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Table S1 Electron donors and acceptors of isolates in the CAT families
	Phylum
	Family
	Representatives
	e- donor
	e- acceptor
	OGT

	Thermosulfidibacterota
	Thermosulfidibacteraceae
	Thermosulfidibacter takaii
	H2
	S0
	70 oC 1

	
	B14-G1
	no cultures
	
	
	

	Aquificota
	Desulfurobacteriaceae
	Phorcysia thermohydrogeniphila
	H2 
	S0, NO3- (NH4-)
	75 oC 2

	
	
	Desulfurobacterium atlanticum, Desulfurobacterium pacificum, Desulfurobacterium thermolithotrophum
	H2
	S0, S2O32-, SO32-, NO3- (NH4-)
	70 oC 3,4

	
	
	Thermovibrio amonificans, Thermovibrio guaymasensis, Thermovibrio ruber 
	H2
	S0, NO3- (NH4-)
	75 oC 4-6

	
	
	Balnearium lithotrophicum
	H2
	S0
	70-75 oC 7

	
	Hydrogenothermaceae
	Persephonella atlantica, Persephonella marina, Persephonella guaymasensis
	H2, S0, S2O32-
	O2, NO3- (N2)
	65-75 oC 8,9

	
	
	Hydrogenothermus marinus
	H2
	O2
	45-80 oC 10

	
	QOAS01
	no cultures
	
	
	

	
	Aquificaceae
	Hydrogenivirga caldilitoris, Hydrogenivirga okinawensis 
	H2, S0, S2O32-
	O2, NO3- (N2O, N2)
	70-75 oC 11,12

	
	
	Aquifex pyrophilus, Aquifex aeolicus
	[bookmark: OLE_LINK14]H2, S0, S2O32-
	S0, O2, NO3- (N2)
	85 oC 13,14

	Campylobacterota
	Hippeaceae
	Hippea maritima, Hippea jasonia, Hippea alviniae
	H2, acetate, ethanol, saturated fatty acids
	S0
	Shallow, 52-54 15,16

	
	Desulfurellaceae
	Desulfurella acetivorans from Kamchatka hot spring, Desulfurella multipotens New Zealand volcanic lake, Desulfurella amilsii from Italy acid river sediment
	H2, acetate, pyruvate
	S0, S2O32-
	58-60, isolated from none-hydrothermal environments 17,18

	
	Nautiliaceae
	Nautilia lithotrophica, Nautilia profundicola,  Nautilia nitratireducens 
	H2, formate
	[bookmark: OLE_LINK15]S0, SO32- (not all species),  NO3- (NH4-, not all species)
	Deep, 53 19-22

	
	
	Lebetimonas natsushimae, Lebetimonas acidiphila
	H2, formate
	S0, NO3- (NH4-, not all species) selenate
	Deep, 55 23,24

	
	
	Caminibacter hydrogeniphilus, Caminibacter profundus, Caminibacter mediatlanticus
	H2
	[bookmark: OLE_LINK16]S0, NO3- (NH4-), O2 (only by C. profundus)
	EPR, 60 25-27

	
	
	Cetia pacifica
	H2
	S0, NO3- (NH4-) 
	Deep, 55-60 28

	
	Nitratiruptoraceae
	Nitratiruptor tergarcus, Nitratiruptor labii 

	H2
	S0, N2O, NO3- (N2), O2
	Deep, 55 29,30 

	
	
	Nitrosophilus alvini, Nitrosophilus kaiyonis 
	H2, S0, S2O32- SO32-
	[bookmark: OLE_LINK13]NO3- (N2), N2O, S2O32-, O2
	Deep EPR, Okinawa 52-55 31,32

	
	Hydrogenimonadaceae
	Hydrogenimonas thermophila, Hydrogenimonas urashimensis
	H2
	[bookmark: OLE_LINK17]S0, S2O32-, NO3- (NH4-, used by H. thermophila) , O2
	Mariana, 55 33,34

	
	Sulfurovaceae
	Nitratifractor salsuginis
	H2
	NO3-- (N2), O2
	Okinawa, 37 29

	
	
	Sulfurovum lithotrophicum, Sulfurovum indicum, Sulfurovum aggregans, Sulfurovum denitrificans 
	H2, S0, H2S, S2O32-
	S0, S2O32-, NO3- (N2), O2
	Okinawa, 28-30 35-38

	
	Sulfurimonadaceae
	Sulfurimonas autotrophica, Sulfurimonas indica, Sulfurimonas paralvinellae, Sulfurimonas hydrogeniphila, Sulfurimonas sediminis
	H2, H2S, S0, S2O32-
	S0, NO3- (N2), O2
	25-33 39-43
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[bookmark: _Hlk189490729]Fig. S1 Phylogenetic relations among the CAT families constructed with 120-concatenated-protein sequences. The divergence times were retrieved from the online TimeTree resource and references therein44. 
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Fig. S2 Box plot showing the distribution of two hydrogenase types in CAT families
 Short dashes represent the median number of gene copies; crosses represent the average of gene copies; error bars represent the range of the minimum to maximum values of the gene copies; boxes represent the interquartile range of the gene copies; the dots represent the outliers. Only early-evolved anaerobic taxa (Thermosulfidibacterota, Hippeaceae, Desulfurobacteriaceae, and Desulfurellaceae) contain FeFe-type hydrogenases. The late-evolved both anaerobic and facultatively aerobic taxa (including anaerobic QOAS01, Nautiliceae, and aerobic Hydrogenothermaceae, Aquificaceae, Nitratiruptoraceae, Hydrogenimonadaceae, Sulfurovaceae, and Sulfurimonadaceae) only contained NiFe-type hydrogenases.
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Fig. S3 Box plot showing the sulfur-oxidizing genes distribution in CAT families
Gene sqor (encoding sulfide quinone oxidoreductases) and fccB (encoding Flavocytochrome c sulfide dehydrogenase subunit B) are responsible for the oxidation of sulfide to sulfur. Gene soxC, encoding sulfur dehydrogenases, is responsible for sulfur oxidation. Other sox genes are responsible for the oxidation of thiosulfate. Sulfide-oxidizing genes are universal in the CAT families except for Thermosulfidibacterota and Hippeceae. The sulfur-oxidizing gene is found in the families of Sulfurovaceae and Sulfurimonadaceae. The thiosulfate-oxidizing pathway is present in the facultatively aerobic CAT families. 
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Fig. S4 Box plot showing the sulfur-reducing genes distribution in CAT families
Gene psrBC, encoding quinone reductase, is responsible for polysulfide reduction. Genes sudB, hydAB, and shyA encode enzymes capable of sulfur reduction. Gene psrBC is more common in the phylum Campylobacterota than in the other two phyla. Genes hydAB and shyA occur frequently in the phylum Aquificota.
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Fig. S5 Box plot showing the nitrate-reduction genes in CAT families
DNRA and denitrification are two pathways related to nitrogen respiration. The gene nirB, as a marker gene for DNRA encoding enzymes for the reduction of nitrite to ammonium, is ubiquitous in early-evolved anaerobic CAT families. The nirF and nirS genes are responsible for nitrite reduction to nitrogen monoxide (NO), which are marker genes of denitrification and are ubiquitous in late-evolved aerobic families.
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Fig. S6 Box plot showing the oxygen-reduction genes in CAT families
Oxygen reductases are essential enzymes for oxygen respiration. The heme- and copper-containing terminal oxidases (HCOs) superfamily contains most types of oxygen reductases. A1, A2, B, and C types of HCO all occurred in facultatively aerobic CAT families. Cytochrome bd, encoding a non-homologous respiratory quinol:O2 oxidoreductase to HCOs, the only oxygen reductase in Nautiliaceae, is potentially used for O2 removal. 
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[bookmark: _Hlk202092806]Fig. S7 Histogram of linear discriminant analysis (LDA) showing contrasting relative abundances of hydrothermal microbes between the early-originated oceans (the Pacific Ocean, Arctic Ocean, and Mediterranean Sea) and the late-formed oceans (the Atlantic Ocean, Indian Ocean, and the Red Sea). 
The legends “Early” and “Late” denote the microbial communities of the hydrothermal vents from the early oceans and the late oceans, respectively. The “Early” microbes are indicated with a positive LDA score, while the “Late” microbes are indicated with a negative score. The abundances of the taxa affiliated with the CAT phyla, including Aquificaceae, Sulfurovaceae, Sulfurimonadaceae, Nautiliaceae, Hydrogenothermaceae, Desulfurobacteriaceae, B14-G1, Hydrogenimonadaceae, Hippeaceae, Desulfurellaceae, Thermosulfidibacteraceae, and Nitratiruptoraceae, were all higher in the early-originated oceans than those in the late-originated oceans. 
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Fig. S8 Histogram of linear discriminant analysis (LDA) showing differential microbial abundance in the Pacific and Arctic Oceans. 
The abundances of the taxa affiliated with the CAT phyla, including Sulfurimonadaceae, Sulfurovaceae, Nautiliaceae, and Hydrogenothermaceae, were all higher in the Pacific Ocean than those in the Arctic Ocean. 
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Fig. S9 Histogram of linear discriminant analysis (LDA) showing differential microbial abundance in the Pacific and Atlantic Oceans. 
The abundances of the taxa affiliated with the CAT phyla, including Thermosulfidibacteraceae, Hydrogenothermaceae, Desulfurobacteriaceae, Aquificaceae, Desulfurellaceae, Nitratiruptoraceae, Hippeaceae, and B14-G1, were all higher in the Pacific Ocean than those in the Atlantic Ocean. 
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Fig. S10 Histogram of linear discriminant analysis (LDA) showing differential microbial abundance in the Pacific and Indian Oceans. 
The abundances of the taxa affiliated with the CAT phyla, including Sulfurimonadaceae, Nautiliaceae, Thermosulfidibacteraceae, Desulfurobacteriaceae, Nitratiruptoraceae, and Hippeaceae, were all higher in the Pacific Ocean than those in the Indian Ocean. 
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Fig. S11 Histogram of linear discriminant analysis (LDA) showing differential microbial abundance in the Pacific Ocean and Mediterranean Sea. 
The abundances of the taxa affiliated with the CAT phyla, including Sulfurovaceae, Sulfurimonadaceae, Nautiliaceae, Thermosulfidibacteraceae, Aquificaceae, Desulfurellaceae, Desulfurobacteriaceae, and Hippeaceae, were all higher in the Pacific Ocean than those in the Mediterranean Sea. 
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Fig. S12 Histogram of linear discriminant analysis (LDA) showing differential microbial abundance in the Mediterranean Sea and the Atlantic Ocean. 
[bookmark: OLE_LINK11]The abundances of the taxa affiliated with the CAT phyla, including Hydrogenothermaceae, Nitratiruptoraceae, Sulfurimonadaceae, and B14-G1, were higher in the Mediterranean Sea than those in the Atlantic Ocean. However, the abundance of Nautiliaceae was higher in the Atlantic Ocean. 
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Fig. S13 Histogram of linear discriminant analysis (LDA) showing differential microbial abundance in the Mediterranean Sea and the Indian Ocean. 
The abundance of the taxon affiliated with the CAT phyla, i.e., Nitratiruptoraceae, was higher in the Mediterranean Sea than in the Indian Ocean. However the abundances of Hydrogenimonadaceae and Nautiliaceae were higher in the Indian Ocean. 
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Fig. S14 Histogram of linear discriminant analysis (LDA) showing differential microbial abundance in the Atlantic Ocean and the Arctic Ocean. 
[bookmark: OLE_LINK18]The abundances of the taxa affiliated with the CAT phyla, including Desulfurobacteraceae, Thermosulfidibacteraceae, and B14-G1, were all higher in the Arctic Ocean than those in the Atlantic Ocean. 
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Fig. S15 Histogram of linear discriminant analysis (LDA) showing differential microbial abundance in the Atlantic Ocean and the Indian Ocean. 
The abundance of the taxon affiliated with the CAT phyla, i.e., Hydrogenimonadaceae, was higher in the Indian Ocean than in the Atlantic Ocean. 
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Fig. S16 Histogram of linear discriminant analysis (LDA) showing differential microbial abundance in the Indian Ocean and the Red Sea. 
[bookmark: OLE_LINK12]The abundances of the taxa affiliated with the CAT phyla, including Sufurovaceae, Sulfurimonadaceae, Hydrogenothermaceae, and Aquificaceae, were all higher in the Indian Ocean than those in the Red Sea. 
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Fig. S17 Box plots of the E-index of the three null PER-SIMPER models (dispersal- and niche-controlled simulation model, dispersal-controlled simulation model, and niche-controlled simulation model) calculated for the microbial community pair-group between the early-originated oceans (the Pacific Ocean, Arctic Ocean, and Mediterranean Sea) and the late-formed oceans (the Atlantic Ocean, Indian Ocean, and the Red Sea)
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Fig. S18 Box plots of the E-index of the three null PER-SIMPER models (dispersal- and niche-controlled simulation model, dispersal-controlled simulation model, and niche-controlled simulation model) calculated for the microbial community pair-group between the Pacific Ocean and the Arctic Ocean
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Fig. S19 Box plots of the E-index of the three null PER-SIMPER models (dispersal- and niche-controlled simulation model, dispersal-controlled simulation model, and niche-controlled simulation model) calculated for the microbial community pair-group between the Pacific Ocean and the Atlantic Ocean
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Fig. S20 Box plots of the E-index of the three null PER-SIMPER models (dispersal- and niche-controlled simulation model, dispersal-controlled simulation model, and niche-controlled simulation model) calculated for the microbial community pair-group between the Pacific Ocean and Indian Ocean
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Fig. S21 Box plots of the E-index of the three null PER-SIMPER models (dispersal- and niche-controlled simulation model, dispersal-controlled simulation model, and niche-controlled simulation model) calculated for the microbial community pair-group between the Pacific Ocean, and the Mediterranean Sea
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Fig. S22 Box plots of the E-index of the three null PER-SIMPER models (dispersal- and niche-controlled simulation model, dispersal-controlled simulation model, and niche-controlled simulation model) calculated for the microbial community pair-group between the Mediterranean Sea and the Atlantic Ocean
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Fig. S23 Box plots of the E-index of the three null PER-SIMPER models (dispersal- and niche-controlled simulation model, dispersal-controlled simulation model, and niche-controlled simulation model) calculated for the microbial community pair-group between the Mediterranean Sea and the Indian Ocean
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Fig. S24 Box plots of the E-index of the three null PER-SIMPER models (dispersal- and niche-controlled simulation model, dispersal-controlled simulation model, and niche-controlled simulation model) calculated for the microbial community pair-group between the Arctic Ocean and the Atlantic Ocean
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Fig. S25 Box plots of the E-index of the three null PER-SIMPER models (dispersal- and niche-controlled simulation model, dispersal-controlled simulation model, and niche-controlled simulation model) calculated for the microbial community pair-group between the Atlantic Ocean and the Indian Ocean
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Fig. S26 Box plots of the E-index of the three null PER-SIMPER models (dispersal- and niche-controlled simulation model, dispersal-controlled simulation model, and niche-controlled simulation model) calculated for the microbial community pair-group between the Indian Ocean and the Red Sea
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Genes responsible for sulfide, elemental sulfur, and thiosulfate oxidation

8
M sqor M fccB M soxA M soxB M soxC M soxD M soxX M soxY M soxZ

7 . .

. anaerobic . aerobic anaerobic aerobic .
3 5 . . . .
g
= 4 . oo
o
=
L
© 3 . o . » o o o0 o

2 .

1 L H t - - :

0 Lossssnanas

X2 o 2° 22 22 2 2°
e o e‘\?’c P‘S ) 30 \9&\ »QQ?’%@ ‘e\\a""’ \K\\\a& ‘o‘a& (\"éa& 3&&
. 0\:{\6\ ‘0‘06 e“d{(\ Pt WX o N W ‘a’i“\)\) 6\‘(\0
° Oes“\w & © W 4""0%&
w w

Thermosulfidibacterota+Aquificota Campylobacterota





image4.png
Genes responsible for sulfur reduction
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Genes responsible for nitrogen reduction
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Genes responsible for oxygen reduction
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E (Log of the sum of square deviations with empirical profile)
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E (Log of the sum of square deviations with empirical profile)
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