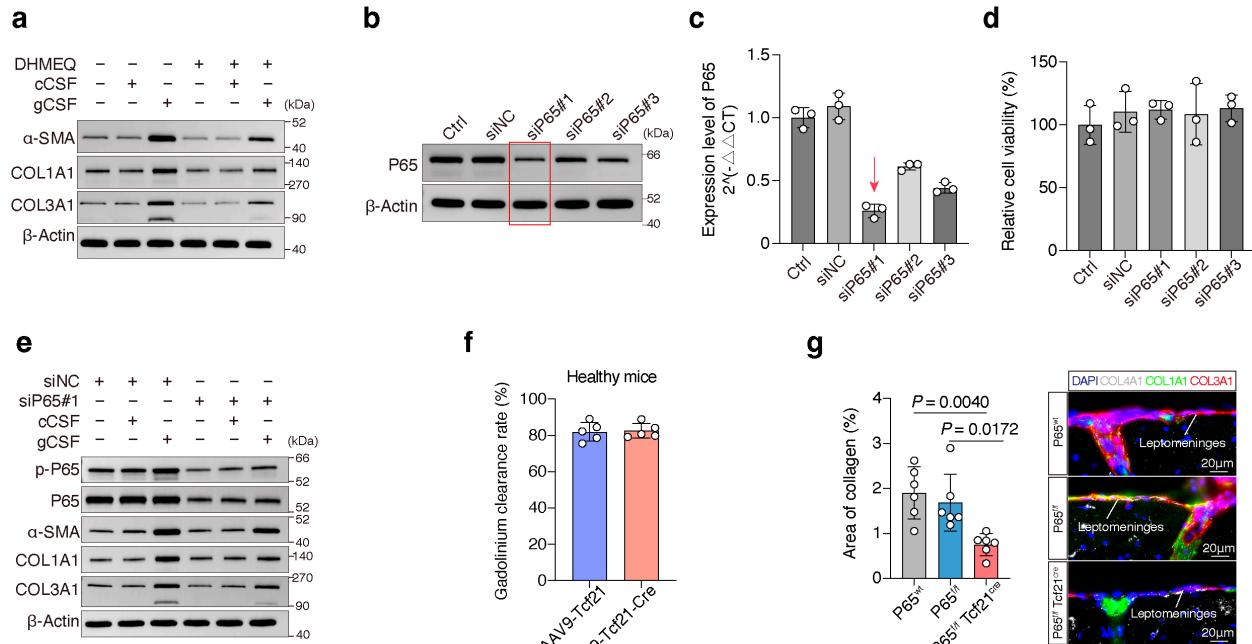
18 **h**, Fluorescence signal changes in venous blood samples within 60 minutes after CSF injection of
19 the tracer (Ovalbumin-AF647) in Sham and GBM tumor-bearing mouse models (n = 3 mice per
20 group).

21 **i**, Bar graphs showing the area of leptomeningeal I/III collagen fibers (COL1A1 $^+$ /COL3A1 $^+$) in
22 Sham (mean \pm s.d., n = 8 mice) and GBM tumor-bearing mouse models (mean \pm s.d., n = 18 mice).

25
26 **Extended Data Fig. 2 | CTHRC1 $^+$ α-SMA $^+$ leptomeningeal fibroblasts and GBM-CSF derived
27 secretory proteins.**

28 **a**, Annotation information for cell clusters in single-cell data from leptomeningeal tissues of non-
29 tumor controls (n = 3) and GBM patients (n = 3).

30 **b**, Features of CTHRC1 $^+$ α-SMA $^+$ pathological fibroblasts in leptomeningeal fibroblasts of non-
31 tumor control individuals and GBM patients. The y-axis represents the mean gene expression of
32 the target cell cluster (mean \pm s.d.). Each point in the violin plot represents a single CTHRC1 $^+$ α-
33 SMA $^+$ pathological fibroblast.


34 **c-d**, Protein level changes of CTHRC and α-SMA in HEbF cells treated with cerebrospinal fluid
35 from non-tumor control individuals (cCSF) or GBM patients (gCSF) (mean \pm s.d., n = 5 per group).

36 **e**, Principal component analysis (PCA) of proteomics data from CSF samples of GBM patients (n
37 = 20) and non-tumor control patients (n = 10).

38 **f**, t-SNE plot showing the expression of genes corresponding to differentially upregulated secretory
39 proteins in CSF samples of GBM patients vs. non-tumor controls in GBM tumor tissues.

40

41

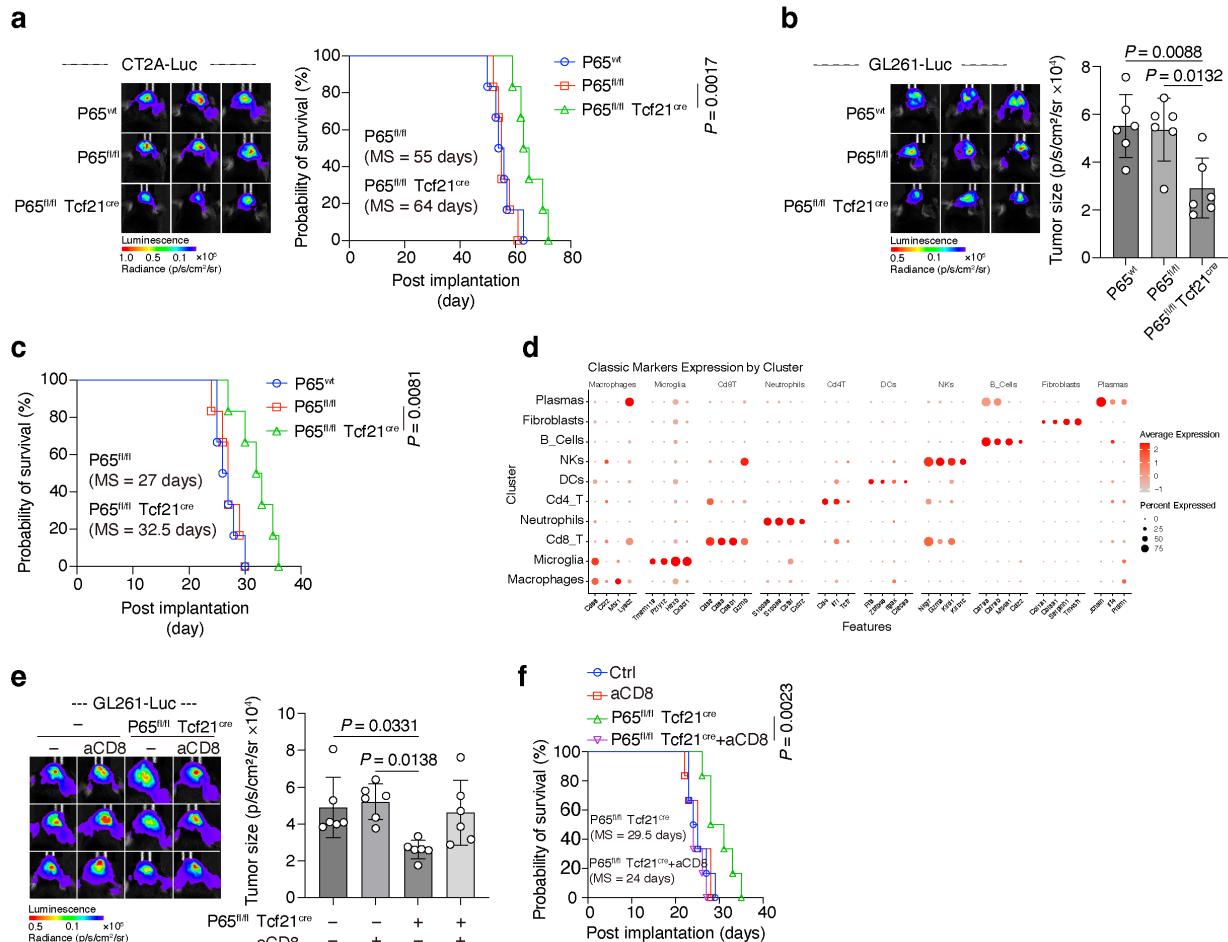
42 **Extended Data Fig. 3 | NF- κ B/P65 signaling in leptomeningeal fibroblasts regulates CSF
43 clearance and collagen deposition.**

45 **a**, Protein expression levels of α -SMA, COL1A1, and COL3A1 in hPLMFs treated with cCSF or
46 gCSF following DHMEQ (a selective P65 inhibitor) intervention.

47 **b-c**, Protein expression and RNA levels of P65 in hPLMFs after siRNA transfection (mean \pm s.d.,
48 n = 3 per group).

49 **d**, Cell viability of hPLMFs after siP65 transfection (mean \pm s.d., n = 3 per group).

50 **e**, Protein expression levels of phosphorylated P65, total P65, α -SMA, COL1A1, and COL3A1 in
51 hPLMFs treated with cCSF or gCSF after P65 gene silencing via siRNA.


52 **f**, Bar graphs showing the impact of P65 knockout in leptomeningeal fibroblasts on gadobutrol
53 clearance rate in healthy mouse CSF (mean \pm s.d., n = 5 per group).

54 **g**, Left: Bar graphs showing the area of I/III collagen fibers in the leptomeninges of GBM tumor-
55 bearing mice in the P65^{wt}, P65^{ff}, and P65^{ff}-Tcf21^{Cre} groups (mean \pm s.d., n = 6 per group). Right:

56 Representative images of I/III collagen fibers in the leptomeninges of these groups. Scale bar, 20
57 μm .

58

59

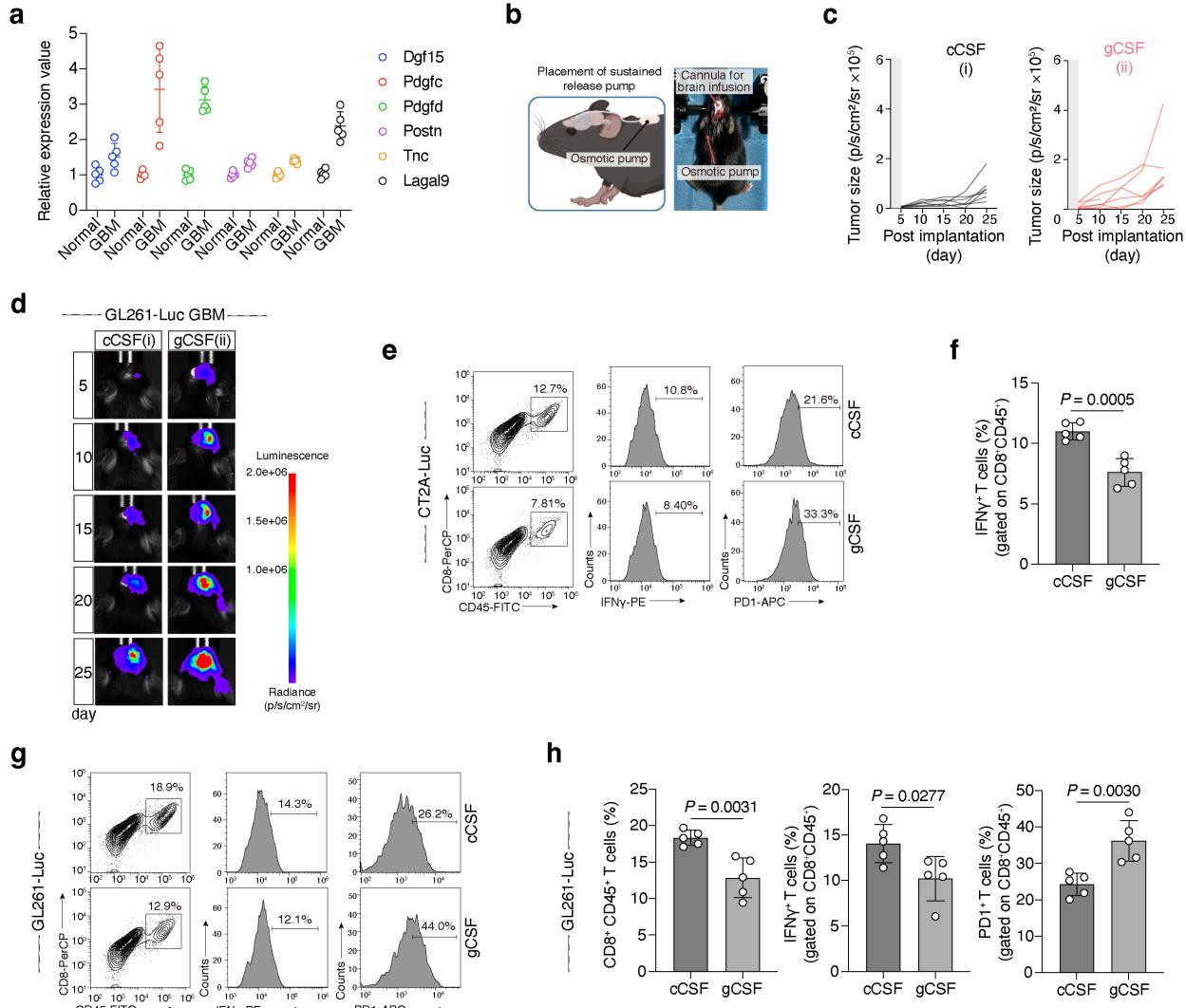
60
61 **Extended Data Fig. 4 | NF-κB/P65 signaling in leptomeningeal fibroblasts regulates GBM**
62 **progression via CSF clearance and CD8⁺ T cell immunity.**

63 **a**, Left: Representative bioluminescence imaging images of CT2A-Luc tumor-bearing mice in the
64 P65^{wt}, P65^{fl/fl}, and P65^{fl/fl}Tcf21^{cre} groups. Right: Survival curves of CT2A-Luc tumor-bearing mice in
65 each group (n = 6 per group, Log-rank test).

66 **b**, Left: Representative bioluminescence imaging images of GL261-Luc tumor-bearing mice in the
67 P65^{wt}, P65^{fl/fl}, and P65^{fl/fl}Tcf21^{cre} groups. Right: Bar graphs showing tumor burden size in each group
68 (mean \pm s.d., n = 6 per group).

69 **c**, Survival curves of GL261-Luc tumor-bearing mice in the P65^{wt}, P65^{fl/fl}, and P65^{fl/fl}Tcf21^{cre} groups
70 (n = 6 per group, Log-rank test).

71 **d**, Single-cell RNA sequencing data of CD45⁺ cells in tumor tissues of CT2A-Luc tumor-bearing
72 mice in the P65^{f/f}, and P65^{f/f}Tcf^{Cre} groups, showing the division and annotation of 10 immune cell
73 subpopulations and biomarkers.


74 **e**, Left: Representative bioluminescence imaging images of GL261-Luc tumor-bearing mice in the
75 P65^{f/f}, and P65^{f/f}Tcf^{Cre} groups treated with IgG isotype or anti-CD8 α neutralizing antibodies. Right:
76 Bar graphs showing tumor burden size in GL261-Luc tumor-bearing mice (mean \pm s.d., n = 6 per
77 group).

78 **f**, Survival curves showing the therapeutic effects of IgG isotype and anti-CD8 α neutralizing
79 antibodies in P65^{f/f}, and P65^{f/f}Tcf^{Cre} mice (GL261-Luc model) (n = 6 per group, Log-rank test).

80

81

82

Extended Data Fig. 5 | Impaired CSF clearance drives GBM progression via CD8⁺ T cell exhaustion.

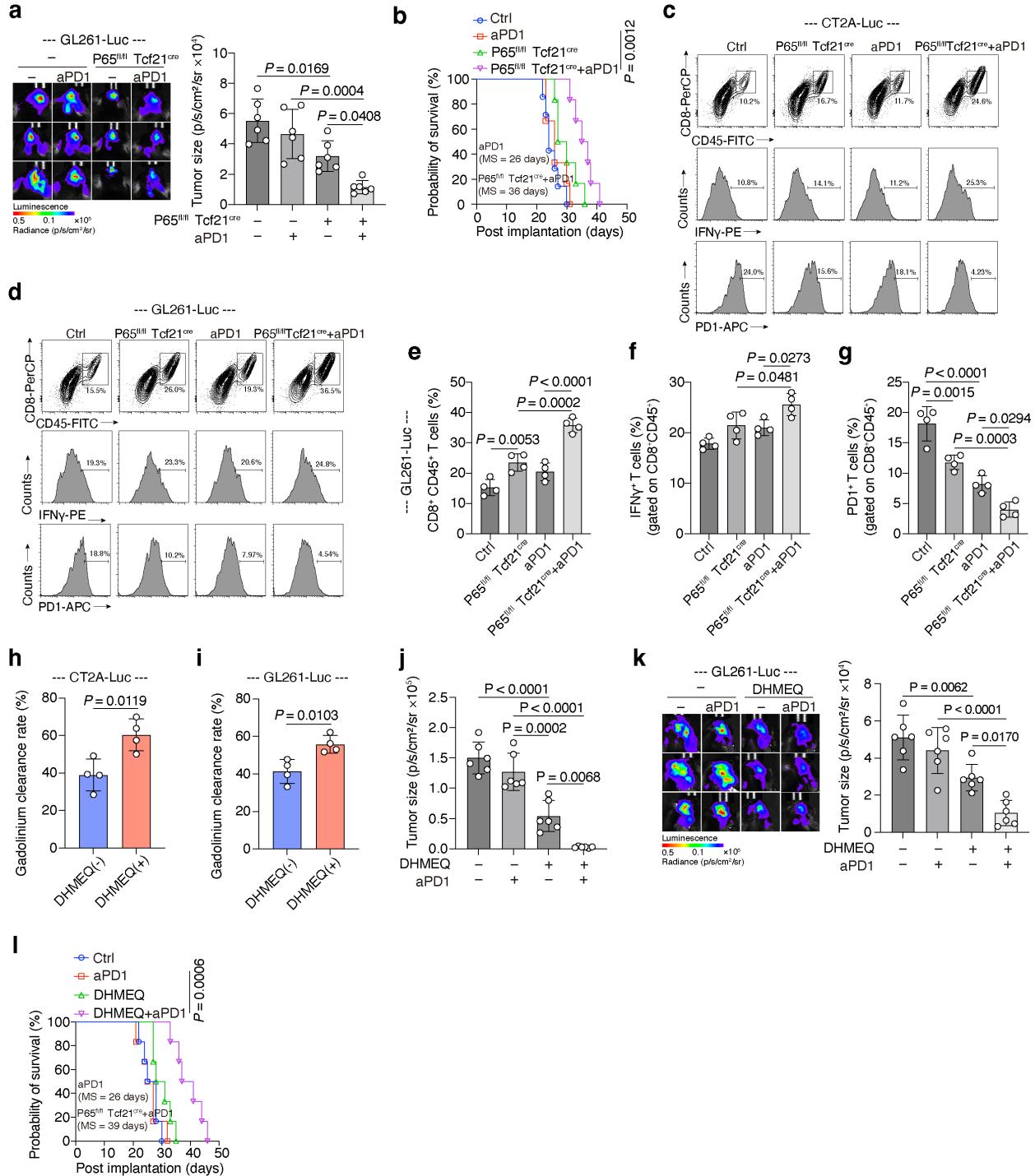
83
84 **a**, Expression levels of representative secretory proteins (Dgf15, PDGFC, PDGFD, TNC, POSTN,
85 and LGALS9) in the CSF of CT2A-Luc tumor-bearing mice (mean \pm s.d., n = 5 per group).

86
87 **b**, Schematic of the placement and implantation of osmotic pumps and injection cannulas in the
88 CSF replacement experiment. Figure created with BioRender.com.

89
90 **c**, Tumor burden size in GL261-Luc tumor-bearing mice of the cCSF and gCSF groups (mean \pm
91 s.d., n = 7 per group).

92
93 **d**, Representative bioluminescence imaging images of GL261-Luc tumor-bearing mice in the
94 cCSF and gCSF groups.

95
96 **e**, Representative flow cytometry images of CD45⁺CD8⁺ cells, IFN- γ ⁺ cells (gated on CD45⁺CD8⁺),
97 and PD1⁺ cells (gated on CD45⁺CD8⁺) in tumor tissues of CT2A-Luc tumor-bearing mice in the
98 cCSF and gCSF groups.


97 **f**, Bar graphs showing the proportion of IFN- γ^+ cells (gated on CD45 $^+$ CD8 $^+$) in tumor tissues of
98 CT2A-Luc tumor-bearing mice (mean \pm s.d., n = 5 per group).

99 **g**, Representative flow cytometry images of CD45 $^+$ CD8 $^+$ cells, IFN- γ^+ cells (gated on CD45 $^+$ CD8 $^+$),
100 and PD1 $^+$ cells (gated on CD45 $^+$ CD8 $^+$) in tumor tissues of GL261-Luc tumor-bearing mice in the
101 cCSF and gCSF groups.

102 **h**, Bar graphs showing the proportions of CD45 $^+$ CD8 $^+$ cells, IFN- γ^+ cells (gated on CD45 $^+$ CD8 $^+$),
103 and PD1 $^+$ cells (gated on CD45 $^+$ CD8 $^+$) in tumor tissues of GL261-Luc tumor-bearing mice (mean
104 \pm s.d., n = 5 per group).

105

106

107
108 **Extended Data Fig. 6 | Combined P65 inhibition and anti-PD-1 therapy synergistically**
109 **enhances GBM treatment via improved CSF clearance and CD8⁺ T cell function.**

110 **a**, Left: Representative bioluminescence imaging images of GL261-Luc tumor-bearing mice in the
111 Ctrl, aPD1, P65^{fl/fl}Tcf21^{Cre}, and aPD1 + P65^{fl/fl}Tcf21^{Cre} groups. Right: Bar graphs showing tumor burden
112 in these mice (mean ± s.d., n = 6 per group).

113 **b**, Survival curves of GL261-Luc tumor-bearing mice in the Ctrl, aPD1, P65^{f/f}Tcf^{Cre}, and aPD1 +
114 P65^{f/f}Tcf^{Cre} groups. (n = 6 per group, Log-rank test).

115 **c-d**, Representative flow cytometry images of CD45⁺CD8⁺ cells, IFN- γ ⁺ cells (gated on
116 CD45⁺CD8⁺), and PD1⁺ cells (gated on CD45⁺CD8⁺) in tumor tissues of CT2A/GL261-Luc tumor-
117 bearing mice in the control (Ctrl), anti-PD1 monotherapy (aPD1), P65^{f/f}Tcf^{Cre}, and aPD1 +
118 P65^{f/f}Tcf^{Cre} groups.

119 **e-g**, Bar graphs showing the proportions of CD45⁺CD8⁺, IFN- γ ⁺ cells (gated on CD45⁺CD8⁺), and
120 PD1⁺ cells (gated on CD45⁺CD8⁺) in tumor tissues of GL261-Luc tumor-bearing mice in the
121 control (Ctrl), P65^{f/f}Tcf^{Cre}, anti-PD1 monotherapy (aPD1), and aPD1 + P65^{f/f}Tcf^{Cre} groups (mean
122 \pm s.d., n = 4 per group).

123 **h-i**, Bar graphs showing CSF clearance rate in CT2A-Luc and GL261-Luc tumor-bearing mice
124 after DHMEQ treatment (mean \pm s.d., n = 4 per group).

125 **j**, Bar graphs showing tumor burden of CT2A-Luc tumor-bearing mice in the Ctrl, DHMEQ, aPD1,
126 and aPD1 + DHMEQ groups. (mean \pm s.d., n = 6 per group).

127 **k**, Left: Representative bioluminescence imaging images of GL261-Luc tumor-bearing mice in the
128 control (Ctrl), DHMEQ monotherapy, anti-PD1 monotherapy (aPD1), and aPD1 + DHMEQ
129 groups. Right: Tumor burden in each group (mean \pm s.d., n = 6 per group).

130 **l**, Survival curves of GL261-Luc tumor-bearing mice in the control (Ctrl), DHMEQ monotherapy,
131 anti-PD1 monotherapy (aPD1), and aPD1 + DHMEQ groups (n = 6 per group, Log-rank test).