

[bookmark: _GoBack]Supplementary material
Table S1. Comparison of predictors in the training and testing datasets.
	Variable
	Training set
	Test set
	p-value

	Age (years)
	61.00 [54.00-70.00]
	61.00 [54.00-70.00]
	0.13

	Weight (kg)
	64.00 [60.00-69.00]
	64.00 [60.00-69.00]
	0.93

	Sex

	- Male
	76.02%
	23.81%
	0.36

	- Female
	23.98%
	76.19%
	

	CRCL (mL/min)
	14.16 [6.90-22.19]
	14.17 [6.90-22.19]
	0.90

	CLCRRT(L/h)
	1.96 [1.74-2.25]
	1.96 [1.74-2.25]
	0.17

	APACHE II score
	20.00 [15.00-25.00]
	20.00 [15.00-25.00]
	0.95

	AMT (mg)
	1000.00 [500.00-2000.00]
	1000.00 [500.00-2000.00]
	0.19

	RATE (mL/h)
	666.67 [166.67-4000.00]
	666.67 [166.67-4000.00]
	0.78

	MIC (mg/L)
	2.00 [0.25-16.00]
	2.00 [0.25-16.00]
	0.39

	TAU (h)
	8.00 [6.00-12.00]
	8.00 [6.00-12.00]
	0.77

Data are presented as median [min-max] for continuous variables and as percentages for categorical variables. The Wilcoxon rank-sum test was used for continuous variables, and the chi-squared test was used for categorical variables to compare the training and testing datasets. No significant differences were observed between the two datasets (p > 0.05 for all comparisons). Abbreviations: CRCL, creatinine clearance; APACHE II, Acute Physiology and Chronic Health Evaluation II; AMT, dose amount; RATE, infusion rate; MIC, minimum inhibitory concentration; TAU, dosing interval.

Table S2. Tuned hyperparameters for 6 ML models.
	ML model
	Parameters

	RF
	{'criterion': 'gini', 'max_depth': 5, 'max_features': 2, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 80}

	XGBoost
	{'colsample_bytree': 0.8, 'gamma': 0.6, 'learning_rate': 0.2, 'max_depth': 5, 'n_estimators': 100, 'reg_alpha': 1, 'reg_lambda': 1, 'subsample': 0.8}

	AdaBoost
	{'algorithm': 'SAMME.R', 'learning_rate': 0.1, 'n_estimators': 50}

	DT
	{'criterion': 'gini', 'max_depth': None, 'max_features': None, 'min_samples_leaf': 2, 'min_samples_split': 2}

	GB
	{'criterion': 'friedman_mse', 'learning_rate': 0.1, 'max_depth': 3, 'max_features': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 100, 'subsample': 1.0}

	LR
	{'C': 10, 'penalty': 'l2', 'solver': 'liblinear'}

Abbreviations: RF, Random Forest; XGBoost, Extreme Gradient Boosting; AdaBoost, Adaptive Boosting; DT, Decision Tree; GB, Gradient Boosting; LR, Logistic Regression.

Table S3. MeroDose Web Application Code.
	import streamlit as st
import numpy as np
import pandas as pd
import joblib
import plotly.graph_objects as go
=== Page configuration ===
st.set_page_config(page_title="MeroDose - Meropenem PD Prediction Tool", layout="centered")
=== Custom CSS ===
st.markdown(
 """
 <style>
 /* Main content area with white background, rounded corners, shadow, centered */
 .main .block-container {
 background: #ffffffcc;
 border-radius: 12px;
 padding: 30px 40px 40px 40px;
 box-shadow: 0 8px 24px rgba(0,0,0,0.12);
 max-width: 700px;
 margin: 30px auto;
 }
 /* Title font color Indigo */
 .css-15zrgzn h1 {
 color: #4b0082;
 font-weight: 700;
 }
 /* Prediction metric area with light green background */
 .stMetric {
 background-color: #d6f5d6 !important;
 border-radius: 10px;
 padding: 12px;
 }
 </style>
 """,
 unsafe_allow_html=True,
)
=== Load models and scalers ===
scaler_4mic = joblib.load("scaler_adaboost_4mic.pkl")
scaler_mic = joblib.load("scaler_adaboost_mic.pkl")
model_4mic = joblib.load("adaboost_4mic.pkl")
model_mic = joblib.load("adaboost_mic.pkl")
=== Title and description ===
st.title("💊 MeroDose")
st.markdown(
 """
 MeroDose: Meropenem Individualized Dosing Decision Support Tool
 This tool predicts the probability of achieving **100% fT>MIC** and **100% fT>4×MIC**
 to support individualized meropenem dosing in **critically ill patients undergoing continuous renal replacement therapy (CRRT) receiving meropenem therapy**.
 """
)
=== Input form ===
st.header("Patient & Dosing Information")

Create two-column layout for inputs
col1, col2 = st.columns(2)
1. Basic information
with col1:
 age = st.number_input("Age (years)", value=55.0)
 wt = st.number_input("Weight (kg)", value=75.0)
 mic = st.number_input("Pathogen MIC (mg/L)", value=1.0)
with col2:
 sex = st.selectbox("Sex", options=["Male", "Female"])
 crcl = st.number_input("Creatinine Clearance (ml/min)", value=0.53)
 clcrrt = st.number_input("CRRT Clearance (ml/min)", value=1.80)
2. Clinical scores and dosing information
with col1:
 apacheii = st.number_input("APACHE II Score", value=24.0)
 dose = st.number_input("Dose (mg)", value=1000.0, help="Total dose administered.")
with col2:
 rate = st.number_input("Infusion Rate (mg/h)", value=500.0, help="Infusion speed.")
 tau = st.number_input("Dosing Interval (h)", value=8.0)
submitted = st.button("Predict")
=== Prediction calculation ===
if submitted:
 sex_encoded = 1 if sex == "Male" else 0
 continuous_vars = ["AMT", "RATE", "AGE", "WT", "CRCL", "CLCRRT", "APACHEII", "MIC", "TAU"]

 # Construct input DataFrame with column names
 input_cont = pd.DataFrame([[dose, rate, age, wt, crcl, clcrrt, apacheii, mic, tau]], columns=continuous_vars)

 # 4×MIC prediction
 input_scaled_4mic = scaler_4mic.transform(input_cont)
 input_df_4mic = pd.DataFrame(input_scaled_4mic, columns=continuous_vars)
 input_df_4mic["SEX_1"] = sex_encoded
 expected_features_4mic = continuous_vars + ["SEX_1"]
 for col in expected_features_4mic:
 if col not in input_df_4mic.columns:
 input_df_4mic[col] = 0
 input_df_4mic = input_df_4mic[expected_features_4mic]

 pred_4mic = model_4mic.predict(input_df_4mic)[0]
 prob_4mic = model_4mic.predict_proba(input_df_4mic)[0][1]

 # MIC prediction
 input_scaled_mic = scaler_mic.transform(input_cont)
 input_df_mic = pd.DataFrame(input_scaled_mic, columns=continuous_vars)
 input_df_mic["SEX_1"] = sex_encoded
 expected_features_mic = continuous_vars + ["SEX_1"]
 for col in expected_features_mic:
 if col not in input_df_mic.columns:
 input_df_mic[col] = 0
 input_df_mic = input_df_mic[expected_features_mic]

 pred_mic = model_mic.predict(input_df_mic)[0]
 prob_mic = model_mic.predict_proba(input_df_mic)[0][1]

 # === Display results ===
 st.subheader("Prediction Results")

 col1, col2 = st.columns(2)
 with col1:
 st.metric(
 label="100% fT > 4×MIC Target",
 value="Achieved ✅" if pred_4mic == 1 else "Not Achieved ❌",
 delta=f"{prob_4mic:.2%} Probability",
)
 with col2:
 st.metric(
 label="100% fT > MIC Target",
 value="Achieved ✅" if pred_mic == 1 else "Not Achieved ❌",
 delta=f"{prob_mic:.2%} Probability",
)

 # === Probability Gauges ===
 st.markdown("### Probability Gauges")
 gauge_col1, gauge_col2 = st.columns(2)

 with gauge_col1:
 fig1 = go.Figure(go.Indicator(
 mode="gauge+number",
 value=prob_4mic*100,
 title={'text': "100% fT > 4×MIC Target (%)"},
 gauge={'axis': {'range': [0, 100]},
 'bar': {'color': "green" if pred_4mic == 1 else "red"},
 'threshold': {'line': {'color': "black", 'width': 4}, 'thickness': 0.75, 'value': 90}}
))
 st.plotly_chart(fig1, use_container_width=True)

 with gauge_col2:
 fig2 = go.Figure(go.Indicator(
 mode="gauge+number",
 value=prob_mic*100,
 title={'text': "100% fT > MIC Target (%)"},
 gauge={'axis': {'range': [0, 100]},
 'bar': {'color': "green" if pred_mic == 1 else "red"},
 'threshold': {'line': {'color': "black", 'width': 4}, 'thickness': 0.75, 'value': 90}}
))
 st.plotly_chart(fig2, use_container_width=True)

 st.info("⚠️ These predictions are for reference only. Combine with TDM and clinical judgement.")

