Supplementary Material

Beneficial Endophytic Bacteria Associated with Medicinal Plant Vernonia anthelmintica flowers: Characterization and Biological activities

Nigora Rustamova1,2,3,4*, Ahmidin Wali 1,2, Niu Litao1,2, Jakhongir Movlanov4, Kakhramon Davranov3 and Abulimiti Yili1,2,*

1 Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China
2 State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China
3Department of Enzymology, Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, 100128, Uzbekistan.
4 University of Geological Science, Center of Geoinnovation Technologies, Tashkent, 100041, Uzbekistan
[bookmark: _GoBack]* Email id of the corresponding authors: Abulimiti Yili abu@ms.xjb.ac.cn, Nigora Rustamova n.rustamova@yahoo.com

Abstract
Endophytic bacteria associated with medicinal plants are a vital component of the plant microbiome and represent a valuable biological resource. This study investigates the diversity and biological activities of endophytic bacteria isolated from the flowers of Vernonia anthelmintica, a medicinal plant native to China. The research focuses on evaluating the cytotoxic, antimicrobial, antioxidant, and antidiabetic properties of natural products derived from these bacteria, as well as their effects on melanin synthesis and tyrosinase activity in B16 cells. A total of 32 bacterial strains were isolated and cultured, of which eight crude extracts exhibiting antimicrobial activity were selected for further analysis. These isolates were identified as Bacillus paranthracis XJB-1, Bacillus safensis XJB-51, Bacillus pumilus XJB-30, Bacillus halotolerans XJB-36, Bacillus subtilis XJB-57, Streptococcus lutetiensis XJB-76, Priestia megaterium XJB-41), Paenibacillus alvei XJB-13). Among them, P. megaterium XJB-41 demonstrated the strongest pharmacological potential, warranting further investigation to optimize its culture conditions for enhanced bioactive compound production. The optimal growth conditions for P. megaterium XJB-41 were determined to be LB and Nutrient Broth (NB) media, with peptone as the carbon source and yeast extract as the nitrogen source, under a 24-hour incubation period. These conditions significantly enhanced both bacterial growth and metabolite yield. Moreover, two secondary metabolites: cyclo(D-leu-L-pro) [1] and 2-benzoxazolone [2] were isolated for the first time from the ethyl acetate fraction of P. megaterium XJB-41. This strain shows significant promise as a natural source for the development therapeutic agents targeting vitiligo, cancer, and infectious diseases.

Bacillus paranthracis XJB-1
TGCTATACATGCAAGTCGAGCGAATGGATTGAGAGCTTGCTCTCAAGAAGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCC ATAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATAACATTTTGAACCGCATGGTTCGAAATTGAAAGGCGGCTTCGGCTGTCACTTATGGATGGACCCGCGTCGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGA GAGGGTGATC GGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCACGCCGCGTGAGTGATGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTAGGGAAGAACAAGTGCTAGTTGAATAAGCTGGCACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGCGCGCAGGTGGTTTCTTAAGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGGAGACTTGAGTGCAGAAGAGG AAAGTGGAATTCCATGTGTAGCGGTGAAATGCGTAGAGATATGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGTCTGTAACTGACACTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGAGGGTTTCCGCCCTTTAGTGCTGAAGTTAACGCATTAAGCACTCCGCCTGGGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGAAAACCCTAGAGATAGGGCTTCTCCTTCGGGAGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCATCATTAAGTTGGGCACTTTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGACGGTACAAAGAGCTGCAAGACCGCGAGGTGGAGCTAATCTCATAAAACCGTTCTCAGTTCGGATTGTAGGCTGCAACTCGCCTACATGAAGCTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAGAGTTTGTAACACCCGAAGTCGGTGGGGTAACCTTTTTGGAGCCAGCCGCCTAAGGTGGACAGA
Bacillus safensis XJB-51
TGCTATACATGCAAGTCGAGCGAACAGAAGGGAGCTTGCTCCCGGATGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGAGCTAATACCGGATAGTTCCTTGAACCGCATGGTTCAAGGATGAAAGACGGTTTCGGCTGTCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGGGGTAATGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAGCTCTGTTGTTAGGGAAGAACAAGTGCGAGAGTAACTGCTCGCACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGAAACTTGAGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTCCGCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAACCCTAGAGATAGGGCTTTCCCTTCGGGGACAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGACAGAACAAAGGGCTGCAAGACCGCAAGGTTTAGCCAATCCCATAAATCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAGAGTTTGCAACACCCGAAGTCGGTGAGGTAACCTTTATGGAGCCAGCCGCCGAAGGTGGCAGA

Bacillus pumilus XJB-30 
TGCTATACATGCAAGTCGAGCGGACAGAAGGGAGCTTGCTCCCGGATGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGAGCTAATACCGGATAGTTCCTTGAACCGCATGGTTCAAGGATGAAAGACGGTTTCGGCTGTCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGGGGTAATGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAGCTCTGTTGTTAGGGAAGAACAAGTGCGAGAGTAACTGCTCGCACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGAAACTTGAGTGCAGAAGAGGGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTCCGCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAACCCTAGAGATAGGGCTTTCCCT TCGGGGACAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTTAGTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATG ACGTCAAATC ATCATGCCCC TTATGACCTGGGCTACACACGTGCTACAATGGACAGAACAAAGGGCTGCGAGACCGCAAGGTTTAGCCAATCCCATAAATCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCG GTGAATACGT TCCCGGGCCT TGTACACACCGCCCGTCACACCACGAGAGTTTGCAACACCCGAAGTCGGT GAGGTAACCT TTATGGAGCC AGCCGCCGAA GGTGGCAGA

Bacillus halotolerans XJB-36
TGCTATACATGCAAGTCGAGCGGACAGATGGGAGCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACACGTGGGTA ACCTGCCTGT AAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGCTTGTTTGAACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGAGGTAATGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGG CCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAGCTCTGTTGTTAGGGAAGAACAAGTACCGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTCCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTCCGCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAATCCTAGAGATAGGACGTCCCCTTCGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGACAGAACAAAGGGCAGCGAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAGAGTTTGTAACACCCGAAGTCGGTGAGGTAACCTTTATGGAGCCAGCCGCCGAAGGTGGACAGA

Bacillus subtilis XJB-57
ATACATGCAAGTCGAGCGGACAGATGGGAGCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGCTTGTTTGAACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGAGGTAATGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAGCTCTGTTGTTAGGGAAGAACAAGTACCGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTCCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATTCCAGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTCCGCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAATCCTAGAGATAGGACCTCCCCTTCGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGACAGAACAAAGGGCAGCGAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAGAGTTTGTAACACCCGAAGTCGGTGAG GTAACCTTTT AGGAGCCAGC CGCCGAAGGT GGACAGA

Streptococcus lutetiensis XJB-76
TGCTATACATGCAAGTAGAACGCTGAAGACTTTAGCTTGCTAAAGTTGGAAGAGTTGCGAACGGGTGAGTAACGCGTAGGTAACCTGCCTACTAGCGGGGGATAACTATTGGAAACGATAGCTAATACCGCATAACAGCATTTAACCCATGTTAGATGCTTGAAAGGAGCAATTGCTTCACTAGTAGATGGACCTGCGTTGTATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATACATAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCGGCAATGGGGGCAACCCTGACCGAGCAACGCCGCGTGAGTGAAGAAGGTTTTCGGATTGTAAAGCTCTGTTGTAAGAGAAGAACGTGTGTGAGAGTGGAAAGTTCACACAGTGACGGTAACTTACCAGAAAGGGACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTCCCGAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTAATAAGTCTGAAGTTAAAGGCAGTGGCTTAACCATTGTTCGCTTTGGAAACTGTTAGACTTGAGTGCAGAAGGGGAGAGTGGAATTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAGGAACACCGGTGGCGAAAGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAGGTGTTAGGCCCTTTCCGGGGCTTAGTGCCGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCCGATGCTATTCCTAGAGATAGGAAGTTTCTTCGGAACATCGGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCCTATTGTTAGTTGCCATCATTAAGTTGGGCACTCTAGCGAGACTGCCGGTAATAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGTTGGTACAACGAGTCGCGAGTCGGTGACGGCAAGCAAATCTCTTAAAGCCAATCTCAGTTCGGATTGTAGGCTGCAACTCGCCTACATGAAGTCGGAATCGCTAGTAATCGCGGATCAGCACGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAGAGTTTGTAACACCCGAAGTCGGTGAGGTAACCTTTTAGGAGCCAGCCGCCTAAGGTGGATAGA

Priestia megaterium XJB-41
TGCTATACATGCAAGTCGAGCGAACTGATTAGAAGCTTGCTTCTATGACGTTAGCGGCGGACGGGTGAGTAACACGTGGGCAACCTGCCTGTAAGACTGGGATAACTTCGGGAAACCGAAGCTAATACCGGATAGGATCTTCTCCTTCATGGGAGATGATTGAAAGATGGTTTCGGCTATCACTTACAGATGGGCCCGCGGTGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCCACGATGCATAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTAGGGAAGAACAAGTACAAGAGTAACTGCTTGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGAAAAGCGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGGCTTTTTGGTCTGTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGAGGGTTTCCGCCCTTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAACTCTAGAGATAGAGCGTTCCCCTTCGGGGGACAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTTAGTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGATGGTACAAAGGGCTGCAAGACCGCGAGGTCAAGCCAATCCCATAAAACCATTCTCAGTTCGGATTGTAGGCTGCAACTCGCCTACATGAAGCTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAGAGTTTGTAACACCCGAAGTCGGTGGAGTAACCGTAAGGAGCTAGCCGCCTAAGGTGGACAGA

Paenibacillus alvei XJB-13
TGCTATACATGCAAGTCGAGCGGACTTGATGGAGTGCTTGCACTCCTGATGGTTAGCGGCGGACGGGTGAGTAACACGTAGGTAACCTGCCCATAAGACTGGGATAACCCACGGAAACGTGAGCTAATACCAGATAGGCATTTTCCTCGCATGAGGGAAATGAGAAAGGCGGAGCAATCTGCCACTTATGGATGGACCTGCGGCGCATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGGCGACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAGCTCTGTTGCCAGGGAAGAACGCCTAGGAGAGTAACTGCTCTTAGGGTGACGGTACCTGAGAAGAAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGGGCGAGCGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGCAATGTAAGTTGGGTGTTTAAACCTAGGGCTCAACCTTGGGTCGCATCCAAAACTGCATAGCTTGAGTACAGAAGAGGAAAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGGCTGTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAATGCTAGGTGTTAGGGGTTTCGATACCCTTGGTGCCGAAGTTAACACATTAAGCATTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGACCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCTGAATGACCGTCCTAGAGATAGGGCTTTCCTTCGGGACATTCAAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTAACTTTAGTTGCCAGCATTCAGTTGGGCACTCTAGAGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTACTACAATGGTCGGTACAACGGGAAGCGAAGCCGCGAGGTGGAGCCAATCCTAAAAAGCCGATCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGTCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGTCTTGTACACACCGCCCGTCACACCACGAGAGTTTACAACACCCGAAGTCGGTGAGGTAACCGCAAGGAGCCAGCCGCCGAAGGTGGGAGA
HPLC Analysis of secondary metabolites produced by endophytic bacteria
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Figure S1. HPLC Analysis of secondary metabolites produced by endophytic bacteria Bacillus paranthracis XJB-1
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Figure S2. HPLC Analysis of secondary metabolites produced by endophytic bacteria Bacillus pumilus XJB-30
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Figure S3. HPLC Analysis of secondary metabolites produced by endophytic bacteria Paenibacillus alvei XJB-13
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Figure S4. HPLC Analysis of secondary metabolites produced by endophytic bacteria Bacillus halotolerans XJB-36
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Figure S5. HPLC Analysis of secondary metabolites produced by endophytic bacteria Priestia megaterium XJB-41
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Figure S6. HPLC Analysis of secondary metabolites produced by endophytic bacteria Bacillus safensis XJB-51
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Figure S7. HPLC Analysis of secondary metabolites produced by endophytic bacteria Bacillus subtilis XJB-57
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Figure S8. HPLC Analysis of secondary metabolites produced by endophytic bacteria Streptococcus lutetiensis XJB-76
[image: ]
Figure S9. Procedure of isolation and purification
NMR spectrometr of secondary metabolites by endophytic bacteria P. megaterium XJB-41

[image: C:\Users\lenovo\AppData\Roaming\Tencent\Users\494299256\QQ\WinTemp\RichOle\WD2~46S2}A)S]~Z$T%XQM[L.png] Figure S10. 1H-NMR spectrum of compound 20 in CD3OD.
[image: C:\Users\lenovo\AppData\Roaming\Tencent\Users\494299256\QQ\WinTemp\RichOle\$(9%XT$@7KXRB]A3J68J1NH.png]
Figure S11. 1H-NMR spectrum of compound 20 in CD3OD.
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Figure S12. 1H NMR spectrum of compound 21 in (+) HR-ESI-MS
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Figure S13. 1H-NMR spectrum of compound 21 in CD3OD.
[image: C:\Users\lenovo\AppData\Roaming\Tencent\Users\494299256\QQ\WinTemp\RichOle\JJK4%GN)UW9AEXN8}P2BHSE.png] Figure S14. 13C-NMR spectrum of compound 21 in CD3OD.
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CRUDE EXTRACTS #10 F11 UV_VIS_1 WVL:210 nm
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CRUDE EXTRACTS #12 F13 UV_VIS_1 WVL:210 nm
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CRUDE EXTRACTS #14 F15 UV_VIS_1 WVL:210 nm
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Total ethyl acetate extract of P megaterium XJB-41 (3.2 g)
Fractioned by Flash chromatography (DOS)

with methanol and water

}

A total 10 main fractions

l
T N A Y R B B

F-32(49.9mg) | | F-3 (61 mg) F-4 (800 mg) F-5(240 mg) || F-6 (461 mg) | | F-7(28 mg) F-8 (41 mg) F-9 (178 mg) | | F-8 (342mg)

v

Sephadex LH-20
Chloroform-methanol (1:1)

PHPLC (X-select, 5 pum)
ACN: H,0

}

Comp: 1 and 2 (42 mg and 138 mg)
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CRUDE EXTRACTS #2 F2 UV_VIS_1 WVL:210 nm
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CRUDE EXTRACTS #3 F3 UV_VIS_1 WVL:210 nm
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62 - 31.813

63 - 32.193

64 - 32.687

65 - 32.927

66 - 34.557

67 - 36.173

68 - 36.907

69 - 37.923

70 - 38.427

71 - 38.853

72 - 40.127

73 - 41.847

74 - 42.780

75 - 44.673

76 - 45.910

77 - 48.280

78 - 49.737

79 - 51.930

80 - 56.300

81 - 57.227

82 - 58.393

84 - 63.560

83 - 60.990

85 - 64.193

86 - 64.997

87 - 65.450

88 - 65.990

89 - 66.487

90 - 67.207

91 - 67.503

92 - 67.577

93 - 67.873

94 - 68.307

95 - 68.507

96 - 68.610

100 - 69.447

97 - 68.917

98 - 69.120

99 - 69.310

101 - 69.647

102 - 69.773

103 - 69.923 104 - 70.140

105 - 70.283

106 - 70.383

107 - 70.567

108 - 70.720

109 - 70.970

110 - 71.103

111 - 71.330

112 - 71.493

113 - 71.913 114 - 72.087

115 - 72.353

116 - 72.677

117 - 73.147

118 - 73.360

119 - 73.513

120 - 73.647

121 - 74.000

122 - 74.247

123 - 76.927 124 - 78.503

125 - 78.977

126 - 79.763

127 - 82.240

min

mAU

CRUDE EXTRACTS #4 F4 UV_VIS_1 WVL:210 nm


