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Supplementary Figure 1 Metacells in the primate MTG data. (a) Number of single cells per
metacell in each species. (2) Fraction of the top 1 cell type in each metacell in each species.
(c) UMAP visualisation of metacells in each species with cell type annotation (“Subclass” in

original study). MTG, middle temporal gyrus.
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Supplementary Figure 2 Group specific genes shared among cell types. Upset plots
showing which cell types share the most group specific (enriched and enhanced) genes in
each species. Intersections are ordered by intersection size, while set size is ordered by

broad type.
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Supplementary Figure 3 Gene specificity class conservation among 020 orthologs in the
primate MTG dataset, for each species pair. Average specificity class conservation heatmap
showing the percent overlap among one-to-one orthologs in various specificity class



combinations (calculation process see methods). Pie chart showing the aggregated
percentage of cell type conservation and class conservation for genes with cell type level
specificity or group level specificity.
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Supplementary figure 4 Gene specificity class switching mostly happens between
transcriptomically similar cell types. (a) Showing the top cell type pairs in which cell
type-specific genes switched between them. (b) Showing examples of cell type enriched
genes that switched cell type between species with the top frequency. Mean expr., mean

scaled expression. VLMC, vascular leptomeningeal cell; OPC, oligodendrocyte precursor cell;
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Micro-PVM, microglial cell; L6 IT, L6 intratelencephalic neurons; Endo, cerebral cortex
endothelial cell; Astro, astrocyte of the cerebral cortex.
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Supplementary figure 5 GO BP enrichment of genes that stayed in the same specificity
class. Here shows the GO BP enrichment of genes that stayed enriched in the same cell type
in any pair of species. Top most frequent enriched terms across each broad type were
selected and plotted in the figure. Semantic similarity between the selected GO BP terms
were calculated and used for hierarchical clustering, showing on the left and summarised by
keywords.
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Supplementary figure 6 Gene distribution class conservation matrix for each species pair.
Showing the average distribution class conservation heatmap (calculation process see
methods). Pie chart showing the aggregated percentage of cell type conservation of genes
that stayed expressed in over 90% of cell types; genes stayed expressed in a single cell type,
and genes expressed in some cell types.
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H.sapiens and P.troglodytes conserved lowly specific and broadly expressed genes
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c H.sapiens and M.mulatta conserved lowly specific and broadly expressed genes
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Supplementary figure 7 Gene ontology enrichment results for genes stayed lowly specific
and broadly expressed between human and other species in the primate MTG data. Figure
made with emapplot from the R package enrichplot. Showing 70 categories. P-values were
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corrected for multiple comparisons using the Benjamini-Hochberg method, and results were
considered significant if P < 0.01.
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Supplementary figure 8 Gene class conservation among 020 orthologs in the
embryogenesis dataset. (a) Average specificity class conservation heatmap showing the
percent overlap among 1-2-1 orthologs in various specificity class combinations (calculation
process see methods). (b)-(c) Pie chart showing the aggregated percentage of cell type
conservation and class conservation for genes with (b) cell type level specificity or (c) group
level specificity. (d) Average distribution class conservation heatmap (calculation process
see methods). (e)-(g) Pie chart showing the aggregated percentage of cell type conservation
of genes stayed expressed in (e) over 90% of cell types; genes stayed expressed in (f) a
single cell type, and genes expressed in (g) some cell types.
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Supplementary figure 9 Gene class conservation among 020 orthologs in the Cnidarian
dataset. (a) Average specificity class conservation heatmap showing the percent overlap
among 1-2-1 orthologs in various specificity class combinations (calculation process see
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methods). (b)-(c) Pie chart showing the aggregated percentage of cell type conservation and
class conservation for genes with (b) cell type level specificity or (c) group level specificity.
(d) Average distribution class conservation heatmap (calculation process see methods).
(e)-(g) Pie chart showing the aggregated percentage of cell type conservation of genes
stayed expressed in (e) over 90% of cell types; genes stayed expressed in (f) a single cell
type, and genes expressed in (g) some cell types. (h) species tree of this dataset.
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Supplementary figure 10 Gene class conservation among 020 orthologs in primate MTG
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not non-neuronal cells. (a)-(b) Number of cell type-specific genes across species for each
cell type. (c) Average specificity class conservation heatmap showing the percent overlap
among one-to-one orthologs in various specificity class combinations (calculation process
see methods). (d) Pie chart showing the aggregated percentage of cell type conservation
and class conservation for genes with cell type level specificity. (e) Average distribution
class conservation heatmap (calculation process see methods). (f)-(h) Pie chart showing
the aggregated percentage of cell type conservation of genes stayed expressed in (f) over
90\% of cell types; genes stayed expressed in (g) a single cell type and genes expressed in
(h) some cell types.
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Supplementary figure 11 Gene class conservation among 020 orthologs in the
human-mouse bone marrow dataset using all cell types, compared with using only shared
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cell types. (a) Specificity class conservation heatmap showing the percent overlap among
1-2-1 orthologs in various specificity class combinations using all cell types (b) distribution
class conservation heatmap using all cell types. Red boxes indicate the stripe pattern,
indicating genes with specificity in mouse but not human, attributed to mouse data-specific
cell types. (c) Specificity class conservation heatmap showing the percent overlap among
1-2-1 orthologs in various specificity class combinations using shared cell types. (d)-(e) Pie
chart showing the aggregated percentage of cell type conservation and class conservation
for genes with cell type level specificity (d) or group level specificity (e). (f) Distribution class
conservation heatmap using shared cell types. (g)-(i) Pie chart showing the aggregated
percentage of cell type conservation of genes stayed expressed in over 90% of cell types (g);
genes stayed expressed in a single cell type (h,) and genes expressed in some cell types (i).
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Supplementary figure 12 Gene class switching explains species effect on transcriptomic
space for each species pair. (a) UMAP visualisation using different sets of 020 orthologs
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for all species data. Showing the strong species effect using all genes, the reduced species
effect using (strictly) conserved specific genes, as well as a purified species effect observed
in data using diverged to unspecific genes. 020, one-to-one; UMAP, Uniform Manifold
Approximation and Projection; PC, principal component.
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Supplementary figure 13 Schematic of the comparison of expression specificity similarity
and sequence conservation of orthologs. Gene A and gene a represent orthologs from
different species. Expression specificity similarity is calculated with the cosine similarity of

gene specificity scores across cell types. Protein sequence conservation is the bit score of
BLASTp.
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Supplementary figure 14 Comparing sequence conservation with cell type expression
specificity similarity across species distance for enhanced genes. The top left triangle plots
the sequence conservation (bit score) against the expression similarity (cosine similarity) for
each pair of cell type or group enhanced orthologs in each pair of species. The bottom right
triangle shows the distribution of bit scores for different types of orthologs for the same set
of genes. 020: one-to-one, 02M: one-to-many, M20: many-to-one, M2M: many-to-many.
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a H.sapiens and P.troglodytes conserved cell type-specific and high sequence conservation genes
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Supplementary figure 15 Gene ontology enrichment results for genes that have complete
specificity conservation and high sequence similarity between human and other species.



Figure made with emapplot from the R package enrichplot. Showing 70 categories. P-values
were corrected for multiple comparisons using the Benjamini-Hochberg method, and results
were considered significant if P < 0.01.
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Supplementary figure 16 Comparing sequence conservation with cell type expression
specificity similarity in embryogenesis data. (a) and (c) plots the sequence conservation
(bit score) against the expression similarity (cosine similarity) for each pair of cell type
enriched or enhanced orthologs, respectively. (d) and(e) shows the distribution of bit scores
for different types of orthologs for the same set of genes. 1-2-1: one-to-one, 1-2-M:
one-to-many, M-2-1: many-to-one, M-2-M: many-to-many.
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