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I. Detailed Derivation of the Partition Function

This derivation assumes the grand canonical partition function for a single state factorizes, which holds for non-interacting particles or serves as an effective description for the statistical mechanics of Haldane exclusion statistics [19]. The partition function for a single quantum state with a maximum occupancy of m particles is defined by the sum over all allowed occupation numbers:



where  is the energy of the state, and  is the chemical potential. This is a finite geometric series. Using the identity for the sum of a geometric series,


 we obtain:


This is the general form used in the main text. The probability of occupancy n is given by the Boltzmann factor normalized by the partition function: .

II. Maximum Entropy and the Uniform Distribution

The von Neumann entropy  is maximized when the probability distribution is uniform. We prove this using the method of Lagrange multipliers to maximize S under the constraint .

The Lagrangian is:


where we use natural logarithm for convenience (the base of the logarithm in the entropy definition only contributes a multiplicative constant, and the maximum is found at the same distribution). Taking the derivative with respect to P(n):

.

This implies  for all n, meaning all P(n) are equal. From the normalization constraint, with m+1 states, we find:
.

Substituting into the entropy formula yields the maximum capacity:

.

Supplementary Figure S1 shows these uniform distributions for different statistics parameters g.


III. Finite-Temperature Analysis

The main text focuses on the maximum capacity at . Here, we analyze the entropy S as a function of) for different g values. The entropy is calculated from the full expression:

.

Supplementary Figure S2 shows S versus  for g = 1 (fermions), g = 1/2 (semions), and g = 1/3. The entropy peaks at , reaching its maximum value of . The width of the peak decreases as m increases, showing that systems with higher capacity are more sensitive to detuning from the chemical potential.

IV. Connection to the Holevo Bound

The maximum entropy  corresponds to the Holevo bound  [16], which defines the ultimate classical information capacity of a quantum channel. For a quantum system that can be prepared in states with probabilities , the bound is:

where  is the von Neumann entropy.

In our case, the "states" are the different occupation numbers n. For a quantum dot in the Coulomb blockade regime, these are energy eigenstates and are therefore orthogonal and perfectly distinguishable via a charge measurement. The Holevo bound thus simplifies to the Shannon entropy of the classical source:



which is maximized by the uniform distribution, yielding  This confirms that our result is consistent with the fundamental limits of quantum information theory.

V. Extended Discussion on Experimental Realization
The predicted conductance plateaus for the  state  can be observed using quantum dot spectroscopy [18]. Key experimental considerations:

 Platform: A GaAs-based two-dimensional electron gas in the fractional quantum Hall regime.
 Conditions: High magnetic field (), low temperature (T < 100 mK) [9].
 
Expected Signals:
 
 · Conductance : Quantized plateaus as a function of gate voltage . The number of plateaus (four) is the primary signature, corresponding to the discrete occupancies n = 0, 1, 2, 3. The plateau values are set by tunneling rates and are not expected to be precisely at integer multiples of  [6]. The key prediction is the four-periodicity.
 
 · Shot Noise: Peaks in noise power  at transitions between plateaus, providing direct signatures of the fractional charge 3 tunneling [10,11]. while theoretical analyses of interferometers predict additional singular features in noise arising from anyonic tunneling processes [17].

This four-periodicity is consistent with recent experimental studies of anyonic Fabry-Pérot interferometers, which have observed oscillations with a period of 4 in the phase of the interference pattern, corresponding to the four possible occupation states of an anyon localized within the interferometer [17].

Supplementary Figure S3 shows simulated conductance and shot noise data, illustrating these expected signatures.

VI. Quantum Information Application: The Anyonic Qudit

The quantization of entropy to bits, as derived in Supplementary Note 2, has a direct and profound implication: the anyonic state constitutes a native qudit—a higher-dimensional generalization of a qubit. For the (g = 1/3) state  this corresponds to a four-level quantum system or "ququart," capable of encoding two bits of classical information.

A. Qudit Readout Principle
The projective measurement of the qudit state is performed by a direct conductance measurement. The quantized conductance serves as the pointer variable, projecting the system onto one of the four orthogonal charge occupancy eigenstates  A single-shot measurement of thus yields a direct readout of the two-bit state, a significant advantage over sequential measurements often required for multi-qubit systems.

B. Hardware Implementation and Resource Analysis 
Supplementary Figure S4 illustrates the proposed readout circuitry and contrasts it with the conventional approach. 

- Panel a (Anyonic Qudit): The readout requires a single quantum dot tuned to the  state, controlled by one plunger gate  with one pair of source (S) and drain (D) contacts, and a single analog-to-digital converter (ADC) for measurement. 

- Panel b (Two Qubits): Encoding the same 4-dimensional Hilbert space with standard qubits requires two physically isolated quantum dots, two independent plunger gates  ), two pairs of contacts, and two separate measurement circuits (ADC1, ADC2). 

C. Distinguishability and the Orthogonality of States
A valid qudit requires its computational basis states to be distinguishable. In this system, the charge occupancy states  \) are energy eigenstates (due to the large charging energy in the Coulomb blockade regime) and are therefore orthogonal . A charge sensor (e.g., a quantum point contact or single-electron transistor) can distinguish between these states with high fidelity, fulfilling this requirement [20]. 


D.  Outlook towards Quantum Operations

While this work establishes the readout principle for a static anyonic qudit, performing quantum gate operations would require the controlled manipulation of superpositions of these charge states. This presents a fertile ground for future theoretical and experimental work, potentially leveraging microwave irradiation or non-adiabatic gate pulses for coherent control.






VII. Outlook on Non-Abelian Statistics

The theoretical framework developed here for the information capacity of quantum states governed by Haldane exclusion statistics is explicitly derived for abelian anyons. A natural and significant extension of this work involves its application to systems exhibiting non-abelian statistics, such as those predicted to exist in the fractional quantum Hall state or in certain topological superconductors [S21, S22].

The fundamental distinction of non-abelian anyons is that their exchange operations are described by unitary transformations acting on a degenerate ground state manifold, rather than simple phase factors. The key quantity characterizing these excitations is the quantum dimension , with  indicating non-abelian statistics. The quantum dimension quantifies the asymptotic growth of the Hilbert space with the number of particles and is directly related to the topological entanglement entropy [S23].

We posit that the maximum information capacity for a state dominated by non-abelian anyons would be fundamentally governed by this quantum dimension. We propose the following conjecture for the generalized non-abelian information capacity:


This conjecture is motivated by several robust arguments:

A. Hilbert Space Scaling:  The dimension of the fusion space for anyons grows as . The associated von Neumann entropy for a uniform distribution over these states is extensive and proportional to per anyon.

B. Topological Entanglement Entropy: The constant sub-leading term in the entanglement entropy of a topological region is which represents the irreducible long-range quantum information encoded in the anyonic state [S23].

C. Generalization of Abelian Case: For abelian anyons, the quantum dimension is  and our derived capacity  =  depends solely on the maximum occupancy. For non-abelian anyons, subsumes this role, characterizing the effective number of degrees of freedom per anyon.

For instance, the Ising anyon model (a candidate for ) has quantum dimension  which would imply a per-state information capacity ofbits. While this is lower than the 2-bit capacity we predict for the  state, the distinguishing feature of non-abelian anyons is the collective, topologically protected Hilbert space formed by their braiding, which is the basis for fault-tolerant topological quantum computation [S21].

A rigorous derivation of an exclusion statistics framework for non-abelian anyons, culminating in a partition function and an explicit form for  remains an open challenge. It would require a careful formulation of state counting rules within the constraints of fusion rules. Our present work provides the essential abelian limit and a clear conceptual foundation for this future endeavor. Experimentally, probing this capacity would require techniques sensitive to the quantum dimension and non-abelian braiding statistics, such as noise correlations [S24].
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Supplementary Figure S1 | Occupancy probability distributions at maximum entropy. The probability distribution P(n) of finding n anyons in a single quantum state is shown for three different values of the exclusion statistics parameter g. At maximum entropy, which occurs when the energy level is aligned with the chemical potential  all allowed occupational states are equally probable. 

This results in a uniform distribution, and the corresponding maximum von Neumann entropy (information capacity) is  where  is the maximum allowed occupancy. For fermions  the capacity is 1 bit (qubit). For semions  and the  the capacities are approximately 1.585 bits and 2 bits, respectively.
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Supplementary Figure 2 | Finite-temperature dependence of the entropy. The von Neumann entropy S is plotted as a function of the detuning from the chemical potential,  for three different statistics parameters g. The entropy reaches its theoretical maximum, (indicated by dashed horizontal lines), only when the energy level is precisely tuned to the chemical potential  The width of the entropy peak narrows as the maximum occupancy (m increases, indicating that systems with higher information capacity (e.g., ) require more precise energy-level tuning to achieve their full capacity.
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Supplementary Figure 3 | Simulated experimental signatures for the  state. (a) Theoretical prediction for the differential conductance  through an anyon-trapping quantum dot as a function of gate voltage . The four distinct plateaus correspond to the quantum dot being occupied by n = 0, 1, 2, 3 anyons (labeled), directly demonstrating the 2-bit information capacity predicted for statistics parameter g = 1/3. The conductance values are given in units of the fundamental quantum for charge- quasiparticles. (b) The corresponding predicted shot noise power . Peaks in the noise spectrum occur at the transitions between conductance plateaus and provide a signature of the fractional charge  tunneling through the dot.
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Supplementary Figure S4 | Quantum circuit implementation of an anyonic qudit. a, Measurement setup for a single anyonic qudit in the  state. A single quantized conductance measurement across the source (S) and drain (D) terminals, controlled by a plunger gate projects the state onto one of four charge occupancy  encoding two bits of information. b, Equivalent setup for two conventional qubits required to span the same 4-dimensional Hilbert space, necessitating duplicate hardware.
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Supplementary Figure S2 | Finite-temperature entropy
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Supplementary Figure S3 | Simulated experimental signatures for v = 1/3 state
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