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The WME System was tested across three distinct classes of artificial intelligence models: large language models, computer 
vision models, and multimodal architectures. Each model type was configured in a baseline optimized state and compared directly 
with an identical version extended by the WME proportional consensus layer. All experiments were performed on NVIDIA A100 GPUs 
in controlled datacenter conditions, with energy, latency, and accuracy logs collected for reproducibility.

Large Language Models.
We benchmarked a 175-billion parameter LLM trained and inferred under standard mixed-precision optimization (16-bit and 8-bit 
quantization). The baseline employed common datacenter optimizations including tensor parallelism and memory sharding. The WME 
System was inserted after the attention blocks. For every token window, rolling consensus was computed across multiple scales 
(64–512 tokens). Z-score normalization was applied against prior activations, followed by subtraction of a target effect 
ε ≈ 0.02. A state was accepted only if ≥4 out of 7 windows surpassed the proportional threshold. This mechanism filtered 
redundant activations before committing to expansion.
The baseline consumed 0.45 kWh per 1,000 tokens. With the WME System, consumption dropped to 0.29 kWh per 1,000 tokens (−35%). 
Latency per token remained stable, shifting from 120 ms/token to 118 ms/token, while benchmark accuracy was preserved within ±0.3%.

Computer Vision.
ResNet-50 was benchmarked on ImageNet validation. The baseline model was accelerated with pruning and mixed precision (FP16). 
The WME System was applied after convolutional blocks. Feature maps were processed in proportional windows, with the 72–28–2 
ratio enforced before activation expansion.
Baseline efficiency measured 1.8 images per joule with Top-1 accuracy of 76.2%. With WME, energy efficiency increased to 
2.6 images per joule, representing a 44% gain. Energy consumption decreased by ~32%, and Top-1 accuracy remained identical at 
76.2%, showing that performance was preserved.

Multimodal Models.
In CLIP-like architectures combining text and image embeddings, the WME System was inserted as a joint consensus layer applied 
to both modalities before fusion. Rolling consensus ensured proportional redistribution of text and image vectors, filtering 
redundant activations before alignment.
Baseline multimodal inference consumed energy consistent with standard CLIP throughput. With WME, consumption decreased by 
30–35%, with no change in latency. Accuracy on cross-modal retrieval tasks remained preserved. Additionally, semantic drift 
measured across long-context windows showed improved stability under the WME regime. Representational consistency between 
modalities degraded more slowly, suggesting that proportional redistribution enhanced robustness over extended inference.

Datacenter-Level Measurements.
Energy was logged directly from GPU draw under datacenter monitoring tools. For LLM inference, a baseline workload at 0.45 kWh 
per 1,000 tokens scaled to an annual datacenter cost of US$ 10.3M in a 10 MW facility. With WME, the equivalent workload 
consumed 0.29 kWh per 1,000 tokens, reducing annual cost to US$ 6.7M, a saving of approximately US$ 3.6M. Latency remained 
within operational tolerance (118–120 ms/token). In vision and multimodal cases, energy reductions of 30–35% scaled similarly 
to substantial operational savings without additional infrastructure.

Implementation Details.
The WME System is implemented as a modular layer without altering baseline architectures. Inputs are segmented into rolling 
windows, multi-scale z-scores are computed, and a consensus threshold enforces proportional redistribution. The minimal escape 
of ~2% operates as redistribution trigger, 28% as anchoring state, and 72% as expansion channel. This aligns internal states 
with proportional stability before committing to downstream computation.
The method is compatible with existing inference pipelines and hardware accelerators, requiring no specialized modifications. 
It introduces no measurable latency overhead since consensus is evaluated in parallel across windows.

Evaluation Protocol.
Datasets included standard NLP benchmarks and synthetic binary sequences with ±2% shifts for LLM stability testing, ImageNet 
validation for vision, and standard retrieval benchmarks for multimodal evaluation. Baselines employed established optimizations 
including quantization, pruning, and mixed precision. Comparisons were direct: each baseline model was paired with its WME-augmented 
counterpart under identical hardware and software conditions.
Energy was measured in kWh per 1,000 tokens (LLMs) and images per joule (vision), while multimodal throughput was expressed in 
embeddings per joule. Latency was logged in ms/token or ms/image. Accuracy metrics included benchmark test sets for LLMs, Top-1 
accuracy for ImageNet, and retrieval accuracy for multimodal. Semantic drift was evaluated over extended inference windows, with 
alignment error logged across modalities.

Generalization Potential.
The proportional consensus mechanism can be extended beyond the tested domains. Candidate applications include convolutional 
neural networks outside of vision, recommendation engines where redundancy amplifies in embeddings, reinforcement learning 
environments requiring efficient state propagation, and edge AI where energy limitations dominate. Simulation environments based 
on differential meshes are also candidates for proportional redistribution, linking computational efficiency to physical system 
modeling.


