Ultrahigh strength magnesium via solidification of nanocolloid

Supplementary Information

Xinliang Yang¹, Hari Babu Nadendla^{1*}, Changming Fang¹, Shunsuke Nishi², Tomoki Matsuda², Makoto Kambara², Toshimi Tanaka³, Masashi Dougakiuchi^{2,4}, Fengzai Tang⁵, Geoffrey D. West⁵, Shihao Wang^{6,7*}, Quentin M. Ramasse^{6,7,8}

¹BCAST, Brunel University of London, Kingston Lane, Uxbridge UB8 3PH, UK

²Division of Materials and Manufacturing Science, Graduate School of Engineering,
The University of Osaka, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan

³Takeuchi Electric, 51-1, Hokuryo-cho, Matsue, 690-0816, Shimane, Japan

⁴Shimane Institute for Industrial Technology, 1 Hokuryo-cho, Matsue, 690-0816,
Shimane, Japan

⁵WMG, University of Warwick, Coventry, CV4 7AL, UK

⁶SuperSTEM Laboratory, SciTech Daresbury Science and Innovation Campus, Keckwick Lane, Daresbury WA4 4AD, UK

⁷School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK

⁸School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK

*Corresponding authors: Hari Babu Nadendla, mtsthbn@brunel.ac.uk; Shihao Wang, swang@superstem.org

Contents

- 1. Supplementary Note
- 2. Supplementary Table 1 | The properties of the published advanced metallic materials, which were used to plot Fig.2c.
- 3. Supplementary Table 2 | The microstructural information of the Mg-NbC materials.
- 4. Supplementary Table 3 | Inputs for the Mg(I)/NbC interfaces for the AIMD simulations.
- 5. Supplementary Figure. 1 | The microstructure of Mg-NbC_{nano} sample.
- 6. Supplementary Figure. 2 | The crystallographic analysis of Mg-NbC_{nano} specimen *via* 4D-STEM.
- 7. Supplementary Figure. 3 | The microstructure of Mg-NbC_{submicron} sample.
- 8. Supplementary Figure. 4 | Distribution of NbC_{submicron} particle in the Mg matrix.
- 9. Supplementary Figure. 5 | The microstructure of Mg-NbC_{micron} sample.
- 10. Supplementary Figure. 6 | Distribution of NbC_{micron} particle in the Mg matrix.
- 11. Supplementary Figure. 7 | SEM images of the micro-tensile samples.
- 12. Supplementary Figure. 8 | Specific stiffness versus specific hardness of the Mg-NbC and engineering alloys.
- 13. Supplementary Figure Fig. 9 | The interfacial region of C_{NbC}-like ordered Mg layer and follow-on hcp Mg.
- 14. Supplementary Figure Fig. 10 | Atomic arrangements of Mg(I)/NbC_{001} interface.
- 15. Supplementary Figure Fig. 11 | The atomic density profile of Mg(I)/NbC_{001} interface.
- 16. Supplementary Figure. 12 | Schematic atomic coordination of selected bond lengths for typical C atoms.
- 17. Supplementary Figure. 13 | NbC powder feedstock characterisation.
- 18. Supplementary Figure. 14 | NbCnano observed *via* [0-10]NbC direction.
- 19. Supplementary Figure. 15 | NbCnano observed *via* [1-10]NbC direction.
- 20. Supplementary Figure. 16 | The fabrication procedure of specimen for microtensile testing.
- 21. Supplementary Figure. 17 | Configuration of *ab initio* molecular dynamics (AIMD) simulation.

Supplementary Note

To achieve a stable nanocolloid in a molten magnesium medium (1000 K) with NbC nanoparticles of 15 nm diameter, the following conditions must be satisfied:

- (i) The thermal energy associated with nanoparticle Brownian motion (E_b) must exceed the van der Waals attraction energy ($W_{vdWaals}$) between particles, ensuring dispersion rather than aggregation.
- (ii) The energy barrier that prevents nanoparticle contact and sintering $(W_{barrier})$ must be greater than the Brownian motion energy (E_b) , so that random collisions do not lead to irreversible bonding or clustering.

Thermal energy for nanoparticle dispersion. E_b is calculated to be 13.8 zJ (E_b =kT, where k is the Boltzmann constant and T is the processing temperature of 1000 K).

van der Waals attraction. The van der Waals interaction between two naked or coated NbC nanoparticles in molten Mg can be estimated by the equation^{\$1, \$2}:

$$W_{vdWaals} = -\frac{A_{NbC-Mg(l)-NbC}}{6D} \cdot \frac{R_{NbC}}{2}$$
 S1

$$A_{NbC-Mg(l)-NbC} \approx \left(\sqrt{A_{NbC}} - \sqrt{A_{Mg(l)}}\right)^2$$
 S2

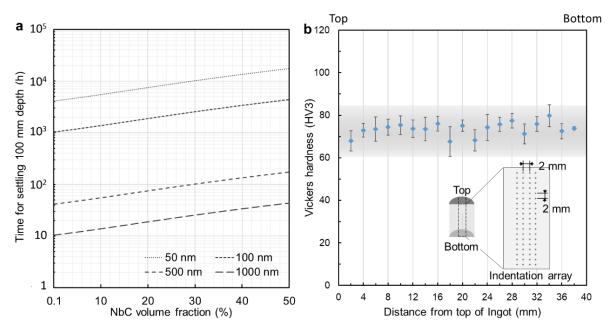
where D, the minimum distance between two nanoparticles, is 0.2 nm (atomic layer of liquid Mg^{s3}). R_{NbC} , the average radius of NbC nanoparticles, is 7.5 nm. $A_{Mg(l)}$ and A_{NbC} are the Hamaker constants of molten Mg and naked NbC for the van der Waals interaction. $A_{Mg(l)}$ is 206zJ for molten Mg^{s4} and A_{NbC} is calculated to be 222 zJ using Lifshitz theory^{s5, s6}. Therefore, the absolute value of the maximum van der Waals attraction ($W_{VdWaals}$) between two naked NbC nanoparticles in liquid Mg is estimated to be 0.94 zJ, which is less than the thermal energy for Brownian motion.

In the case of Mg-coated NbC particles (Mg@NbC), Prieve and Russel^{s5} have demonstrated that coating can mask the substrate particle and alter the Hamaker constant of the substrate particles towards the value of the coating phase (here Mg phase) when the distance is very close ($D\rightarrow0$). Thus, the value of $A_{NbC-Mg(l)-NbC}$ in equation S2 will be decreased significantly between particles in the molten Mg

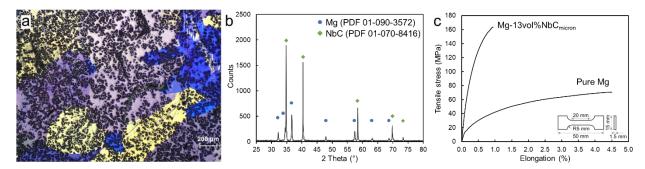
medium. Therefore, for Mg coated NbC particles in the molten Mg media, the Brownian motion dominates, and the particles will be unlikely to aggregate.

Energy barrier preventing naked nanoparticle contacting. At high temperatures, nanoparticles may sinter together upon contact, driven by a substantial reduction in interfacial energy. In a Mg(I)-Mg@NbC colloid, as shown in Fig. 3a, a stable C_{NbC} -like ordered Mg layer forms facilitated by ionic bonding between Mg and C on the outermost NbC {001} surface. For NbC_{nano} particles to make contact and sinter within the molten Mg, the Mg-C bonds at the Mg(I)/NbC_{001} interface must be broken. The bonding energy of Mg-C is estimated using MgC in a rock salt-type structure^{s7} due to its similar Mg-C bond lengths of 2.0-2.5 Å. The bonding energy^{s8} is defined as $\Delta E = E_{(Mg-C)} - n \cdot E_{(Mg-Mg)}$, where $E_{(Mg-C)}$ and $E_{(Mg-Mg)}$ represent the bond energies of a single Mg-C bond in MgC and a single Mg-Mg bond in hcp Mg, respectively. The calculated average interfacial bonding energy for Mg-C is -1.54 J/m².

The debonding work ($W_{debonding}$) required for NbC_{nano} particles to come into contact and sinter is given by $W_{debonding} = S \cdot \sigma_{Mg-C}$, where S is the effective area of interaction (calculated as $S = \pi R D_0$ with R = 7.5 nm, and $D_0 = 0.2$ nm^{s3}) and σ_{Mg-C} is the interfacial bonding energy. The resulting debonding work is calculated to be 7.25×10^3 zJ, which is approximately three orders of magnitude higher than the thermal energy (E_b =13.8 zJ). Consequently, the nanoparticles are unlikely to contact and sinter with one another under these conditions.


In brief, once naked NbC particles are introduced into liquid Mg, the formation of a Mg-coated layer on NbC leads to a stable Mg(I)-Mg@NbC nanocolloidal solution.

Assessment of colloid stability for larger particles:


The influence of gravity must be considered when assessing colloidal stability, particularly for larger particles. Stoke's equation^{s9} is used to evaluate the sedimentation behaviour of the molten Mg-NbC system. Calculated sedimentation time shown in Supplementary Note Fig. 1a indicates that a 0.1 vol% suspension of micron-sized NbC particles requires approximately 10 hours to sediment through a 100 mm depth in the crucible. When the particle diameter decreases to 100 nm, the

sedimentation time increases significantly to around 1000 hours, which exceeds the duration typical of standard foundry casting processes.

To justify the colloidal stability, an Mg-13 vol% NbC_{micron} colloidal solution was prepared by incorporating micron-sized NbC particles into molten Mg, followed by mechanical mixing using an impeller at 200 rpm. Then the suspension was held stationary for one hour before being allowed to solidify in the furnace under a slow, controlled cooling rate (see Supplementary Note Fig. 2). A local hardness measurement approach was used to assess the macroscopic uniformity of particle distribution. Supplementary Note Fig. 1b shows the spatial variation in Vickers hardness along the vertical cross-section of an ingot solidified from a Mg-13 vol% NbC_{micron} colloid. If sedimentation occurs, a sudden change in hardness would be observed. As seen in Supplementary Note Fig. 1b, the measured Vickers hardness remained consistent along the vertical section of the solidified ingot, indicating that no noticeable sedimentation occurred. This demonstrates that, despite the relatively large particle size, a stable Mg(I)-NbC colloid can be achieved.

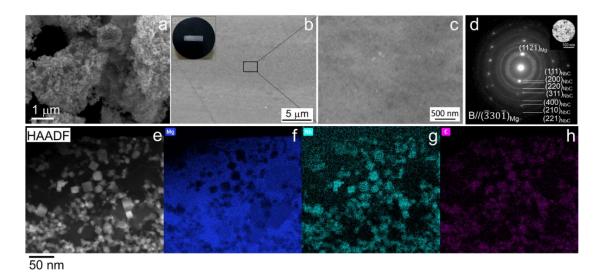
Supplementary Note Figure. 1 | The colloid stability assessment. **a,** The calculated settling time of NbC particles vs volume fraction. **b,** The Vickers hardness as a function of the position in the sample solidified from Mg-13vol%NbC_{micron} colloid. The unform hardness of the sample from top to the bottom of the as-solidified ingot suggesting stability of colloid without sedimentation of NbC particles at the bottom of the crucible.

Supplementary Note Figure. 2 | The as-solidified sample from Mg-13vol%NbC_{micron} **colloid**. **a,** Colour contrast represents the individual Mg grains with different orientation polarised optical microstructure. The dark spots in the Mg grains represent the NbC_{micron} dispersions. **b,** XRD spectrum showing the phase constitution in this sample. **c.** Tensile stress-strain curves of the Mg-13vol%NbC_{micron} sample and pure Mg sample under same solidification conditions.

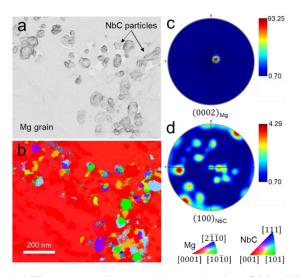
Supplementary Table 1 | The properties of the published advanced metallic materials, which were used to plot Fig.2c.

	•		1.110				
		Tensile	Ultimate		-		
		yield	tensile	E	Elastic	D "	
	(.0()	strength	strength	Elongation	modulus	Density	
	composition (wt%)	(MPa)	(MPa)	(%)	(GPa)*	(g/cm ³)	
This	Mg-NbC _{submicron}	584	678	10.1	130	4.14	
work	Mg-NbC _{nano}	436	526	11.9	82	2.53	
Mg	Mg-3Al-1Zn-1Mn-0.5Ca ¹⁷	219	306	17.0	45	1.77	
	Mg-11Y-1Al ¹⁸	350	394	8.0	47	1.93	
	Mg-2Sn-2Ca ¹⁹	443	460	1.2	45	1.80	
	Mg-8Gd-3Y-0.4Zr ⁶	650	710	4.5	45	1.96	
	Mg-0.2Ca ²⁰	414	420	3.4	45	1.74	
	Mg-6Zn-0.5 Zr ²¹	310	351	17.1	45	1.83	
Al	A7075-Zr ²²	373	417	3.8	66	2.81	
	Al-5vol%MgO@GL ⁹	486	549	9.1	85	2.74	
	A2024-0.7wt%Ti _{nano} 23	286	432	10.0	73	2.78	
	A7075 ²⁴	734	774	2.8	71	2.81	
Ti	Ti-8.5Cu ²⁵	1023	1180	2.1	120	4.65	
	Ti-2.8Cr-4.5Zr-5.2Al ²⁶	1266	1413	12.6	109	4.58	
	Ti-3.6Al-8V-6Cr-4Mo-4Zr ²⁷	1463	1611	5.4	106	4.80	
	Ti-3.5Al-2.5V-2.5Sn-1.2Co-						
	0.5Fe ²⁸	1177	1243	21.3	121	4.59	
	Ti-6Al-4V ²⁸	759	1057	21.5	112	4.43	
AHSS							
Maraging	Fe-18Mn-3Ti ¹	1626	1793	7.1	196	7.70	
	Fe-19Ni-5Ti ²⁹	950	1300	10.0	190	7.89	
	Fe-18Ni-3Al-4Mo ³⁰	1975	2113	9.0	186	7.99	
	Fe-18Ni-3Al-4Mo-0.8Nb-						
	0.08C-0.01B ³¹	1973	2197	8.2	189	7.99	
	Fe-9.9Cr-8.0Co-6.99Ni-1.8Al-						
	2.75Mo-2.43W ³²	1892	2009	2.8	210	7.96	
Martensitic	Fe-0.66C-1.42Cr-0.4Si-			_			
	0.42Mn-0.07V ³³	2367	2613	7	208	7.87	
	Fe-2.8Cr-1.07Ni-0.83Si-						
	0.92Mo-0.76Mn-0.27C ³⁴	1110	1400	10.2	206	7.87	
TRIP	Fe-0.1C-10Mn-1Si-0.3Mo-						
	0.5V ³⁵	1012	1596	20.7	177	7.83	
	Fe-0.47C-9.97Mn-0.7V-						
	2.01Al ³⁶	1088	1761	16.6	196	7.83	
	Fe-9.95Mn-0.44C-1.87Al-						
	0.67V ³⁷	1978	2144	19.0	195	7.83	
TWIP	Fe-22Mn-0.6C-4Cu ³⁸	701	1207	58.7	200	7.83	
Nano-	Fe-24Mn-11Al-0.9C-5Ni ³⁹	1050	1300	39.3	176	6.48	
structured	Fe-21Mn-10Al-1C-5Ni ⁴⁰	1273	1516	25.3	182	6.50	
	Fe-5Ni-2Al-3Mn-1.5Cu-1.5Mo-						
	1.5W-0.07Nb-0.05C-0.01B ⁴¹	1365	1870	10.8	200	7.87	
Complex	Fe-0.12C-0.28Si-2.3 Mn-						
phase	0.01Ni-0.035Nb-0.64Cr-Ti-	859	1163	9.8	186	7.87	
priase	Mo ⁴²	009	1103	9.0	100	1.01	

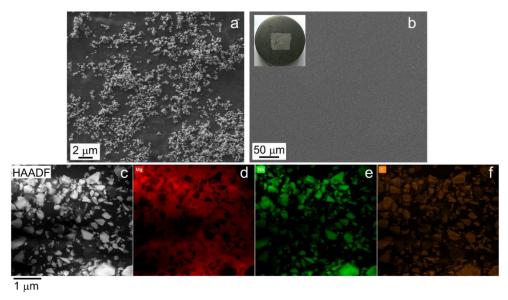
The presented properties of the advanced materials were extracted from the referred literatures. *The elastic modulus of the Mg-NbC samples were measured using the load-displacement curves during unloading period of the nanoindentations^{s10}.

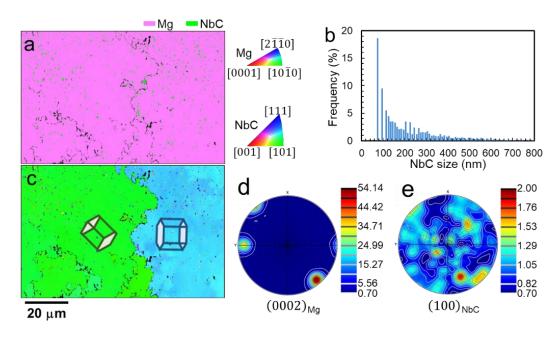

Supplementary Table 2 | The microstructural information of the Mg-NbC materials.

	Mg average	NbC size	NbC size spread	NbC volume
	grain size (μm)*	(D_{50}) (nm)	$(D_{10}\text{-}D_{90}) \text{ (nm)}$	fraction (%)
Mg-NbC _{nano}	271	15	9-23	12.2
Mg-NbC _{submicron}	243	287	142-518	38.7
Mg-NbC _{micron}	530	906	500-1771	53.8

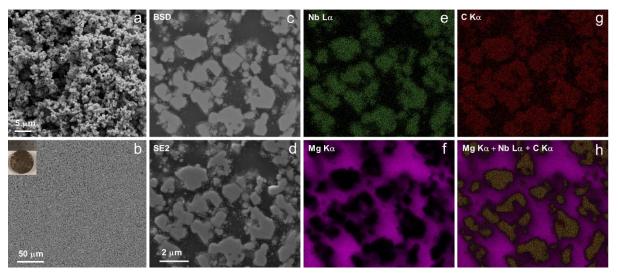

^{*}Mg grain size (equivalent circular diameter) was extracted from the EBSD data.

Supplementary Table 3 | Inputs for the Mg(I)/NbC interfaces for the AIMD simulations.

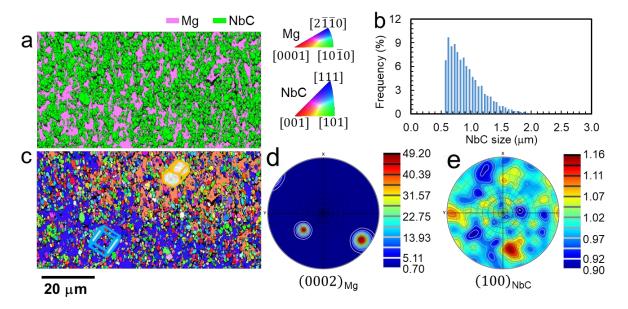

System	Shape of	Lattice	Number of	Surface
	cell	parameters (Å)	atoms	polarity
Mg(I)/NbC _{001}	Tetragonal	a = 13.52 c = 52.29	Mg: 300 Nb: 72	Non-polar
			C: 72	


Supplementary Figure. 1 | The microstructure of Mg-NbC_{nano} sample. a, SEM image of NbC_{nano} particulates feedstock. b, SEM image of the as-solidified Mg-NbC_{nano} sample showing uniform structure. The inset in b is cross-sectional image of pressure-less infiltrated and solidified bulk Mg-NbC_{nano} sample mounted in Bakelite for metallography investigations. c, High magnification image of the region shown in b further confirming uniform structure. d, A selected area diffraction pattern from a Mg-NbC_{nano} sample collected using TEM revealing the diffraction ring for NbC crystal together with the Mg pattern, suggesting presence of randomly oriented high number density of NbC nanoparticles within a Mg grain. The inset is the bright field TEM image shown the area (~200 nm diameter) that the diffraction pattern was taken. e, The HAADF-STEM image of the same sample, and corresponding STEM/EDS elemental maps of f, Mg; g, Nb; and h, C elements.

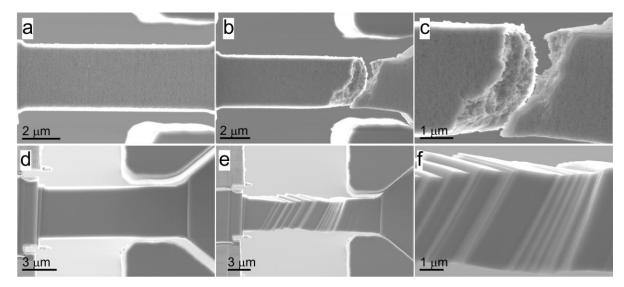
Supplementary Figure. 2 | The crystallographic analysis of Mg-NbC_{nano} **specimen** *via* **4D-STEM** showing the randomly orientated NbC in one Mg grain. **a**, Correlation coefficient map. **b**, inverse pole figure map. **c**, Mg pole figure in (0002)_{Mg} pole. **d**, NbC pole figure in (100)_{NbC} pole.

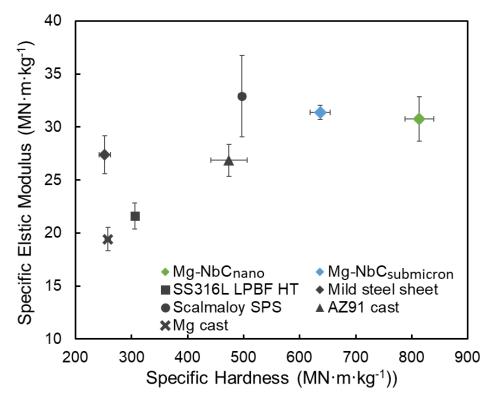


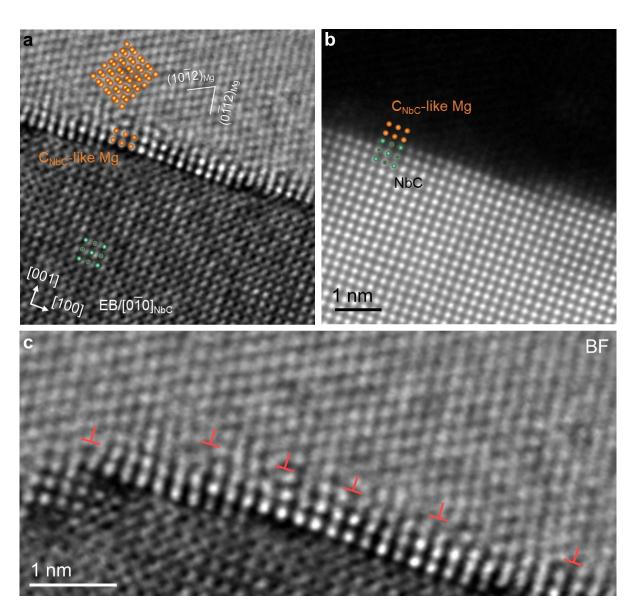
Supplementary Figure. 3 | The microstructure of Mg-NbC_{submicron} **sample**. **a,** SEM image of NbC_{submicron} feedstock, **b,** The SEM image of the as-solidified sample and the inset is the photograph of bulk sample. **c,** The HAADF-STEM image and corresponding STEM/EDS elemental maps of **d,** Mg; **e,** Nb; and **f,** C elements.

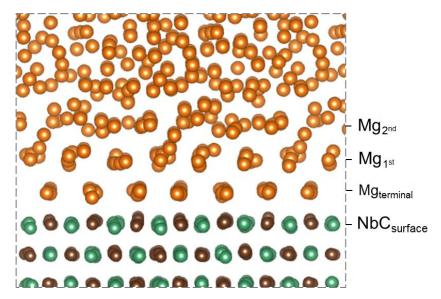


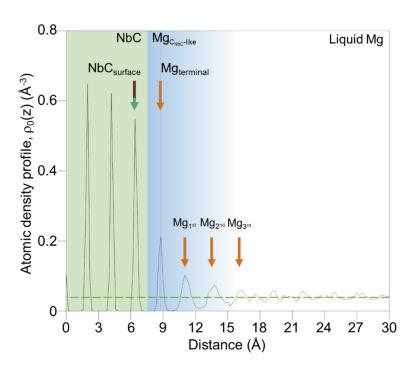
Supplementary Figure. 4 | Distribution of NbC_{submicron} particle in the Mg matrix. a,

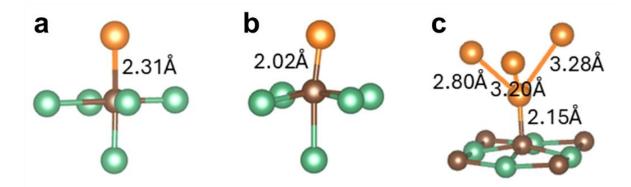

Phase map of the Mg-NbC_{submicron} specimen. **b**, The particle size distribution of the indexed NbC. The NbC particles with size lower than the indexing step size (80 nm) are not identified using EBSD method. **c**, The inverse pole figure map and its corresponding pole figures of the **d**, (0002)_{Mg} pole, and **e**, (100)_{NbC} pole. This investigation shows large number of the randomly oriented submicron NbC particles that are dispersed within Mg grains. The absence of particle segregation at grain boundaries indicates that the solidifying Mg front did not push sub-micron particles during solidification.

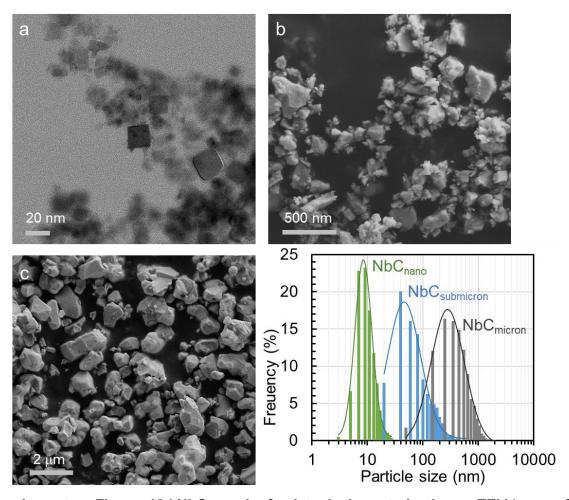

Supplementary Figure. 5 | The microstructure of Mg-NbC_{micron} sample. a, SEM image of NbC_{micron} particulates feedstock. b, SEM image of the as-solidified Mg-NbC_{micron} sample showing uniform structure. The inset in b is the photo of pressure-less infiltrated and solidified bulk Mg-NbC_{micron} sample with a 32 mm diameter. c, Higher magnification image of the sample shown in b showing micron scale NbC particle distribution in Mg matrix. d-h, Secondary electron image and the corresponding SEM/EDS elemental maps of e, Nb; f, Mg; g, C; and h, combined map for Mg + Nb + C elements.

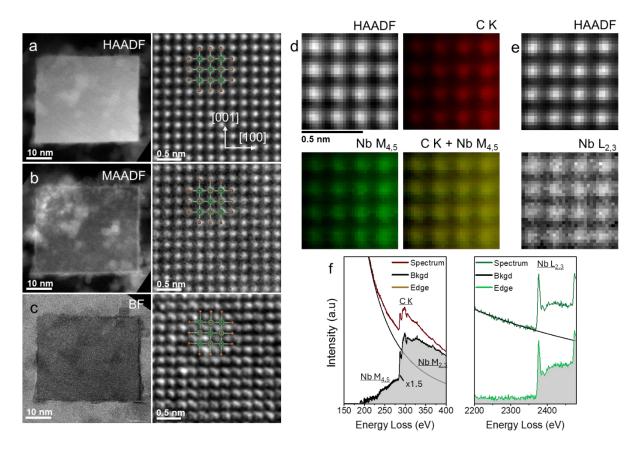

Supplementary Figure. 6 | Distribution of NbC_{micron} particle in the Mg matrix. a, Phase map of the Mg-NbC_{micron} specimen. b, The particle size distribution of the indexed NbC. c, The inverse pole figure map and its corresponding pole figures of the d, $(0002)_{Mg}$ pole; and e, $(100)_{NbC}$ pole. This investigation shows large number of the randomly oriented NbC_{micron} particles dispersed within Mg grains.

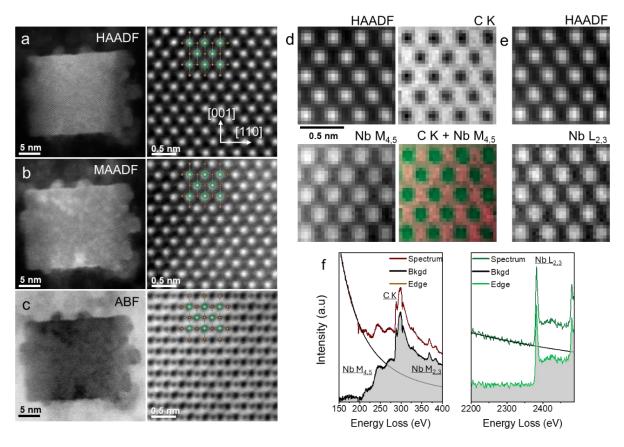

Supplementary Figure. 7 | SEM images of the micro-tensile samples. a, b, Mg-NbC_{nano} specimen before and after tensile deformation. **c,** The enlarged image of fracture surface shown in **b. d, e,** Pure Mg specimen before and after tensile deformation. **f,** The enlarged image of basal slip activated area shown in **e**.

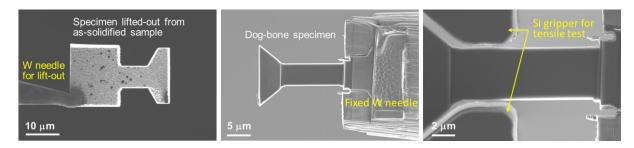

Supplementary Figure. 8 | Specific stiffness versus specific hardness of the Mg-NbC and engineering alloys. The nanoindentation test results of the Mg-NbC_{nano} and Mg-NbC_{submicron} show an advanced combination of the specific stiffness and hardness compared to the benchmark engineering alloys.

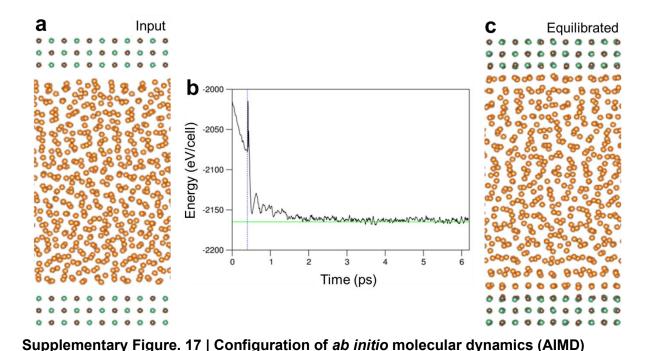

Supplementary Figure. 9 | The interfacial region of ordered C_{NbC} -like Mg layer and follow-on HCP Mg crystal structure. a. The BF STEM image of interfacial area revealing the transitioning of atomic arrangements from the C_{NbC} -like Mg terminating layer to the hexagonal close packed Mg crystal structure. b, the HAADF STEM image showing the interfacial area of NbC {001} surface and the C_{NbC} -like Mg terminating ordered layer. c, the enlarged area in a exhibiting the microstructural transitioning across the interface, at which misfit dislocations are identified. The incident beam is parallel to the zone axis [0-10] $_{NbC}$, and close to the [-2201] $_{Mg}$. Due to the presence of steps on NbC surface and the ordering behaviour of Mg, the scattered electron signals from the Mg terminal layer can overlap with that from NbC step when projected along either the <100> or <110> directions along the NbC {001} termination plane. This overlap results in the appearance of interfacial multilayer.


Supplementary Figure. 10 | Atomic arrangements of Mg(I)/NbC{001} **interface**. A snapshot of the atomic arrangements of Mg(I)/NbC{001} interface via <110>_{NbC} direction equilibrated at 1000K. Green, brown and orange spheres represent Nb, C and Mg atoms, respectively.


Supplementary Figure. 11 | The atomic density profile of Mg(I)/NbC_{001} interface. There are three recognisable peaks. The terminating Mg atoms form one almost isolated symmetrical peak, marked by the red dotted line. The 1st peak is also symmetrical with reduced height. There is a finite atomic density between the 1st and the 2nd Mg layer. The 2nd peak is broad, consisting of a shoulder at 13.2 Å and a peak at 13.8 Å, indicating different stacking and bonding. There is a high density between the 2nd and 3rd Mg layer. The atomic density of 3rd Mg peak is close to the average value of liquid Mg (dashed green line). The atoms beyond 3rd peak behaves liquid like.


Supplementary Figure. 12 | Schematic atomic coordination of selected bond lengths for typical C atoms (the dark brown spheres). a, b, one Mg (the orange spheres) bonded to C atom at the $Mg(I)/NbC_{\{001\}}$ interfaces. The green spheres represent Nb atoms. c, schematic structure of atomic coordination of one terminating Mg atom in between outmost $NbC_{\{001\}}$ surface and $1^{st}Mg$ layer.


Supplementary Figure. 13 | NbC powder feedstock characterisation. **a,** TEM image of NbC_{nano}; **b,** SEM image of NbC_{submicron}; **c,** SEM image of NbC_{micron}, and **d,** their particle size distribution.


Supplementary Figure. 14 | NbC_{nano} observed *via* the [0-10]_{NbC} direction. a, HAADF STEM, b, MAADF STEM, c, BF TEM images at low and high magnification. d, HAADF image and corresponding EELS elemental maps of Nb $M_{4,5}$ edges, C K edge, and combined Nb + C map. e, HAADF image and corresponding STEM map of Nb element using Nb $L_{2,3}$ edges. f, EELS spectrums corresponding to d and e. The insets to (a-c) illustrate the atomic configuration of NbC crystal, where green, dark brown and orange spheres represent Nb, C and Mg atoms, respectively.

Supplementary Figure. 15 | NbC_{nano} observed *via* the [1-10]_{NbC} direction. **a**, HAADF STEM, **b**, MAADF STEM, and **c**, ABF STEM images at low and high magnification. **d**, HAADF image and corresponding EELS elemental maps of Nb $M_{4,5}$ edges, C K edge, and combined Nb + C map. **e**, HAADF image and corresponding STEM map of Nb element using Nb $L_{2,3}$ edges. **f**, EELS spectrums corresponding to **d** and **e**. The insets to (a-c) illustrate the atomic configuration of NbC crystal, where green, dark brown and orange spheres represent Nb, C and Mg atoms, respectively.

Supplementary Figure. 16 | The fabrication procedure of specimen for micro-tensile testing. a, Lift-out of the specimen from as-solidified sample. **b,** Attachment of the lift-out specimen to a preliminarily fabricated tungsten needle. **c,** Attachment of the silicon gripper for micro-tensile testing of the specimen.

of the total valence electron energy on simulation time. **c**, Snapshots for the equilibrated Mg(I)/NbC_{001} interface. Input configuration with setting of 2.0Å distance between the substrate atoms and the liquid Mg atoms leads the system in high energy state. A two-step approach was used: first AIMD simulations were performed with the substrate atoms fixed for about 300 steps (1.5 femtosecond (fs) per step). Then, the AIMD simulations are continued with relaxation of all the atoms. Once simulations start, the liquid Mg atoms were observed to be moving around. The liquid atoms near the NbC substrate were observed to move towards the fixed substrate atoms, gradually forming chemical bonding with the substrate atoms, forming an Mg coated NbC (Mg@NbC) surface. The energy decreases

quickly with time. In the 2nd step, when the substrate atoms are released, the energy rises

within another 2ps. Later, the total valence-electron energy of the system varies around the

equilibrium value. When we equilibrated the system for another 4ps, the substrate atoms and the chemically bonded Mg atoms vibrate around their equilibrium positions, remaining solid-like. This indicates the high stability of Mg coated layer on the NbC_{001} surface in liquid

Mg.

sharply. Then it decreases quickly and then, gradually approaches the equilibrium value

simulation. a, Atomic arrangements for the input Mg(I)/NbC_{001} interfaces. **b**, Dependence

Supplementary References

- s1. Bergström, L. Hamaker constants of inorganic materials. *Adv. Colloid Interface Sci.* **70**, 125–169 (1997).
- s2. Israelachvili, J. N. in Intermolecular and surface forces (Academic press, 2011).
- s3. Sinnott, S. B. & Dickey, E. C. Ceramic/metal interface structures and their relationship to atomic- and meso-scale properties. *Materials Science and Engineering: R: Reports* **43**, 1–59 (2003).
- s4. Xu, J. Q. et al. Theoretical study and pathways for nanoparticle capture during solidification of metal melt. *Journal of Physics: Condensed Matter* **24**, 255304 (2012).
- s5. Prieve, D. C. & Russel, W. B. Simplified predictions of Hamaker constants from Lifshitz theory. *J. Colloid Interface Sci.* **125**, 1–13 (1988).
- s6. Adachi, S. in *The Handbook on Optical Constants of Metals* 684 (WORLD SCIENTIFIC, 2012).
- s7. Arblaster, J. W. in *Selected values of the crystallographic properties of elements* (ASM International, 2018).
- s8. Brown, I. D. Recent Developments in the Methods and Applications of the Bond Valence Model. *Chem. Rev.* **109**, 6858–6919 (2009).
- s9. Atiemo-Obeng, V. A. & Calabrese, R. V. Rotor–stator mixing devices. *Handbook of industrial mixing: Science and practice*, 479–505.
- s10. Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. *J. Mater. Res.* **7**, 1564–1583 (1992).