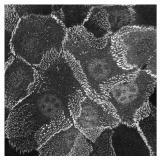
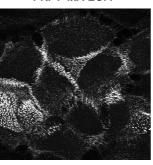


Figure S5

A)

PKP1 - phosphorylation sites




Motive A: RQKS 54 KS 56 S 57 QS 59 S 60 T 61 LS 63 HS 65 NRGS 69 Motive B: DNYNYGT 82 TS 84 RSSYYS

Motive C: DNRRFS¹¹⁸S¹¹⁹YS¹²¹QMENWS¹²⁷RHYPR

 $\label{eq:motiveD:RGT} \text{Motive D: RGT}^{166} \text{LRKGT}^{171} \text{LGS}^{174} \text{KGQKT}^{179} \text{T}^{180} \text{QNRYS}^{185} \text{FYS}^{188} \text{T}^{189} \text{CS}^{191} \text{G}$

Figure S1: Loss of PKP1 increases secretion of pro-inflammatory cytokines. **(A)** Western blot analysis of WT, PKP1-KO (1KO) and PKP1-rescue (RES) KCs to depict PKP1 expression. Endogenous PKP1 (~ 82 kDa) is indicated by an arrowhead. PKP1-WT-EGFP (~ 136 kDa) expressed in PKP1-KO KCs (RES) is marked with an asterisk. **(B)** WT, PKP1-KO (1KO) and PKP1-rescue (RES) KCs where exposed to UV. After 24h the medium was collected to quantify the amounts of secreted CXCL1, IL-1α, and TNFα using ELISA. Depicted are the mean fold changes (± SD) of secreted cytokines upon UV-treatment relative to WT cells (n = 4). **(C)** WT, PKP1-KO (1KO) and PKP1-rescue (RES) KCs where transfected with pIC. After 24h the medium was collected to quantify the amounts of secreted CXCL1, IFN-β1, IL-1α, IL-6, and TNFα using ELISA. Depicted are the mean fold changes (± SD) of secreted cytokines upon pIC stimulation relative to WT cells (n = 4). **(D)** Normalized enrichment scores (NES) for the top 5 "mouse-ortholog hallmark" gene sets as determined by gene set enrichment analysis (GSEA). GSEA was performed using a gene list ranked by fold change expression between pIC-transfected PKP1-KO (1KO) and untreated 1KO KCs.

Figure S2: Expression of IRF family members in mouse KCs. mRNA level (FPKM, fragments per kilobase per million mapped reads) of IRFs in untreated (Ctrl) and pIC-transfected WT, PKP1-KO (1KO) and PKP1-rescue (RES) KCs based on RNA-seq data.

Figure S3: WB analysis of RLR signaling pathway. **(A)** Quantification of protein amounts derived from Western blot analysis of pIC transfected WT, 1KO and RES KCs shown in Fig. 5B. Depicted are the fold changes (\pm SD) of β-actin-normalized protein amounts in untreated (ctrl) and pIC transfected KCs relative to untreated (RIG-I, LGP2, MAVS) or pIC- (MDA5) transfected WT KCs (n = 4). **(B)** Quantification of protein amounts derived from Western blot analysis of 1KO KCs transfected with the indicated siPools prior to pIC stimulation. Depicted are the fold changes (\pm SD) of the respective protein amounts normalized to β-actin and relative to control siPool transfected 1KO KCs (blue dotted line; n = 4, related to Fig. 5C). Statistical significances were

determined by one-way ANOVA with Tukey's multiple comparison. n.s. = not significant; * p < 0.05; ** p < 0.01; *** p < 0.001.

Figure S4. Quantification of DExD/H-box helicase expression in pIC transfected WT, 1KO and RES KCs. Quantification of protein amounts from immunoblots of DExD/H-box helicases. β-actin was used as loading control. Depicted are the fold changes (\pm SD) of the respective protein amounts in untreated and pIC transfected KCs normalized to β-actin and relative to untreated WT KCs (n = 4, related to Fig. 6D). Statistical significances were determined by one-way ANOVA with Tukey's multiple comparison. n.s. = not significant; * p < 0.05; ** p < 0.01; *** p < 0.001.

Figure S5. Efficiency of DExD/H-box helicase knock down. Western blot analysis of 1KO KCs transfected with the indicated siPools prior to pIC stimulation. Left: Representative immunoblots of DExD/H-box helicases. β-actin was used as loading control. Right: Quantification of protein amounts. Depicted are the fold changes (\pm SD) of the respective protein amounts normalized to β-actin and relative to control siPool transfected 1KO KCs (blue dotted line; n = 4). Statistical significances were determined by one-way ANOVA with Tukey's multiple comparison. n.s. = not significant; * p < 0.05; ** p < 0.01; *** p < 0.001.

Figure S6. A PKP1 mutant covering several phosphorylation sites localizes to desmosomes. **(A)** Scheme showing the four motives in the head-domain of PKP1 that regulate its localization through phosphorylation. **(B)** Fluorescence images of PKP1-KO KCs either expressing PKP1-WT-EGFP or PKP1-4xA-EGFP incubated for 24h in HCM. Exchange of all serine and threonine residues depicted in **(A)** to alanine locks PKP1 at cell-cell contacts.

Table S1: List of used siPools (defined pools of 30 selected siRNAs) obtained from siTools Biotech GmbH

Target	NCBI Gene ID
non-targeting control	N/A
murine <i>Ddx1</i>	104721
murine <i>Ddx3x</i>	13205
murine <i>Dhx15</i>	13204
murine <i>Ddx21</i>	56200
murine <i>Rela</i> (p65)	19697
murine <i>Irf3</i>	54131
murine <i>Mavs</i>	228607
murine Ifih1 (MDA5)	71586
murine <i>Dhx58</i> (LGP2)	80861
murine <i>Ddx21</i>	56200
murine <i>Rigi</i> (RIG-I, DDX58)	230073

Table S2: List of used ELISA kits

ELISA-Kit	Source	Identifier
ELISA MAX™ Standard Set Mouse IL-1α	BioLegend	Cat# 433401
ELISA MAX™ Standard Set Mouse IL-6	BioLegend	Cat# 431301
ELISA MAX™ Standard Set Mouse TNF-α	BioLegend	Cat# 430901
Mouse CXCL1/KC DuoSet ELISA	R&D Systems	Cat# DY453-05
Mouse IFN-beta DuoSet ELISA	R&D Systems	Cat# DY8234-05

Table S3: Primary antibodies including dilutions in Western Blot (WB), immunofluorescence (IF) or proximity ligation assay (PLA)

Antibody	Source	Identifier	Dilution
c-Myc (D84C12) Rabbit mAb	Cell Signaling		
	Technology	RRID: AB_1903938	1:1000 (WB)
DDX1 (A-7) Mouse mAb	Santa Cruz		1:500 (WB)
	Biotechnology	RRID: AB_10650122	1:250 (PLA)
DDV21 Dabbit Ab	Cell Signaling	RRID: n.a.	1:1000 (WB)
DDX21 Rabbit pAb	Technology	Cat# 75762	1:500 (PLA)
DDX3 (D19B4) Rabbit mAb	Cell Signaling		1:1000 (WB)
DDAS (D1964) Kabbit IIIAb	Technology	RRID: AB_10860416	1:500 (PLA)
DHV15 (E.6) Mausa mAh	Santa Cruz		1:1000 (WB)
DHX15 (E-6) Mouse mAb	Biotechnology	RRID: AB_10707990	1:500 (PLA)
GFP Rabbit pAb	Rockland	RRID: AB_828167	1:2000 (WB)
IDE 2 (D92P0) Pabbit mAb	Cell Signaling		
IRF-3 (D83B9) Rabbit mAb	Technology	RRID: AB_1904036	1:500 (WB)
LCD2 Dabbit nAb	Thermo Fisher		
LGP2 Rabbit pAb	Scientific	RRID: AB_2855046	1:1000 (WB)
MAVS (E8Z7M) Rabbit mAb	Cell Signaling		
#83000	Technology	RRID: AB_2927715	1:2000 (WB)
MDA-5 (D74E4) Rabbit mAb	Cell Signaling		
#5321	Technology	RRID: AB_10694490	1:1000 (WB)
NF-κB p65 (D14E12) XP®	Cell Signaling		1:2000 (WB)
Rabbit mAb #8242	Technology	RRID: AB_10859369	1:1000 (IF)
Phospho-IRF-3 (Ser396)			
(D6O1M) Rabbit mAb	Cell Signaling		
#29047	Technology	RRID:AB_2773013	1:500 (WB)
Phospho-NF-кВ p65 (Ser536)	Cell Signaling		
(93H1) Rabbit mAb #3033	Technology	RRID: AB_331284	1:1000 (WB)
PKP1 (10B2) Mouse mAb	Santa Cruz		
#sc-33636	Biotechnology	RRID: AB_2164139	1:1000 (WB)
PKP1 Rabbit (serum)	Hatzfeld Lab	(1,2)	1:1000 (PLA)
RIG-I (D14G6) Rabbit mAb	Cell Signaling		1:1000 (WB)
#3743	Technology	RRID: AB_2269233	1:500 (PLA)
β-actin Mouse mAb #A2228	Sigma-Aldrich	RRID: AB_476697	1:2000 (WB)

Table S4: List of secondary antibodies including dilutions in immunoblot (IB) and immunofluorescence (IF)

Antibody	Source	ldentifier	Dilution
	Jackson		
Peroxidase-AffiniPure	ImmunoResearch		1:20,000
Donkey Anti-Mouse IgG	Labs	RRID: AB_2340770	(WB)
	Jackson		
Peroxidase-AffiniPure	ImmunoResearch		1:40,000
Donkey Anti-Rabbit IgG	Labs	RRID: AB_10015282	(WB)
Alexa Fluor® 488			
AffiniPure F(ab') ₂	Jackson		
Fragment Donkey Anti-	ImmunoResearch		
Rabbit IgG	Labs	RRID: AB_2340619	1:500 (IF)

Table S5: Sequences of primers (FW = forward primer, REV = reverse primer) used in qRT-PCR

Primer	Sequence 5'> 3'
<i>Eef2</i> -mouse FW	ATGAGGCCGCCATGGGTATTA
Eef2-mouse REV	TAGTTGGGGCCCATGATCCG
Cxcl1-mouse FW	AAGAATGGTCGCGAGGCTTG
Cxcl1-mouse REV	GTGTTGTCAGAAGCCAGCGT
<i>Il1a</i> -mouse FW	GTCAACTCATTGGCGCTTGA
<i>Il1a</i> -mouse REV	TGCAAGTCTCATGAAGTGAGC
<i>Il6</i> -mouse FW	AACGATGATGCACTTGCAGAAA
<i>Il6</i> -mouse REV	TGGTACTCCAGAAGACCAGAG
<i>Tnf</i> -mouse FW	GCCTATGTCTCAGCCTCTTCTC
<i>Tnf</i> -mouse REV	AGGGTCTGGGCCATAGAACTG
Ifnb1-mouse FW	CGTGGGAGATGTCCTCAACT
Ifnb1-mouse REV	CTGAAGATCTCTGCTCGGACC

^{1.} Hatzfeld, M., Haffner, C., Schulze, K. and Vinzens, U. (2000) The function of plakophilin 1 in desmosome assembly and actin filament organization. *J Cell Biol*, **149**, 209-222.

^{2.} Wolf, A., Krause-Gruszczynska, M., Birkenmeier, O., Ostareck-Lederer, A., Huttelmaier, S. and Hatzfeld, M. (2010) Plakophilin 1 stimulates translation by promoting eIF4A1 activity. *J Cell Biol*, **188**, 463-471.