

## Supplementary Information for

2  
3 **Colony formation sustains the global competitiveness of N<sub>2</sub>-fixing *Trichodesmium* under**  
4 **ocean acidification**

5  
6 Weicheng Luo<sup>1, 2, 3</sup>, Meri Eichner<sup>2</sup>, Ondřej Prášil<sup>2</sup>, Keisuke Inomura<sup>4</sup>, Futing Zhang<sup>2</sup>, Ya-Wei  
7 Luo<sup>1, 5\*</sup>

<sup>9</sup> <sup>1</sup>State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences,  
<sup>10</sup> Xiamen University, Xiamen 361102, China.

11 <sup>2</sup>Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 37901,  
12 Czech Republic.

13 <sup>3</sup>Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China. & College of Life  
14 Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.

<sup>15</sup>Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA.

16 <sup>5</sup>China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor  
17 43900, Malaysia

18

19 \*To whom correspondence should be addressed. Email: [wylue@xmu.edu.cn](mailto:wylue@xmu.edu.cn) (X. W. L.).

21 **Supplementary Table 1.** Daily average rates in modeled *Trichodesmium* trichome and colony. Related to Fig. 2.

| Model cases                      | Growth<br>(d <sup>-1</sup> ) | Gross carbon fixation<br>[mol C (mol C) <sup>-1</sup> d <sup>-1</sup> ] | N <sub>2</sub> fixation<br>[mol N (mol C) <sup>-1</sup> d <sup>-1</sup> ] | Gross fixed C:N<br>[mol C (mol N) <sup>-1</sup> ] | Gross fixed carbon used by respiratory protection | Carbon use efficiency <sup>a</sup> |
|----------------------------------|------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|------------------------------------|
| Trichome (Limiting Fe' = 40 pM)  |                              |                                                                         |                                                                           |                                                   |                                                   |                                    |
| Ambient                          | 0.24                         | 3.2                                                                     | 0.044                                                                     | 74                                                | 88%                                               | 8.5%                               |
| OA                               | 0.18                         | 2.9                                                                     | 0.032                                                                     | 89                                                | 89%                                               | 7.0%                               |
| Trichome (Replete Fe' = 1250 pM) |                              |                                                                         |                                                                           |                                                   |                                                   |                                    |
| Ambient                          | 0.42                         | 3.8                                                                     | 0.082                                                                     | 47                                                | 81%                                               | 13.5%                              |
| OA                               | 0.33                         | 3.5                                                                     | 0.061                                                                     | 58                                                | 83%                                               | 10.9%                              |
| Colony (Limiting Fe' = 40 pM)    |                              |                                                                         |                                                                           |                                                   |                                                   |                                    |
| Ambient                          | 0.20                         | 3.1                                                                     | 0.036                                                                     | 85                                                | 89%                                               | 7.4%                               |
| OA                               | 0.17                         | 2.9                                                                     | 0.029                                                                     | 99                                                | 90%                                               | 6.4%                               |
| Colony (Replete Fe' = 1250 pM)   |                              |                                                                         |                                                                           |                                                   |                                                   |                                    |
| Ambient                          | 0.35                         | 3.6                                                                     | 0.068                                                                     | 53                                                | 83%                                               | 11.8%                              |
| OA                               | 0.30                         | 3.5                                                                     | 0.056                                                                     | 63                                                | 85%                                               | 10.0%                              |

22 <sup>a</sup> Carbon use efficiency: percentage of gross carbon fixation assimilated to biomass. OA: acidified condition.

23 **Supplementary Table 2.** Comparison of simulated acidification-induced effects on N<sub>2</sub> fixation from between this  
24 study and Luo, et al.<sup>1</sup>. Related to Fig. 5 and DISCUSSION.

| Acidification-induced effects on N <sub>2</sub> fixation <sup>a</sup> | Luo, et al. <sup>1</sup> | This study |
|-----------------------------------------------------------------------|--------------------------|------------|
| Energy saving from CCM                                                | < 1%                     | < 1%       |
| Downregulation on nitrogenase efficiency                              | about -40%               | about -40% |
| Reduced energy production by PET or elevated energy consumption       | about -10%               | about -10% |
| Intracellular O <sub>2</sub> management                               | Not considered           | about -5%  |

25 <sup>a</sup> Model results under Fe limitation were analyzed here.  
26

27 **Supplementary Table 3.** Modeled daily-integrated rates of *Trichodesmium* colony with toxicity effects. *Related to*  
 28 *Fig. 6 and DISCUSSION.*

| Model cases <sup>a</sup> | Growth rate<br>(d <sup>-1</sup> ) | Gross carbon fixation rate<br>[mol C<br>(mol C) <sup>-1</sup><br>d <sup>-1</sup> ] | N <sub>2</sub> fixation rate<br>[mol N<br>(mol C) <sup>-1</sup><br>d <sup>-1</sup> ] | Gross fixed C:N<br>[mol C<br>(mol N) <sup>-1</sup> ] | Gross fixed carbon used by respiratory protection | Carbon use efficiency |
|--------------------------|-----------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------|-----------------------|
| Colony (Fe' = 40 pM)     |                                   |                                                                                    |                                                                                      |                                                      |                                                   |                       |
| Ambient                  | 0.09                              | 2.2                                                                                | 0.015                                                                                | 147                                                  | 93.8%                                             | 4.3%                  |
| Acidified                | 0.11                              | 2.5                                                                                | 0.018                                                                                | 139                                                  | 93.1%                                             | 4.5%                  |
| Colony (Fe' = 1250 pM)   |                                   |                                                                                    |                                                                                      |                                                      |                                                   |                       |
| Ambient                  | 0.17                              | 2.4                                                                                | 0.030                                                                                | 82                                                   | 88.9%                                             | 7.7%                  |
| Acidified                | 0.20                              | 3.0                                                                                | 0.034                                                                                | 87                                                   | 88.9%                                             | 7.2%                  |

29 <sup>a</sup> Microenvironmental NH<sub>4</sub><sup>+</sup> concentration profile was predefined according to the findings of Klawonn, et al. <sup>2</sup>. The  
 30 pattern of microenvironmental Cu was set the same as that of NH<sub>4</sub><sup>+</sup>, with the highest concentration (1 nmol L<sup>-1</sup>) at the  
 31 center of the colony. The elevated iron acquisition due to colony formation under the acidified condition was not taken  
 32 into consideration here.

**Supplementary Table 4.** Fixed model parameters. *Related to METHODS.*

| Symbol                                  | Unit                                               | Definition                                                                                  | Value                  | Source or note          |
|-----------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------|-------------------------|
| $OA^{PET}$                              | dimensionless                                      | Parameter of OA impact on the ATP production by PET                                         | 0.4                    | This study <sup>a</sup> |
| $OA^{RESP}$                             | dimensionless                                      | Parameter of OA impact on the ATP production by respiration                                 | 0.4                    | This study <sup>a</sup> |
| $\varepsilon_{CO_2}$                    | dimensionless                                      | Relative $CO_2$ diffusivity of cell membrane                                                | $1.5 \times 10^{-3}$   | This study <sup>a</sup> |
| $f_{RP}^{CF}$                           | dimensionless                                      | Fraction of $CO_2$ production by RP to support carbon fixation                              | 75%                    | This study <sup>a</sup> |
| $N_{max}$                               | mol N (mol C) <sup>-1</sup>                        | Maximal fixed storage                                                                       | 0.159                  | This study <sup>b</sup> |
| $CS_{max}$                              | mol C (mol C) <sup>-1</sup>                        | Maximal CS storage                                                                          | 1                      | This study <sup>c</sup> |
| $k_{NH_3}$                              | mol N m <sup>-3</sup>                              | Half-saturating coefficient of $NH_3$ concentration for the toxic effect                    | $3 \times 10^{-5}$     | This study <sup>d</sup> |
| $k_{Cu}$                                | mol Cu m <sup>-3</sup>                             | Half-saturating coefficient of Cu concentration for the toxic effect                        | $2.5 \times 10^{-7}$   | This study <sup>d</sup> |
| $OA^{Cu}$                               | dimensionless                                      | Strength of negative effects from acidification on copper availability                      | 1.65                   | This study <sup>d</sup> |
| $v_{CS}^{max}$                          | mol C (mol C) <sup>-1</sup> s <sup>-1</sup>        | Maximal production rate of CS                                                               | $8.6 \times 10^{-6}$   | 3                       |
| $k_{CS}$                                | mol C (mol C) <sup>-1</sup>                        | Half-saturating coefficient of CS for RP                                                    | 0.4                    | 3                       |
| $k_{CH_2O}^{CS}$                        | mol C (mol C) <sup>-1</sup>                        | Half-saturating coefficient of $CH_2O$ for CS production                                    | 0.4                    | 3                       |
| $v_{PET}^{max}$                         | mol electron (mol C) <sup>-1</sup> s <sup>-1</sup> | Maximal PET rate                                                                            | $6.6 \times 10^{-3}$   | 3                       |
| $k_{Fe}^{PS}$                           | $\mu\text{mol Fe (mol C)}^{-1}$                    | Half-saturating coefficient of Fe in photosystems for PET rate                              | 10                     | 3                       |
| $k_{Fe_{PS}}^{PS_{syn}}$                | $\mu\text{mol Fe (mol C)}^{-1}$                    | Half-saturating coefficient of $Fe_{PS}$ for the synthesis of photosystems                  | 1.0                    | 3                       |
| $k_{Fe_{PS}}^{PS_{dec}}$                | $\mu\text{mol Fe (mol C)}^{-1}$                    | Half-saturating coefficient of $Fe_{PS}$ for the decomposition of photosystems              | 25                     | 3                       |
| $k_{Fe_{BP}}^{NF_{syn}}$                | $\mu\text{mol Fe (mol C)}^{-1}$                    | Half-saturating coefficient of $Fe_{BP}$ for the synthesis of nitrogenase                   | 5.0                    | 3                       |
| $T_{NF_{max}}^{NA}$                     | $\mu\text{mol Fe (mol C)}^{-1}$                    | Maximal inactivation rate of nitrogenase                                                    | $3.3 \times 10^{-3}$   | 3                       |
| $k_{Fe}^{NF}$                           | $\mu\text{mol Fe (mol C)}^{-1}$                    | Half-saturating coefficient of Fe in nitrogenase for $N_2$ fixation                         | 91                     | 1                       |
| $k_{O_2}^{NF}$                          | mol $O_2$ m <sup>-3</sup>                          | Half-saturating coefficient of $O_2$ for $N_2$ fixation                                     | 0.01                   | 4                       |
| $Fe_{TH}^{bst}$                         | $\mu\text{mol Fe (mol C)}^{-1}$                    | Threshold of Fe under the baseline condition                                                | 24.4                   | 1                       |
| $f_{ST}$                                | dimensionless                                      | Fraction of luxury Fe uptake                                                                | 0.90                   | 1                       |
| $OA^{ST}$                               | dimensionless                                      | Coefficient representing the strength of OA impact on $Fe_{TH}$                             | 0.71                   | 1                       |
| $\alpha_I$                              | $\mu\text{mol}^{-1} m^2 s$                         | Initial slope of $P$ versus $I$ curve                                                       | 0.01                   | 5                       |
| $\beta$                                 | $(\text{mol C})^{-1} \text{mol C}^{-1} s$          | Parameter of inhibition effect of respiration on PET                                        | $2 \times 10^4$        | 4                       |
| $\varepsilon$                           | dimensionless                                      | Relative $O_2$ diffusivity of cell membrane                                                 | $10^{-4}$              | 4                       |
| $d_{O_2}$                               | $\text{m}^2 \text{s}^{-1}$                         | $O_2$ diffusion coefficient at 34 PSU and 25 °C                                             | $2.26 \times 10^{-9}$  | 6                       |
| $d_{CO_2}$                              | $\text{m}^2 \text{s}^{-1}$                         | $CO_2$ diffusion coefficient at 34 PSU and 25 °C                                            | $1.79 \times 10^{-9}$  | 7                       |
| $\gamma_{MT}$                           | dimensionless                                      | Ratio of the energy consumed by maintenance to other process                                | 10%                    | 1                       |
| <b>Additional parameters for colony</b> |                                                    |                                                                                             |                        |                         |
| $RC$                                    | m                                                  | Radius of the colony                                                                        | $8 \times 10^{-4}$     | 2                       |
| $d_{HCO_3}$                             | $\text{m}^2 \text{s}^{-1}$                         | $HCO_3^-$ diffusion coefficient at 34 PSU and 25 °C                                         | $1.10 \times 10^{-9}$  | 7                       |
| $d_{CO_3^2}$                            | $\text{m}^2 \text{s}^{-1}$                         | $CO_3^{2-}$ diffusion coefficient at 34 PSU and 25 °C                                       | $9.28 \times 10^{-10}$ | 7                       |
| $d_{H^+}$                               | $\text{m}^2 \text{s}^{-1}$                         | $H^+$ diffusion coefficient at 34 PSU and 25 °C                                             | $8.68 \times 10^{-9}$  | 7                       |
| $d_{OH^-}$                              | $\text{m}^2 \text{s}^{-1}$                         | $OH^-$ diffusion coefficient at 34 PSU and 25 °C                                            | $4.91 \times 10^{-9}$  | 7                       |
| $k_{+I}$                                | $\text{s}^{-1}$                                    | Forward rate coefficient of $CO_2 + H_2O \xrightleftharpoons[k_{-I}]{k_{+I}} HCO_3^- + H^+$ | $3.60 \times 10^{-2}$  | 7                       |
| $k_{-I}$                                | $\text{m}^3 \text{mol}^{-1} \text{s}^{-1}$         | Reverse rate coefficient of $CO_2 + H_2O \xrightleftharpoons[k_{-I}]{k_{+I}} HCO_3^- + H^+$ | 32.2                   | 7                       |
| $k_{+4}$                                | $\text{m}^3 \text{mol}^{-1} \text{s}^{-1}$         | Forward rate coefficient of $CO_2 + OH^- \xrightleftharpoons[k_{-4}]{k_{+4}} HCO_3^-$       | 8.28                   | 7                       |
| $k_{-4}$                                | $\text{s}^{-1}$                                    | Reverse rate coefficient of $CO_2 + OH^- \xrightleftharpoons[k_{-4}]{k_{+4}} HCO_3^-$       | $3.70 \times 10^{-4}$  | 7                       |

|                                                                    |                                               |                                                                                                                   |                       |       |
|--------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------|-------|
| $k_{+5}$                                                           | $\text{m}^3 \text{ mol}^{-1} \text{ s}^{-1}$  | Forward rate coefficient of<br>$\text{CO}_3^{2-} + \text{H}^+ \xrightleftharpoons[k_{-5}]{k_{+5}} \text{HCO}_3^-$ | $9.75 \times 10^6$    | 7     |
| $k_{-5}$                                                           | $\text{s}^{-1}$                               | Reverse rate coefficient of<br>$\text{CO}_3^{2-} + \text{H}^+ \xrightleftharpoons[k_{-5}]{k_{+5}} \text{HCO}_3^-$ | 9.00                  | 7     |
| $k_{+6}$                                                           | $\text{m}^3 \text{ mol}^{-1} \text{ s}^{-1}$  | Forward rate coefficient of<br>$\text{H}_2\text{O} \xrightleftharpoons[k_{-6}]{k_{+6}} \text{H}^+ + \text{OH}^-$  | 1.33                  | 7     |
| $k_{-6}$                                                           | $\text{m}^3 \text{ mol}^{-1} \text{ s}^{-1}$  | Reverse rate coefficient of<br>$\text{H}_2\text{O} \xrightleftharpoons[k_{-6}]{k_{+6}} \text{H}^+ + \text{OH}^-$  | $2.67 \times 10^7$    | 7     |
| <b>Boundary conditions</b>                                         |                                               |                                                                                                                   |                       |       |
| $I_{max}$                                                          | $\mu\text{mol m}^{-2} \text{ s}^{-1}$         | Maximal light intensity in fixed-Fe and dynamic-Fe cases under diurnally changing light intensity                 | 160                   |       |
| $O_2^E$                                                            | $\text{mol O}_2 \text{ m}^{-3}$               | Extracellular far-field $\text{O}_2$                                                                              | 0.213                 |       |
| $\text{CO}_2^E_{bsl}$                                              | $\text{mol C m}^{-3}$                         | Extracellular far-field $\text{CO}_2$                                                                             | 0.014                 |       |
| $\text{HCO}_3^E_{bsl}$                                             | $\text{mol C m}^{-3}$                         | Extracellular far-field $\text{HCO}_3^-$                                                                          | 1.87                  |       |
| $pH_{bsl}$                                                         | dimensionless                                 | pH value under baseline condition                                                                                 | 8.08                  |       |
| <b>Elemental or energy stoichiometries of metabolic activities</b> |                                               |                                                                                                                   |                       |       |
| $q_{LPET}^{NADPH}$                                                 | $\text{mol NADPH} (\text{mol electron})^{-1}$ | NADPH/electron ratio of LPET                                                                                      | 0.5                   | 8     |
| $q_{LPET}^{ATP}$                                                   | $\text{mol ATP} (\text{mol electron})^{-1}$   | ATP/electron ratio of LPET                                                                                        | 0.65                  | 9     |
| $q_{LPET}^{O_2}$                                                   | $\text{mol O}_2 (\text{mol electron})^{-1}$   | $\text{O}_2/\text{electron}$ ratio of LPET                                                                        | 0.25                  | 8     |
| $q_{AET}^{ATP}$                                                    | $\text{mol ATP} (\text{mol electron})^{-1}$   | ATP/electron ratio of MR-AET                                                                                      | 0.65                  | 9     |
| $q_{NF}^{NADPH}$                                                   | $\text{mol NADPH} (\text{mol N})^{-1}$        | NADPH/N ratio of $\text{N}_2$ fixation                                                                            | 3                     | 10,11 |
| $q_{NF}^{ATP}$                                                     | $\text{mol ATP} (\text{mol N})^{-1}$          | ATP/N ratio of $\text{N}_2$ fixation                                                                              | 9                     | 10,11 |
| $q_{CF}^{NADPH}$                                                   | $\text{mol NADPH} (\text{mol C})^{-1}$        | NADPH/C ratio of C fixation                                                                                       | 2                     | 12    |
| $q_{CF}^{ATP}$                                                     | $\text{mol ATP} (\text{mol C})^{-1}$          | ATP/C ratio of C fixation                                                                                         | 3                     | 12    |
| $q_{HCO_3}^{ATP}$                                                  | $\text{mol ATP} (\text{mol C})^{-1}$          | ATP/C ratio of CCM for per $\text{HCO}_3^-$ transportation                                                        | 0.5                   | 13    |
| $q_{BIO}^{ATP}$                                                    | $\text{mol ATP} (\text{mol C})^{-1}$          | ATP/C ratio of biosynthesis                                                                                       | 2                     | 5     |
| $q_{RESP}^{ATP}$                                                   | $\text{mol ATP} (\text{mol C})^{-1}$          | ATP/C ratio of respiration                                                                                        | 5                     | 14    |
| $q_C^{O_2}$                                                        | $\text{mol O}_2 (\text{mol C})^{-1}$          | $\text{O}_2/\text{C}$ ratio of respiration                                                                        | 1                     | 14    |
| $Q_C$                                                              | $\text{mol C m}^{-3}$                         | Cellular carbon biomass concentration                                                                             | 18333                 | 15    |
| <b>Morphological parameters of <i>Trichodesmium</i></b>            |                                               |                                                                                                                   |                       |       |
| $L$                                                                | m                                             | Length of the total trichome                                                                                      | $554 \times 10^{-6}$  | 16    |
| $R$                                                                | m                                             | Radius of the cytoplasm                                                                                           | $4.80 \times 10^{-6}$ | 16    |
| $L_g$                                                              | m                                             | Thickness of cell membrane layer                                                                                  | 0.076                 | 16    |

<sup>a</sup> Estimated based on model experiments under constant light intensity.

<sup>b</sup> By multiplying the initial C biomass with the molar N:C (0.159) of *Trichodesmium*<sup>17</sup>.

<sup>c</sup>  $CS_{max}$  is set to be the same as the initial C biomass.

<sup>d</sup> Estimated based on model experiments with toxicity effects.

34

35

36

37

38

**Supplementary Table 5.** Optimized parameters under dynamic light intensity. *Related to METHODS.*

| Symbol              | Unit                                          | Definition                                 | Conditions of Fe level | Value                |                      |                      |                      |
|---------------------|-----------------------------------------------|--------------------------------------------|------------------------|----------------------|----------------------|----------------------|----------------------|
|                     |                                               |                                            |                        | Trichome             |                      | Colony               |                      |
|                     |                                               |                                            |                        | Ambient              | Acidified            | Ambient              | Acidified            |
| $v_{RP}^{max}$      | mol C (mol C) <sup>-1</sup> s <sup>-1</sup>   | Maximal respiratory protection rate        | High Fe                | $1.3 \times 10^{-3}$ | $1.3 \times 10^{-3}$ | $1.2 \times 10^{-3}$ | $1.4 \times 10^{-3}$ |
|                     |                                               |                                            | Low Fe                 | $1.4 \times 10^{-3}$ | $1.2 \times 10^{-3}$ | $1.3 \times 10^{-3}$ | $1.4 \times 10^{-3}$ |
| $T_{PS_{max}}^{BF}$ | $\mu\text{mol Fe (mol C)}^{-1} \text{s}^{-1}$ | Maximal synthesis rate of photosystems     | High Fe                | $2.3 \times 10^{-6}$ | $1.3 \times 10^{-7}$ | $2.3 \times 10^{-6}$ | $1.3 \times 10^{-7}$ |
|                     |                                               |                                            | Low Fe                 | $1.3 \times 10^{-9}$ | $6.2 \times 10^{-9}$ | $1.3 \times 10^{-9}$ | $6.2 \times 10^{-9}$ |
| $T_{BF_{max}}^{PS}$ | $\mu\text{mol Fe (mol C)}^{-1} \text{s}^{-1}$ | Maximal decomposition rate of photosystems | High Fe                | $3.1 \times 10^{-3}$ | $3.9 \times 10^{-4}$ | $3.1 \times 10^{-3}$ | $3.9 \times 10^{-4}$ |
|                     |                                               |                                            | Low Fe                 | $1.2 \times 10^{-3}$ | $1.2 \times 10^{-4}$ | $1.2 \times 10^{-3}$ | $1.2 \times 10^{-4}$ |
| $T_{NF_{max}}^{BF}$ | $\mu\text{mol Fe (mol C)}^{-1} \text{s}^{-1}$ | Maximal synthesis rate of photosystems     | High Fe                | $2.8 \times 10^{-2}$ | $2.7 \times 10^{-2}$ | $2.8 \times 10^{-2}$ | $2.7 \times 10^{-2}$ |
|                     |                                               |                                            | Low Fe                 | $2.8 \times 10^{-2}$ | $2.6 \times 10^{-2}$ | $2.8 \times 10^{-2}$ | $2.1 \times 10^{-2}$ |

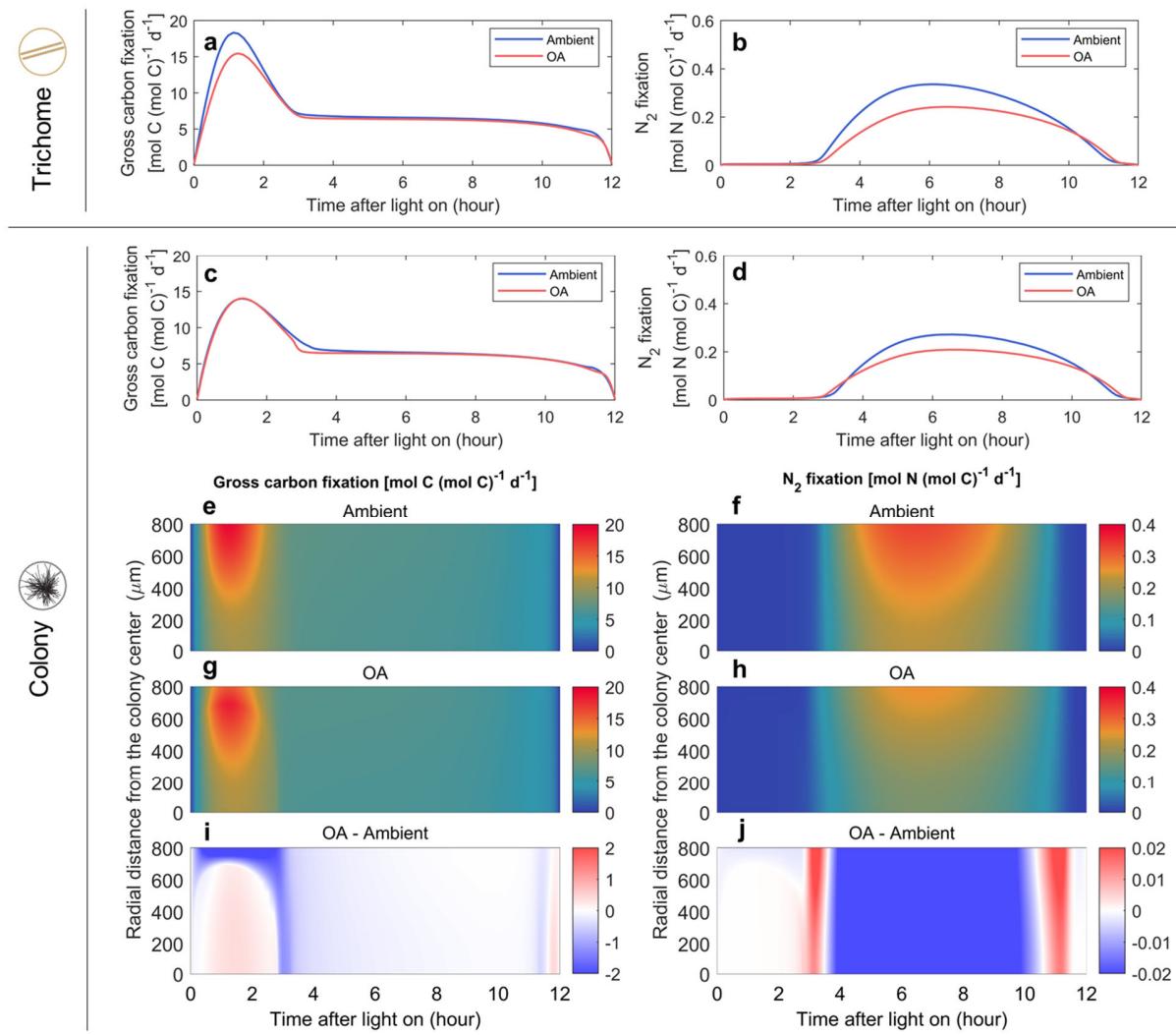
**Supplementary Table 6.** Intermediate process variables. *Related to METHODS.*

| Symbol                                                     | Unit                                                | Definition                                                                                      |
|------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------|
| $I$                                                        | $\mu\text{mol m}^{-2} \text{s}^{-1}$                | Daytime light intensity                                                                         |
| $V_{PET}$                                                  | $\text{mol electron (mol C)}^{-1} \text{s}^{-1}$    | PET rate                                                                                        |
| $V_{LPET}$                                                 | $\text{mol electron (mol C)}^{-1} \text{s}^{-1}$    | LPET rate                                                                                       |
| $V_{AET}$                                                  | $\text{mol electron (mol C)}^{-1} \text{s}^{-1}$    | AET rate                                                                                        |
| $f_{AET}$                                                  | dimensionless                                       | Fraction of electrons in PET to AET                                                             |
| $V_{NAPDH}$                                                | $\text{mol NADPH (mol C)}^{-1} \text{s}^{-1}$       | NADPH production rate                                                                           |
| $V_{ATP}$                                                  | $\text{mol ATP (mol C)}^{-1} \text{s}^{-1}$         | ATP production rate                                                                             |
| $V_{O_2}$                                                  | $\text{mol O}_2 \text{ (mol C)}^{-1} \text{s}^{-1}$ | $O_2$ production rate                                                                           |
| $V_{NF}^{max}$                                             | $\text{mol N (mol C)}^{-1} \text{s}^{-1}$           | Maximal $N_2$ fixation rate                                                                     |
| $V_{NF}$                                                   | $\text{mol N (mol C)}^{-1} \text{s}^{-1}$           | $N_2$ fixation rate                                                                             |
| $\Phi$                                                     | dimensionless                                       | Intracellular requirement of $N_2$ fixation                                                     |
| $V_{NF}^{CCM}$                                             | $\text{mol N (mol C)}^{-1} \text{s}^{-1}$           | $N_2$ fixation rate supported by energy saving from CCM                                         |
| $V_{NADPH}^{NF}$                                           | $\text{mol NADPH (mol C)}^{-1} \text{s}^{-1}$       | NADPH consumption rate of $N_2$ fixation                                                        |
| $V_{ATP}^{NF}$                                             | $\text{mol ATP (mol C)}^{-1} \text{s}^{-1}$         | ATP consumption rate of $N_2$ fixation                                                          |
| $q_{CCM}^{ATP}$                                            | $\text{mol ATP (mol C)}^{-1}$                       | Energy cost for per DIC transportation of CCM                                                   |
| $V_{ATP}^{CCM}$                                            | $\text{mol ATP (mol C)}^{-1} \text{s}^{-1}$         | ATP consumption rate of CCM                                                                     |
| $V_{ATP}^{CCM, saving}$                                    | $\text{mol ATP (mol C)}^{-1} \text{s}^{-1}$         | Rate of energy saving by CCM                                                                    |
| $V_{NADPH}^{CF}$                                           | $\text{mol NADPH (mol C)}^{-1} \text{s}^{-1}$       | NADPH consumption rate of C fixation                                                            |
| $V_{ATP}^{CF}$                                             | $\text{mol ATP (mol C)}^{-1} \text{s}^{-1}$         | ATP consumption rate of C fixation                                                              |
| $V_{CS}$                                                   | $\text{mol C (mol C)}^{-1} \text{s}^{-1}$           | Carbon skeleton production rate                                                                 |
| $V_{RP}$                                                   | $\text{mol C (mol C)}^{-1} \text{s}^{-1}$           | Respiratory protection rate                                                                     |
| $V_{O_2}^{RP}$                                             | $\text{mol O}_2 \text{ (mol C)}^{-1} \text{s}^{-1}$ | $O_2$ consumption rates by respiratory protection                                               |
| $T_{O_2}$                                                  | $\text{mol O}_2 \text{ m}^{-3} \text{s}^{-1}$       | $O_2$ diffusion rate between cytoplasm and far-field environment                                |
| $T_{CO_2}$                                                 | $\text{mol CO}_2 \text{ m}^{-3} \text{s}^{-1}$      | $CO_2$ diffusion rate between cytoplasm and far-field environment                               |
| $Fe_{TH}$                                                  | $\mu\text{mol Fe (mol C)}^{-1}$                     | Threshold of intracellular metabolic Fe quota                                                   |
| $Fe_M$                                                     | $\mu\text{mol Fe (mol C)}^{-1}$                     | Intracellular Fe quota in metabolism                                                            |
| $Fe_{ST}$                                                  | $\mu\text{mol Fe (mol C)}^{-1}$                     | Intracellular Fe quota in storage                                                               |
| $T_{PS}^{BF}$                                              | $\mu\text{mol Fe (mol C)}^{-1} \text{s}^{-1}$       | Synthesis rate of photosystems                                                                  |
| $T_{BP}^{PS}$                                              | $\mu\text{mol Fe (mol C)}^{-1} \text{s}^{-1}$       | Decomposition rate of photosystems                                                              |
| $T_{NF}^{BF}$                                              | $\mu\text{mol Fe (mol C)}^{-1} \text{s}^{-1}$       | Synthesis rate of nitrogenase                                                                   |
| $T_{NF}^{NA}$                                              | $\mu\text{mol Fe (mol C)}^{-1} \text{s}^{-1}$       | Inactivation rate of nitrogenase                                                                |
| $Bio$                                                      | $\text{mol C (mol C)}^{-1}$                         | New synthesized biomass                                                                         |
| $Bio_N$                                                    | $\text{mol C (mol C)}^{-1}$                         | New synthesized N-based biomass                                                                 |
| $Bio_C$                                                    | $\text{mol C (mol C)}^{-1}$                         | New synthesized C-based biomass                                                                 |
| $CH_2O_BIO^{RESP}$                                         | $\text{mol C (mol C)}^{-1}$                         | Respired carbohydrates to fulfill the energy need for biosynthesis                              |
| $G$                                                        | $\text{d}^{-1}$                                     | Specific growth rate                                                                            |
| <i>Additional intermediate process variables of colony</i> |                                                     |                                                                                                 |
| $\psi$                                                     | dimensionless                                       | Porosity of colony                                                                              |
| $\eta$                                                     | dimensionless                                       | DIC limitation effect on CF                                                                     |
| $\zeta$                                                    | dimensionless                                       | Toxicity effects of $NH_3$ and/or Cu                                                            |
| $J_{CO_2^M}$                                               | $\text{mol C m}^{-3} \text{s}^{-1}$                 | Change rates of $CO_2$ driven by the chemical reactions in carbonate systems                    |
| $J_{HCO_3^M}$                                              | $\text{mol C m}^{-3} \text{s}^{-1}$                 | Change rates of $HCO_3^-$ driven by the chemical reactions in carbonate systems                 |
| $J_{CO_3^M}$                                               | $\text{mol C m}^{-3} \text{s}^{-1}$                 | Change rates of $CO_3^{2-}$ driven by the chemical reactions in carbonate systems               |
| $J_{H^M}$                                                  | $\text{mol H}^+ \text{ m}^{-3} \text{s}^{-1}$       | Change rates of $H^+$ driven by the chemical reactions in carbonate systems                     |
| $J_{OH^M}$                                                 | $\text{mol OH}^- \text{ m}^{-3} \text{s}^{-1}$      | Change rates of $OH^-$ driven by the chemical reactions in carbonate systems                    |
| $T_{C, O_2}^M$                                             | $\text{mol O}_2 \text{ m}^{-3} \text{s}^{-1}$       | $O_2$ diffusion rate between the intracellular cytoplasm and the extracellular microenvironment |
| $T_{C, CO_2}^M$                                            | $\text{mol C m}^{-3} \text{s}^{-1}$                 | Net biological consumption rates of $CO_2$ of colony                                            |
| $T_{C, HCO_3}^M$                                           | $\text{mol C m}^{-3} \text{s}^{-1}$                 | Net biological consumption rates of $HCO_3^-$ of colony                                         |
| $T_{C, H}^M$                                               | $\text{mol H}^+ \text{ m}^{-3} \text{s}^{-1}$       | Net biological consumption rates of $H^+$ of colony                                             |

43 **Supplementary Table 7.** State variables. *Related to METHODS.*

| Symbol         | Unit                                | Definition                                        |
|----------------|-------------------------------------|---------------------------------------------------|
| $CH_2O$        | mol C (mol C) <sup>-1</sup>         | Carbohydrate                                      |
| $CS$           | mol C (mol C) <sup>-1</sup>         | Carbon skeleton                                   |
| $N$            | mol N (mol C) <sup>-1</sup>         | Fixed N                                           |
| $O_2$          | mol O <sub>2</sub> m <sup>-3</sup>  | Intracellular O <sub>2</sub>                      |
| $Fe_{PS}$      | µmol Fe (mol C) <sup>-1</sup>       | Fe in photosystems                                |
| $Fe_{NF}$      | µmol Fe (mol C) <sup>-1</sup>       | Fe in active nitrogenase                          |
| $Fe_{NF}^{NA}$ | µmol Fe (mol C) <sup>-1</sup>       | Fe in inactivated nitrogenase                     |
| $Fe_{BF}$      | µmol Fe (mol C) <sup>-1</sup>       | Fe in buffer                                      |
| $O_2^M$        | mol O <sub>2</sub> m <sup>-3</sup>  | O <sub>2</sub> in microenvironment                |
| $CO_2^M$       | mol C m <sup>-3</sup>               | CO <sub>2</sub> in microenvironment               |
| $HCO_3^M$      | mol C m <sup>-3</sup>               | HCO <sub>3</sub> <sup>-</sup> in microenvironment |
| $CO_3^{2-}M$   | mol C m <sup>-3</sup>               | CO <sub>3</sub> <sup>2-</sup> in microenvironment |
| $H^M$          | mol H <sup>+</sup> m <sup>-3</sup>  | H <sup>+</sup> in microenvironment                |
| $OH^M$         | mol OH <sup>-</sup> m <sup>-3</sup> | OH <sup>-</sup> in microenvironment               |

44 Note: The initial values (t = 0) of  $CH_2O$ ,  $CS$  and  $N$  are set to be 0, and initial O<sub>2</sub> concentrations is the same as that of ambient O<sub>2</sub> (0.213  
 45 mol O<sub>2</sub> m<sup>-3</sup>). Initial iron quotas are set the same as observational data from <sup>18</sup>. Initial components in the carbonate system are set as those  
 46 under ambient or acidified conditions.


47

48 **Supplementary Table 8.** Comparison of modeled and observed growth rates under diurnally constant light intensity.  
 49 *Related to METHODS.*

| Growth rate<br>(d <sup>-1</sup> ) | Ambient<br>(Fe' = 40 pM) | Acidified<br>(Fe' = 40 pM) | Ambient<br>(Fe' = 1250 pM) | Acidified<br>(Fe' = 1250 pM) |
|-----------------------------------|--------------------------|----------------------------|----------------------------|------------------------------|
| Observation <sup>a</sup>          | 0.26 ± 0.02              | 0.19 ± 0.01                | 0.46 ± 0.01                | 0.37 ± 0.01                  |
| Model                             | 0.25                     | 0.18                       | 0.46                       | 0.36                         |

50 <sup>a</sup> Data are from Shi, et al.<sup>18</sup>.

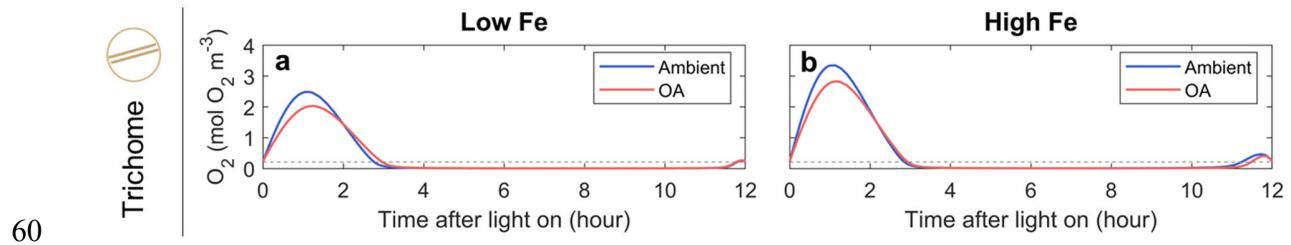
51

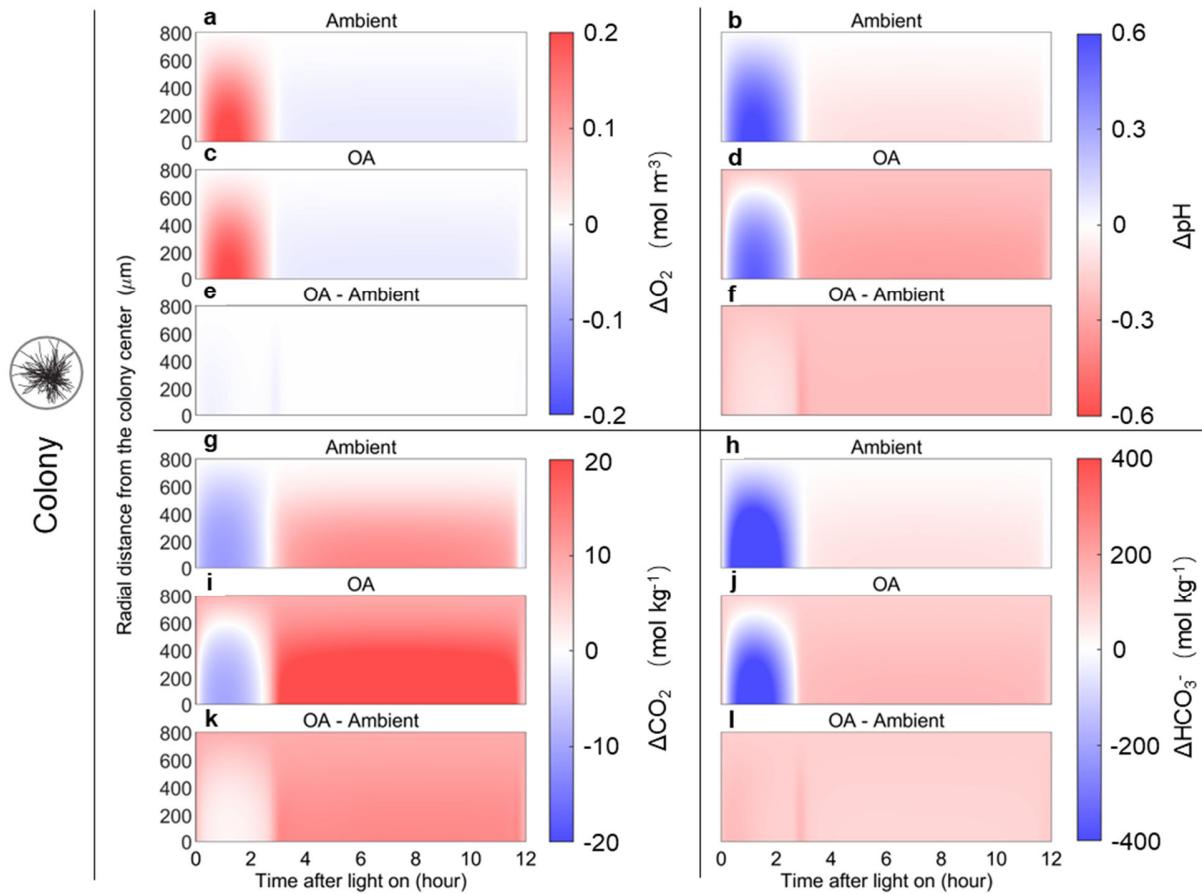


52

53 **Supplementary Figure 1.** Simulated results of *Trichodesmium* trichome and colony under replete Fe condition.

54 *Related to Fig. 3.* (a, b) The comparison of the trichome model results under ambient and acidified (OA) conditions.

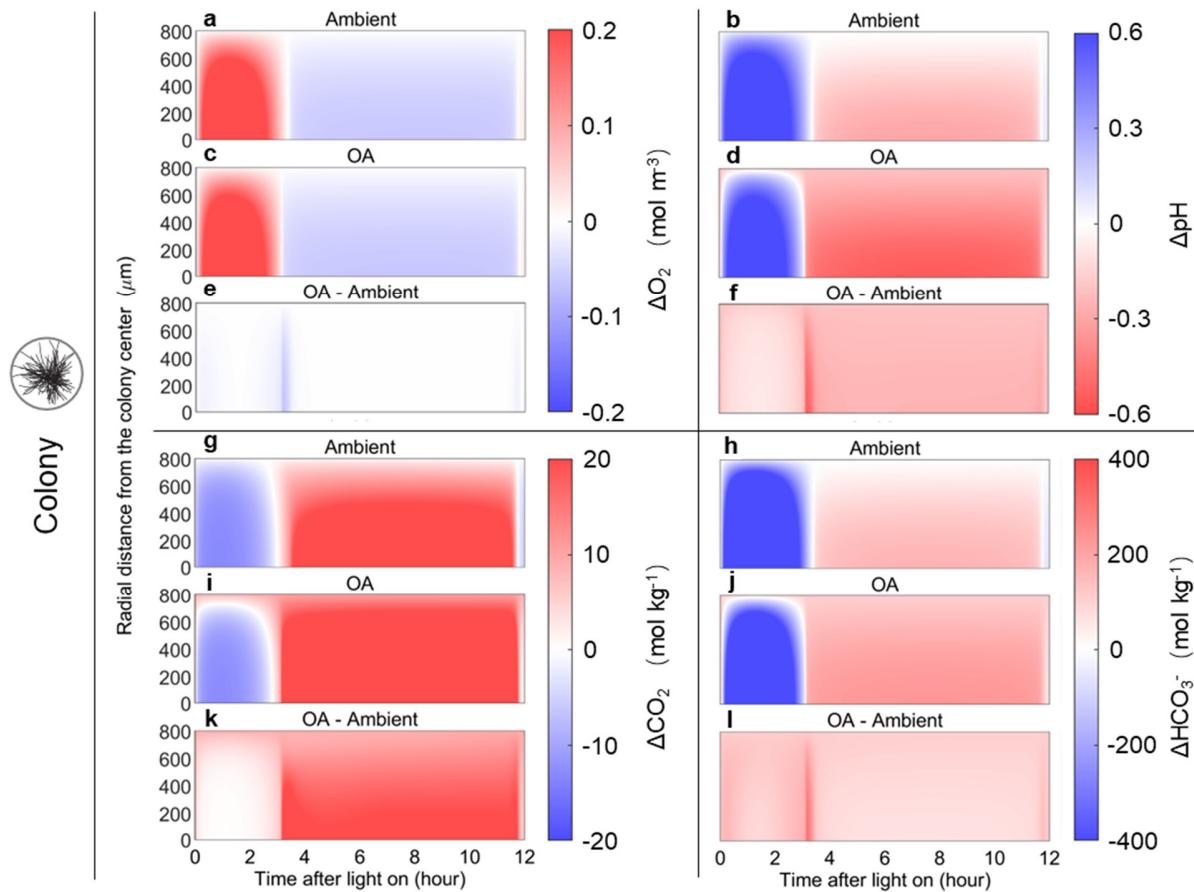

55 The colony model results under ambient and OA conditions are compared in both (c, d) their average temporal and


56 (e–j) spatiotemporal patterns. The spatiotemporal results include those under ambient conditions (e, f), OA conditions

57 (g, h) and OA minus ambient results (i, j). Left panels present gross carbon fixation rates and right panels are  $N_2$

58 fixation rates. The simulation was under a replete Fe' concentration of 1250 pM. The figure of colony was modified

59 from Klawonn, et al.<sup>2</sup>.

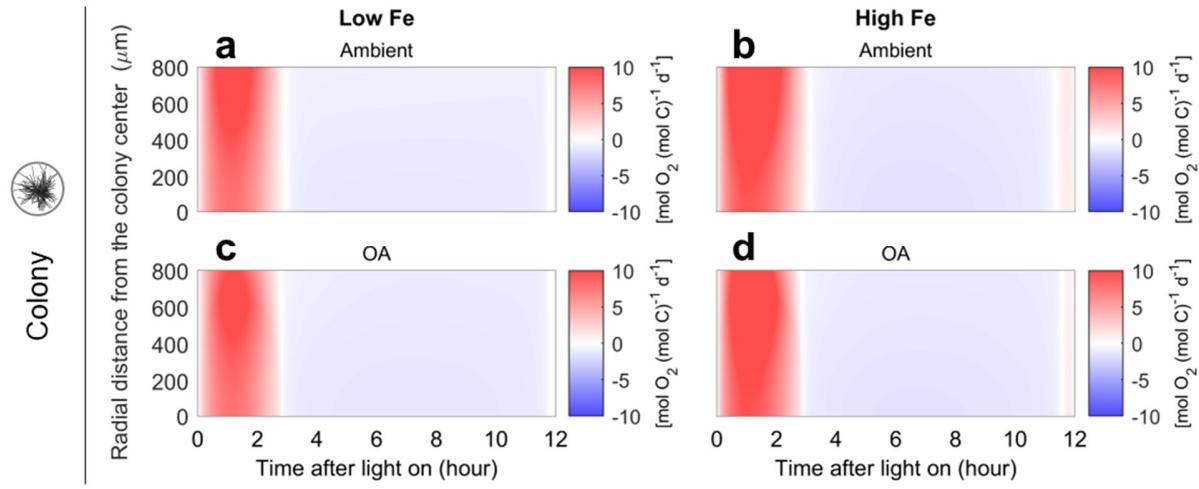


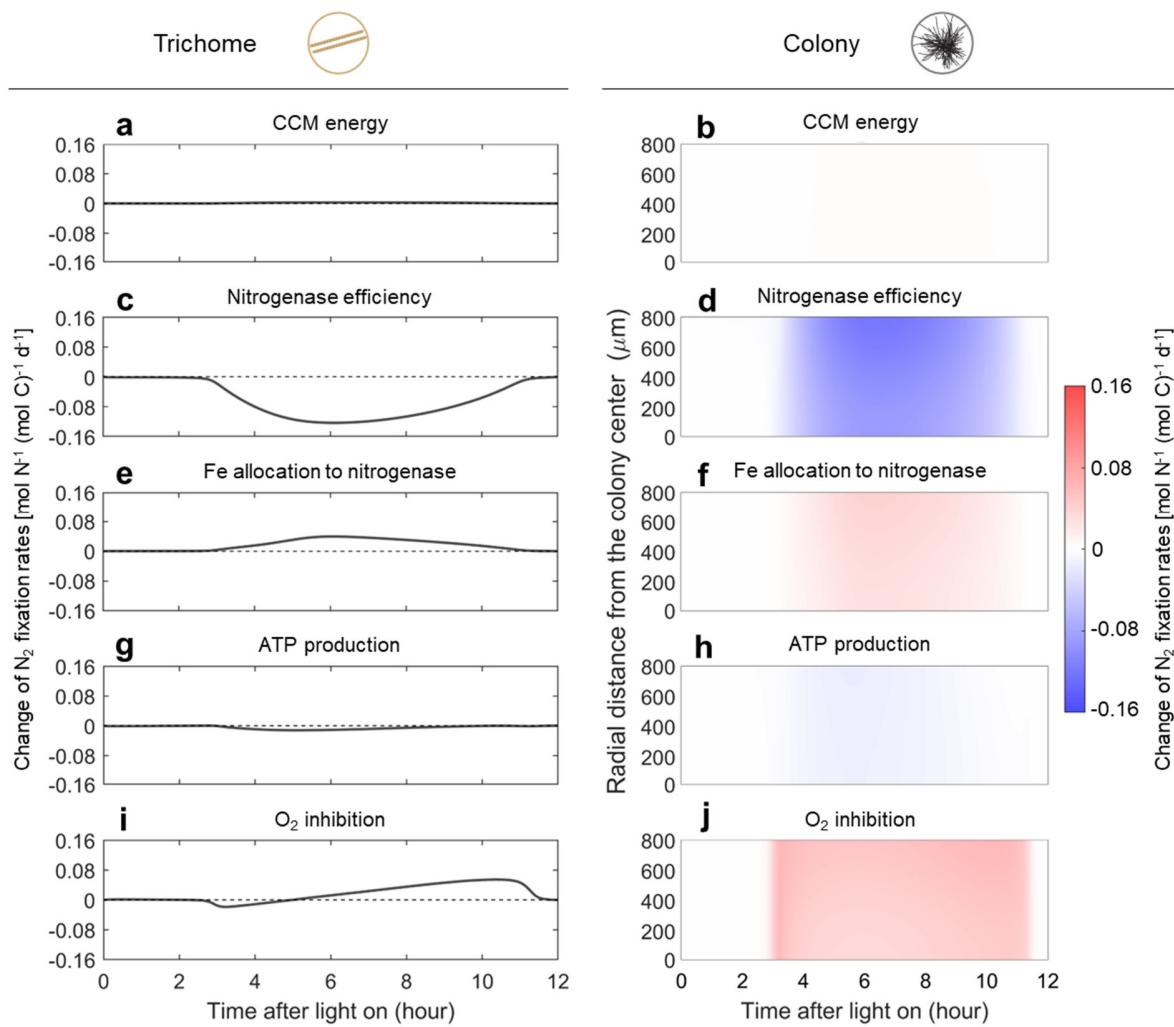



65

66 **Supplementary Figure 3.** Model experiments testing the impact of porosity gradients in biological processes on the  
 67 formation of chemical gradients in the microenvironment of the colony under limiting Fe condition.

68 Related to Fig. 4. The colony models were simulated under both ambient (a, b, g, h) and OA (c, d, i, j) conditions with  
 69 Fe' at 40 pM. The concentrations of these parameters are shown as anomaly to those under ambient far-field conditions.  
 70 The changes of these concentrations caused by OA are also displayed (e, f, k, l). The physical diffusion in the  
 71 microenvironment was simulated using full porosity (constantly 1.0 from the center to the edge). The biological  
 72 processes were simulated differently using the porosity with a gradient increasing to 1.0 at the outer edge of the colony  
 73 based on Klawonn, et al.<sup>2</sup>.

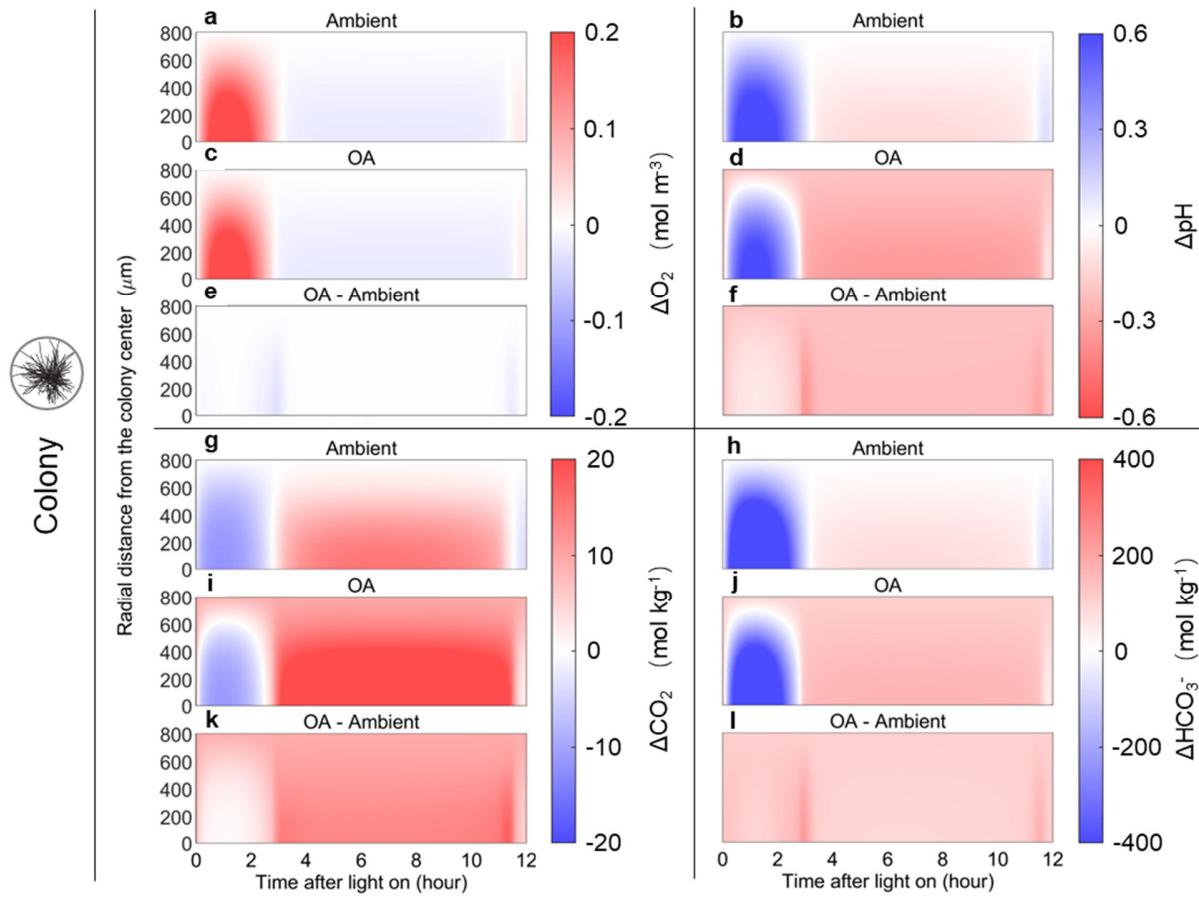




74

75 **Supplementary Figure 4.** Model experiments testing the impact of constant porosity on the formation of chemical  
76 gradients in the microenvironment of the colony under limiting Fe condition.

77 *Related to Fig. 4.* The colony models were simulated under both ambient (a, b, g, h) and OA (c, d, i, j) conditions with  
78 Fe' at 40 pM. The concentrations of these parameters are shown as anomaly to those under ambient far-field conditions.  
79 The changes of these concentrations caused by OA are also displayed (e, f, k, l). Both physical diffusion and biological  
80 processes in the microenvironment were simulated using constant porosity (0.9937) from the center to the edge of the  
81 colony based on the average level of Klawonn, et al.<sup>2</sup>. Results show that the chemical gradients were formed even  
82 though the porosity was set constant, indicating the formation of chemical gradients was primarily attributed to  
83 diffusion limitation rather than high cell density in the center of the colony.

84

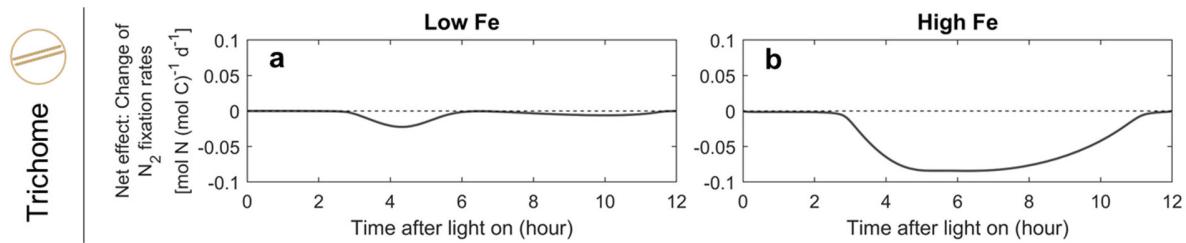





89

90 **Supplementary Figure 6.** Changes of  $N_2$  fixation rates caused by each of OA effects under replete Fe conditions.

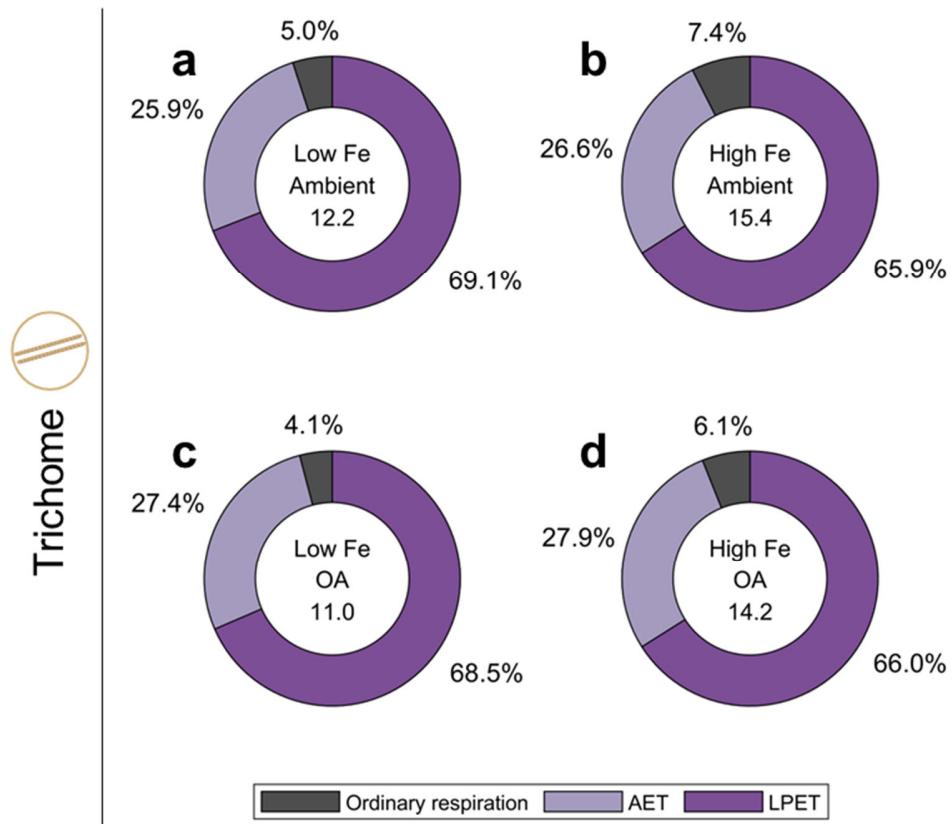
91 *Related to Fig. 5.* The trichome (left column) and colony (right column) models were simulated under ambient or  
 92 acidified (OA) conditions with Fe repletion ( $\text{Fe}' = 1250 \text{ pM}$ ). Each OA effect is calculated as the absolute changes in  
 93  $N_2$  fixation under OA conditions compared to ambient conditions, with only that specific effect implemented in the  
 94 model. The shown OA effects include those on (a, b) energy savings by CCM, (c, d) the effect of pH on nitrogenase  
 95 efficiency, (e, f) allocation of Fe to active nitrogenase, (g, h) inhibition on ATP production, and (i, j) the inhibition of  
 96  $N_2$  fixation from intracellular  $O_2$ .




97

98 **Supplementary Figure 7.** Simulated  $O_2$ , pH,  $CO_2$  and  $HCO_3^-$  concentrations in the microenvironment of the colony  
99 under replete Fe condition.

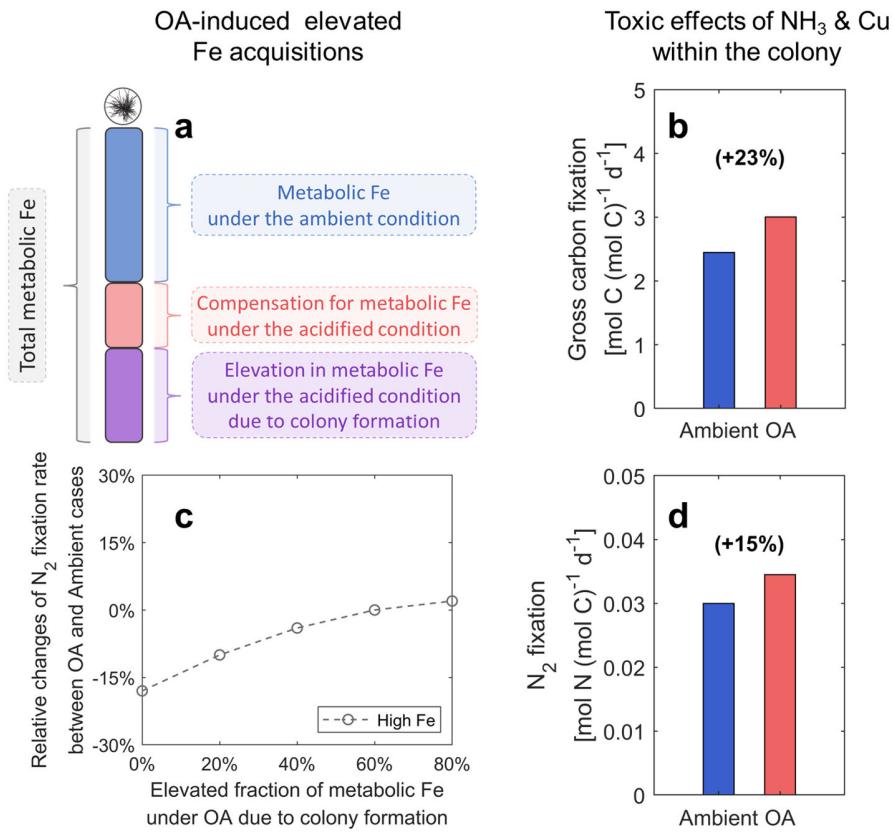
100 Related to Fig. 4. The colony models were simulated under both ambient (a, b, g, h) and OA (c, d, i, j) conditions with  
101 Fe' at 1250 pM. The concentrations of these parameters are shown as anomaly to those under ambient far-field  
102 conditions. The changes of these concentrations caused by OA are also displayed (e, f, k, l).


103



104 **Supplementary Figure 8.** Changes of  $N_2$  fixation rates in *Trichodesmium* trichome caused by net effects between  
 105 allocation of Fe to active nitrogenase and pH on nitrogenase efficiency.

106 *Related to Fig. 5.* The trichome models were simulated under both ambient and acidified (OA) conditions with Fe' at  
 107 40 and 1250 pM, respectively.

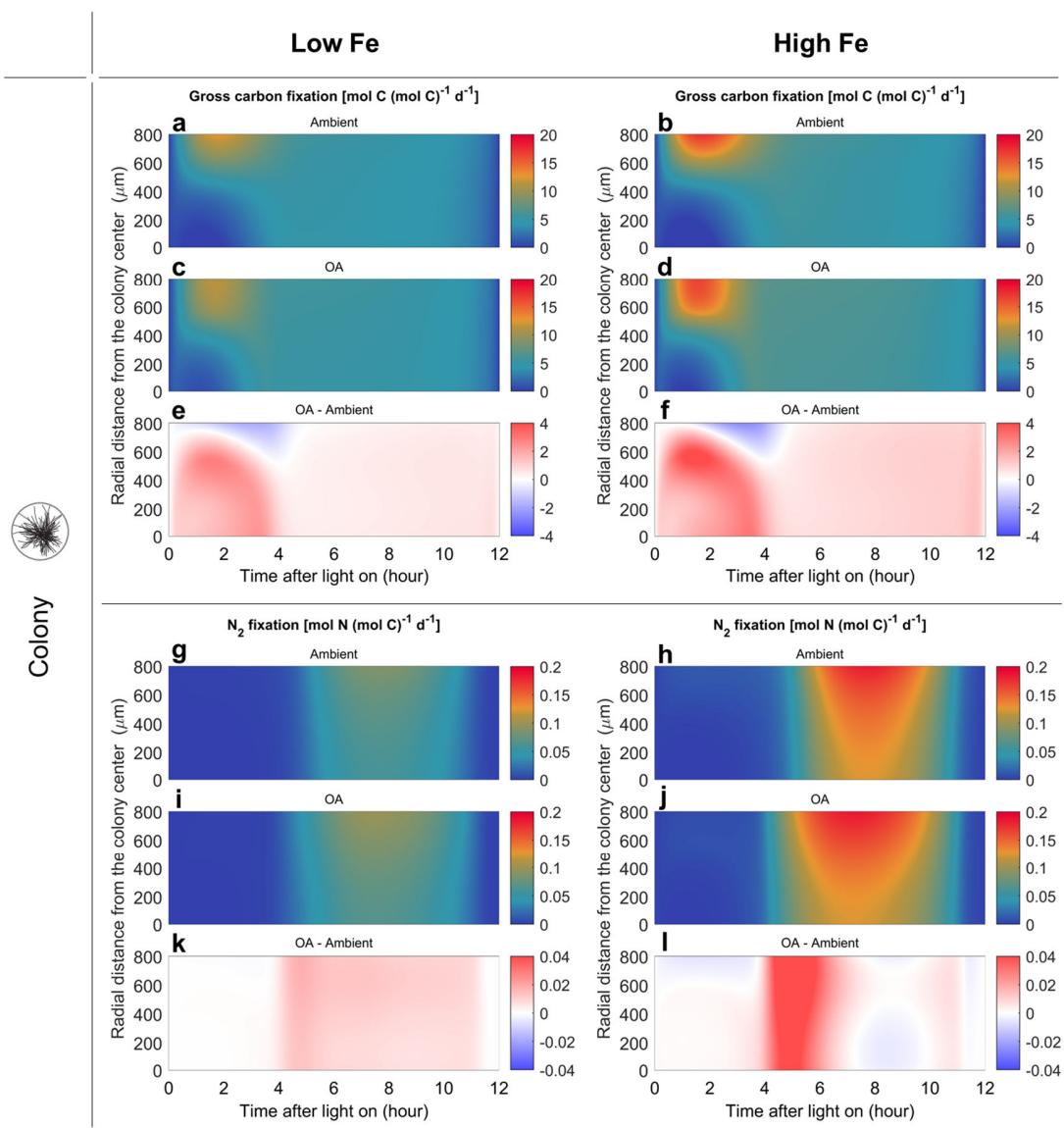

108



109

110 **Supplementary Figure 9.** Modeled daily-integrated energy (ATP) production of *Trichodesmium* trichome.

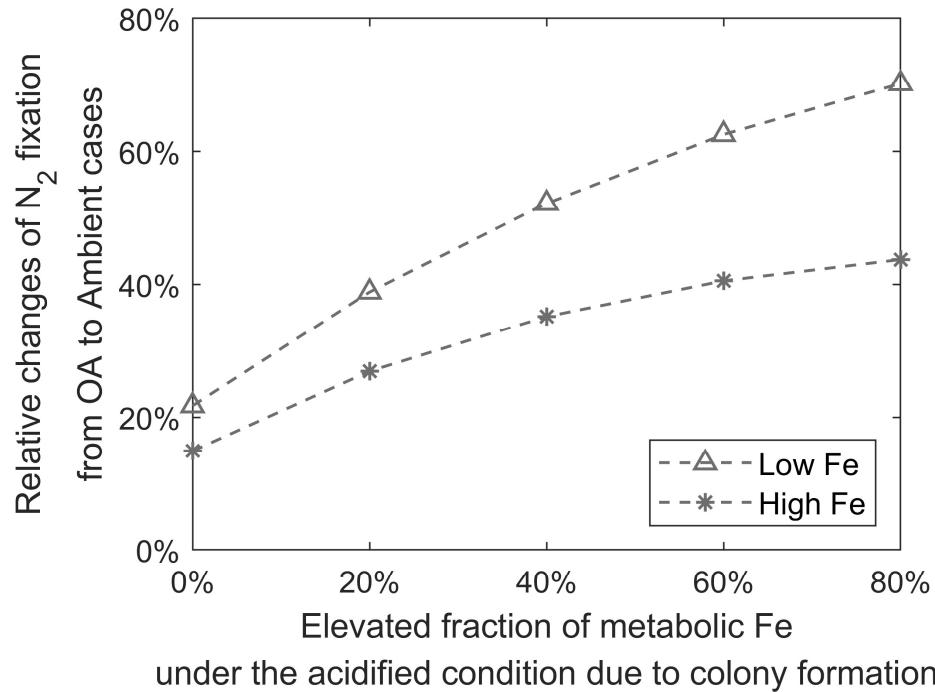
111 *Related to DISCUSSION.* The trichome model was simulated under ambient (a, b) or acidified (OA) (c, d) conditions  
 112 with Fe' at 40 pM (a, c) or 1250 pM (b, d). The number in the inner circle represents the daily-integrated gross energy  
 113 production rate [mol ATP (mol C)<sup>-1</sup> d<sup>-1</sup>].




114

115 **Supplementary Figure 10.** Results of model experiments of other potential mechanisms of the OA effects on  
 116 *Trichodesmium* colonies under Fe repletion.

117 *Related to Fig. 6.* (a, c) OA-induced elevated Fe acquisition when *Trichodesmium* forms colonies: (a) Schematic  
 118 diagrams are for the metabolic Fe in modeled *Trichodesmium* colony. (c) Also shown are the relative changes of  $\text{N}_2$   
 119 fixation rates in the modeled colony from acidified to ambient conditions.


120 (b, d) Toxic effects of ammonia and copper. The microenvironmental  $\text{NH}_4^+$  concentration gradients decreases from  
 121 1.0  $\mu\text{mol L}^{-1}$  in the center to 0.4  $\mu\text{mol L}^{-1}$  at the edge. The colony models were simulated under ambient or acidified  
 122 (OA) conditions at a replete Fe' level (1250 pM).



123

124 **Supplementary Figure 11.** Model results of *Trichodesmium* colony with toxicity effects of ammonia and copper.

125 *Related to Fig. 6 and DISCUSSION.* The colony models were simulated under ambient or acidified (OA) conditions.  
 126 Top panels present gross carbon fixation rate and bottom panels are  $N_2$  fixation rates. The simulations were under  
 127 limiting Fe' concentration of 40 pM (left column) or replete Fe' of 1250 pM (right column). In the colony model,  
 128 microenvironmental  $NH_4^+$  concentration profile was predefined according to the findings of Klawonn, et al.<sup>2</sup>. The  
 129 pattern of microenvironmental Cu was set the same as that of  $NH_4^+$ , with the highest concentration (1 nmol L<sup>-1</sup>) at the  
 130 center of the colony. Red area (e, f, k, l) represents higher carbon or  $N_2$  fixation rates under OA.

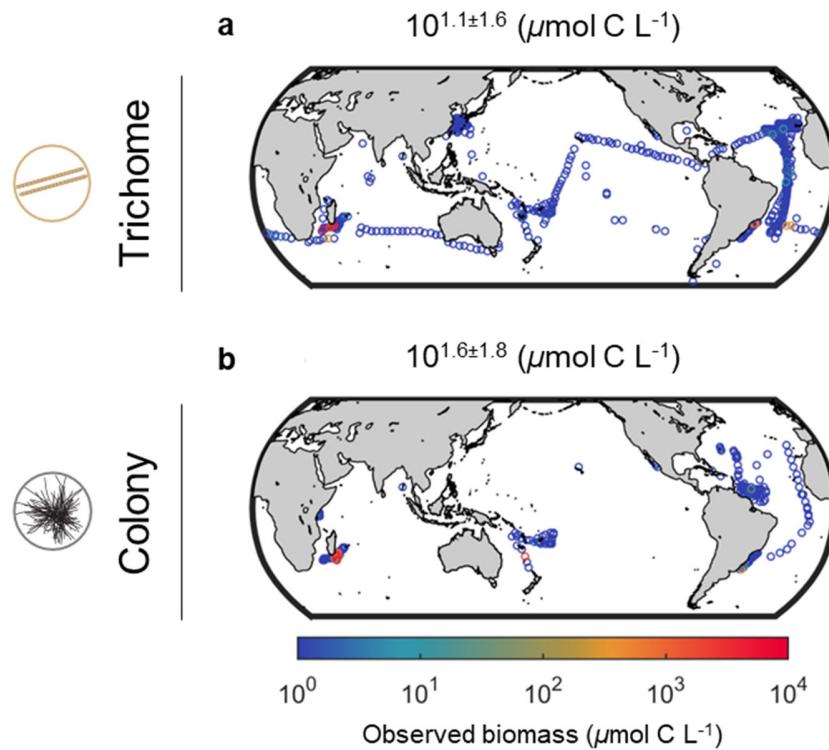


131

under the acidified condition due to colony formation

132

**Supplementary Figure 12.** Results of model experiments testing effects of elevated Fe acquisition in *Trichodesmium* colonies when considering ammonia and copper toxicity.


133

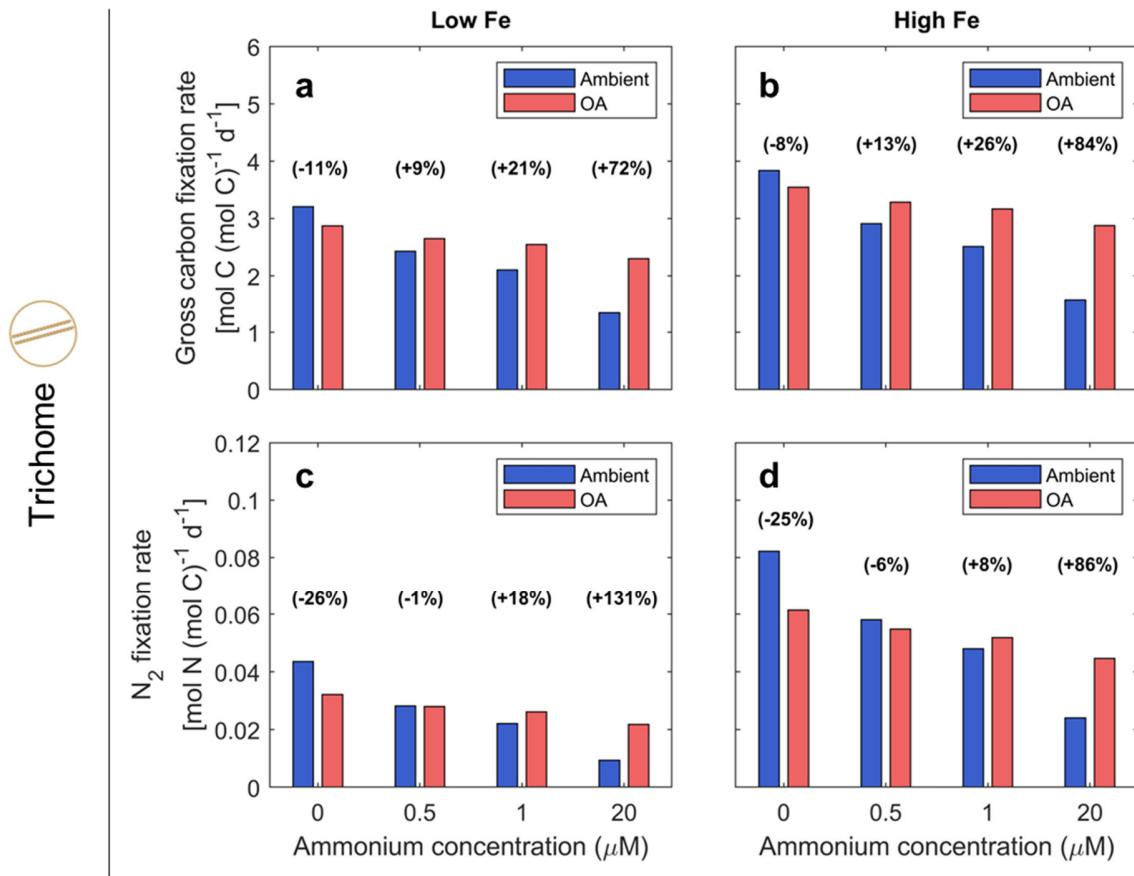
134

*Related to Fig. 6 and DISCUSSION.* The colony models were simulated under ambient or acidified (OA) conditions at limiting (40 pM) and replete (1250 pM) Fe' level.

135

136

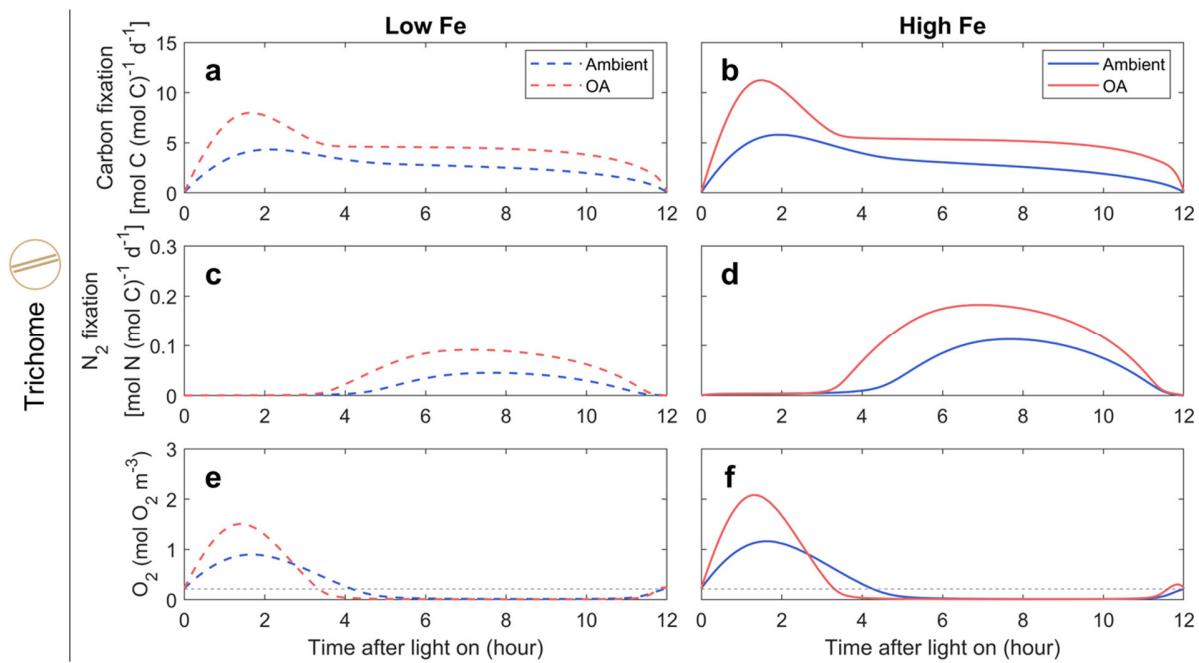



137

138 **Supplementary Figure 13.** The observed biomass of trichome and colony.

139 *Related to Fig. 7 and DISCUSSION.*

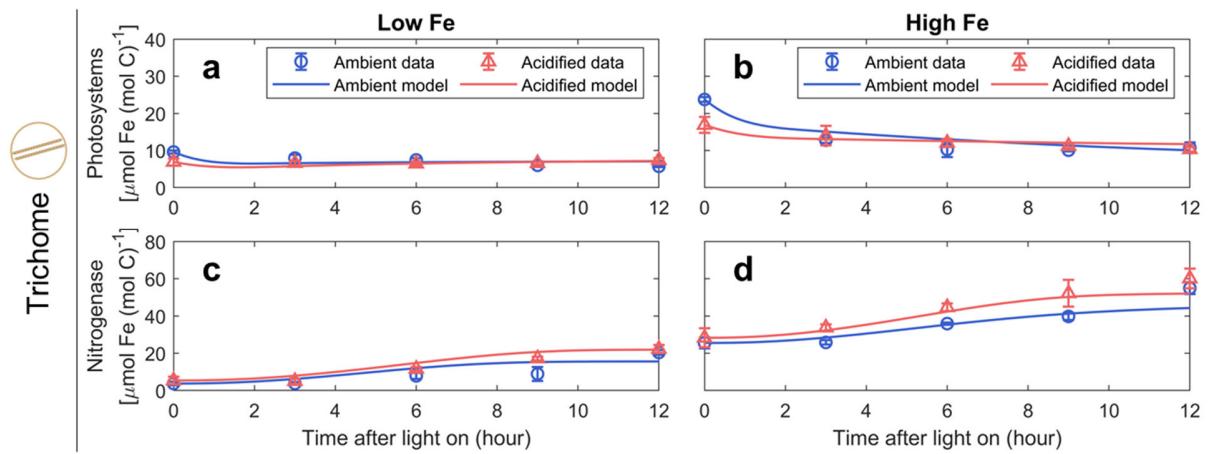
140 (a, b) Observations <sup>19</sup> with geometric mean and standard deviation. Values (b) represent colony biomass calculated  
 141 from raw database data <sup>19</sup> with a 0.25 multiplier applied to adjust for seasonal occurrence of colonies <sup>20</sup>.


142



143

144 **Supplementary Figure 14.** Results of model experiments of toxic effects of ammonia and copper in free trichomes.


145 *Related to DISCUSSION and METHODS.* The trichome models were simulated under ambient or acidified (OA)  
 146 conditions and under limiting-Fe ( $Fe' = 40$  pM) and replete-Fe ( $Fe' = 1250$  pM) conditions. The concentration of total  
 147 dissolved copper was set  $1$  nmol L<sup>-1</sup>, which is at the same level as that of the YBC-II medium<sup>21</sup>. Model results were  
 148 constrained using observations with artificially introduced toxicity<sup>22,23</sup>.



149

150 **Supplementary Figure 15.** Results of model experiments on OA effects when considering ammonia and copper  
 151 toxicity in free trichomes.

152 *Related to DISCUSSION and METHODS.* The trichome models were simulated under ambient (blue lines) or acidified  
 153 (OA) (red lines) conditions with Fe' at 40 pM (a, c, e) or 1250 pM (b, d, f). The shown results include instantaneous  
 154 rates of gross carbon fixation (a, b) and N<sub>2</sub> fixation (c, d), as well as intracellular O<sub>2</sub> concentrations (e, f). For the  
 155 experiments, the concentration of total dissolved copper was set 1 nmol L<sup>-1</sup>, which is at the same level as that of YBC-  
 156 II medium<sup>21</sup>; the ammonium concentration was set at 20  $\mu$ mol L<sup>-1</sup> as Hong, et al.<sup>22</sup>. The black dashed lines in (e) and  
 157 (f) represent the far-field extracellular O<sub>2</sub> concentration. In the presence of Cu and NH<sub>3</sub> toxicity, OA not only enhanced  
 158 N<sub>2</sub> fixation potential of *Trichodesmium* free trichomes but also increased their carbon fixation rates. This led to greater  
 159 carbohydrate accumulation during the early light period, which facilitated the formation of the low-O<sub>2</sub> window, further  
 160 promoting N<sub>2</sub> fixation rates.



161

162 **Supplementary Figure 16.** Modeled and observed diurnal variations of Fe in photosystems and nitrogenase in  
 163 *Trichodesmium* free trichome.

164 *Related to METHODS.* The observational data are from Shi, et al. <sup>18</sup>. The model was simulated under both ambient  
 165 (blue lines) and acidified (red lines) conditions with a constant light intensity and Fe' concentrations of 40 pM (a, c)  
 166 and 1250 pM (b, d).

167 **Supplementary Methods.** Full model description. *Related to METHODS.*

168 We introduce the schemes of single trichome first, and then describe the model parametrizations  
169 of *Trichodesmium* colony.

170

171 1. Light intensity and photosynthetic pathways

172 The daytime light intensity ( $I$ ,  $\mu\text{mol m}^{-2} \text{ s}^{-1}$ ) is <sup>24</sup>:

$$I(t) = I_{\max} \cdot \sin\left(\frac{\pi \cdot t}{43,200}\right), \quad (\text{S1})$$

173 where  $I_{\max}$  is the maximal light intensity and  $t$  is the time (s) during a 12-hour light period.

174

175 Linear photosynthetic electron transfer (LPET) and alternative electron transfer (AET) are  
176 simulated in our model (Fig. 1a). Because (Mehler reaction)-mediated AET is probably the  
177 dominant AET in *Trichodesmium* <sup>25</sup>, other AET (e.g., the cyclic electron transfer around  
178 photosystem I, the AET mediated by midstream oxidase with photosystem II, and the AET from  
179 photosystem II to the respiratory terminal oxidase respiratory terminal oxidase) <sup>26</sup>, are not  
180 considered.

181

182 Both LPET and AET generate a proton gradient of 12  $\text{H}^+$  per 8 photons <sup>9</sup>. By assuming that 3  
183 ATP are produced by the thylakoid ATP synthase with a proton gradient of 14  $\text{H}^+$ , for 4 electrons  
184 through PET, LPET produces 2.6 ATP, with 2 NADPH and 1  $\text{O}_2$ , while AET only produces 2.6  
185 ATP <sup>8,9,26</sup>.

186

187 The total PET rate [ $V_{PET}$ , mol electron (mol C)<sup>-1</sup> s<sup>-1</sup>] is modulated by light intensity ( $I$ ) and  
188 increases with the amount of Fe allocated to photosystems [ $Fe_{PS}$ ,  $\mu\text{mol Fe (mol C)}^{-1}$ ], and  $V_{PET}$  is  
189 inhibited by respiratory protection (RP) [ $V_{RP}$ , mol C (mol C)<sup>-1</sup> s<sup>-1</sup>, described later] <sup>27</sup>.

$$V_{PET} = v_{PET}^{\max} \cdot \frac{Fe_{PS}}{Fe_{PS} + k_{Fe}^{PS}} \cdot (1 - e^{-\alpha_i \cdot I}) \cdot e^{-\beta \cdot V_{RP}}, \quad (\text{S2})$$

190 where  $v_{PET}^{\max}$  [mol electron (mol C)<sup>-1</sup> s<sup>-1</sup>] is the maximal rate of PET,  $k_{Fe}^{PS}$  [ $\mu\text{mol Fe (mol C)}^{-1}$ ] is the  
191 half-saturating coefficient of  $Fe_{PS}$  for PET,  $\alpha_i$  ( $\mu\text{mol}^{-1} \text{ m}^2 \text{ s}$ ) is the initial slope of PET versus  
192 light curve, and  $\beta$  [mol C (mol C)<sup>-1</sup> s] represents the degree of the inhibition effect from RP on  
193 PET.

194

195 To calculate the rates of LPET and AET [ $V_{LPET}$  and  $V_{AET}$ , mol electron (mol C) $^{-1}$  s $^{-1}$ ], the  
 196 fraction of photosynthetic electrons flowing into AET ( $f_{AET}$ , dimensionless) is introduced in our  
 197 model, and  $f_{AET}$  is calculated in each time step to fulfill the intracellular immediate requirement  
 198 of ATP and NADPH <sup>4</sup>.

$$V_{LPET} = V_{PET} \cdot (1 - f_{AET}), \quad (S3)$$

$$V_{AET} = V_{PET} \cdot f_{AET}. \quad (S4)$$

199

200 The ATP production rate of PET [ $V_{ATP}$ , mol ATP (mol C) $^{-1}$  s $^{-1}$ ] is contributed by both LPET and  
 201 AET, and it is downregulated under OA <sup>22</sup>:

$$V_{ATP} = (V_{LPET} \cdot q_{LPET}^{ATP} + V_{AET} \cdot q_{AET}^{ATP}) \cdot 10^{OA^{PET} \cdot (pH - pH_{bsl})}, \quad (S5)$$

202 where  $q_{LPET}^{ATP} = q_{AET}^{ATP} = 0.65$  mol ATP (mol electron) $^{-1}$  are ratios of ATP to electron in LPET and  
 203 AET <sup>8,9,26</sup>,  $OA^{PET}$  (dimensionless) denotes the degree of OA impact on the ATP production by  
 204 PET,  $pH$  (dimensionless) represents the extracellular pH value at the cell surface, and  $pH_{bsl} =$   
 205 8.08 refers to the baseline pH value.

206

207 NADPH production by LPET is unlike ATP production, which is driven by the proton (H $^{+}$ )  
 208 gradient between the lumen and stroma <sup>8,9</sup>. Therefore, its rate is assumed to be not impacted by  
 209 the reduction in the pH value under OA:

$$V_{NADPH} = V_{LPET} \cdot q_{LPET}^{NADPH}, \quad (S6)$$

210 where  $q_{LPET}^{NADPH} = 0.5$  mol NADPH (mol electron) $^{-1}$  is the ratio of NADPH to electron in LPET <sup>8</sup>.

211

212 The O<sub>2</sub> production rate [ $V_{O_2}$ , mol O<sub>2</sub> (mol C) $^{-1}$  s $^{-1}$ ] is:

$$V_{O_2} = V_{LPET} \cdot q_{LPET}^{O_2}, \quad (S7)$$

213 where  $q_{LPET}^{O_2} = 0.25$  mol O<sub>2</sub> (mol electron) $^{-1}$  is the ratio of O<sub>2</sub> to electron in LPET <sup>8,9</sup>.

214

## 215 2. N<sub>2</sub> fixation

216 N<sub>2</sub> fixation requires both ATP and NADPH <sup>10,11</sup>. The maximal N<sub>2</sub> fixation rate [ $V_{NF}^{max}$ , mol N (mol  
 217 C) $^{-1}$  s $^{-1}$ ] is calculated based on the assumption that produced ATP and NADPH of PET  
 218 completely sustain N<sub>2</sub> fixation.

$$V_{NF}^{max} = \frac{V_{ATP}}{q_{NF}^{ATP}}, \quad (S8)$$

219 where  $q_{NF}^{ATP} = 9$  mol ATP (mol N) $^{-1}$  is ATP:N ratio in N<sub>2</sub> fixation<sup>10,11</sup>.

220  
221 The N<sub>2</sub> fixation rate [ $V_{NF}$ , mol N (mol C) $^{-1}$  s $^{-1}$ ] is also regulated by the Fe quota in nitrogenase  
222 [ $Fe_{NF}$ ,  $\mu$ mol Fe (mol C) $^{-1}$ ] and inhibited by intracellular O<sub>2</sub> [ $O_2$ , mol O<sub>2</sub> m $^{-3}$ ]<sup>28</sup>. Under OA, the  
223 reduced pH value (i.e., increased H $^+$  concentration) lowers the efficiency of nitrogenase<sup>1,22</sup> while  
224 the energy saved from CCM can benefit N<sub>2</sub> fixation<sup>29</sup>.

$$V_{NF} = V_{NF}^{max} \cdot \frac{Fe_{NF}}{Fe_{NF} + k_{Fe}^{NF}} \cdot 10^{pH - pH_{bsl}} \cdot (1 - \frac{O_2}{O_2 + k_{O_2}^{NF}}) + V_{NF}^{CCM}, \quad (S9)$$

225 where  $k_{Fe}^{NF}$  [ $\mu$ mol Fe (mol C) $^{-1}$ ] and  $k_{O_2}^{NF}$  (mol O<sub>2</sub> m $^{-3}$ ) are half-saturating coefficients of  $Fe_{NF}$  and  
226  $O_2$  for N<sub>2</sub> fixation,  $V_{NF}^{CCM}$  [mol N (mol C) $^{-1}$  s $^{-1}$ ] represents the elevated N<sub>2</sub> fixation rate driven by  
227 CCM energy saving [ $V_{ATP}^{CCM, saving}$ , mol ATP (mol C) $^{-1}$  s $^{-1}$ ] under OA.

$$V_{NF}^{CCM} = \frac{V_{ATP}^{CCM, saving}}{q_{NF}^{ATP}} \cdot \frac{Fe_{NF}}{Fe_{NF} + k_{Fe}^{NF}} \cdot 10^{pH - pH_{bsl}} \cdot (1 - \frac{O_2}{O_2 + k_{O_2}^{NF}}). \quad (S10)$$

228  
229 3. CO<sub>2</sub> concentrating mechanism  
230 The energy consumption rate for CCM [ $V_{ATP}^{CCM}$ , mol ATP (mol C) $^{-1}$  s $^{-1}$ ] is calculated based on the  
231 requirement of HCO<sub>3</sub> $^-$  for carbon fixation [ $V_{CF}$ , mol C (mol C) $^{-1}$  s $^{-1}$ ] and the cost for per HCO<sub>3</sub> $^-$   
232 transportation [ $q_{HCO_3}^{ATP} = 0.5$  mol ATP (mol C) $^{-1}$ ]<sup>1,13,30</sup>.

$$V_{ATP}^{CCM} = (V_{CF} \cdot f_{RP}^{CF} \cdot V_{RP} \cdot \frac{T_{CO_2}}{Q_C}) \cdot q_{CCM}^{ATP} \quad (S11)$$

233 where  $V_{RP}$  [mol C (mol C) $^{-1}$  s $^{-1}$ ] is the respiratory protection rate,  $f_{RP}^{CF}$  represents the fraction of  
234 produced CO<sub>2</sub> by respiratory protection to support carbon fixation,  $T_{CO_2}$  (mol CO<sub>2</sub> m $^{-3}$  s $^{-1}$ ) is the  
235 diffusion rate of CO<sub>2</sub> between cytoplasm and extracellular environment,  $Q_C = 18333$  mol C m $^{-3}$   
236 is the cellular carbon biomass quota<sup>15</sup>.

237  
238 The elevation of CO<sub>2</sub> concentration (CO<sub>2</sub>, mol C m $^{-3}$ ) as seawater acidifies can lower the energy  
239 need for CCM by reducing the requirement for HCO<sub>3</sub> $^-$ <sup>29,31-33</sup>:

$$V_{ATP}^{CCM, saving} = (\frac{T_{CO_2}}{Q_C} - \frac{T_{CO_2}^{bsl}}{Q_C}) \cdot q_{CCM}^{ATP} \quad (S12)$$

240 where  $T_{CO_2}^{bsl}$  (mol CO<sub>2</sub> m<sup>-3</sup> s<sup>-1</sup>) is the diffusion rate of CO<sub>2</sub> between cytoplasm and extracellular  
241 environment under baseline condition.

242

#### 243 4. Carbon fixation

244 Carbon fixation also requires both NADPH and ATP <sup>12</sup>, and consumption rates [ $V_{NADPH}^{CF}$  and  
245  $V_{ATP}^{CF}$ , mol NADPH (mol C)<sup>-1</sup> s<sup>-1</sup> and mol ATP (mol C)<sup>-1</sup> s<sup>-1</sup>] are:

$$246 \quad V_{NADPH}^{CF} = V_{CF} \cdot q_{CF}^{NADPH}, \quad (S13)$$

$$247 \quad V_{ATP}^{CF} = V_{CF} \cdot q_{CF}^{ATP}. \quad (S14)$$

248

249  $V_{CF}$  is solved at each time step with  $f_{AET}$ , based on the consumption that total NADPH and ATP  
250 production by PET are immediately and fully utilized by intracellular process:

$$251 \quad V_{NADPH} = V_{NADPH}^{CF} + V_{NADPH}^{NF}, \quad (S15)$$

$$252 \quad V_{ATP} = (V_{ATP}^{CCM} + V_{ATP}^{CF} + V_{ATP}^{NF}) \cdot (1 + \gamma_{MT}), \quad (S16)$$

253 where  $\gamma_{MT}$  (dimensionless) represents the ratio of ATP consumption by maintenance to other  
254 processes <sup>1</sup>.

255

256 The carbon skeleton production rate [ $V_{CS}$ , mol C (mol C)<sup>-1</sup> s<sup>-1</sup>] is stimulated by carbohydrate  
257 [ $CH_2O$ , mol C (mol C)<sup>-1</sup>] and downregulated by its own accumulation [ $CS$ , mol C (mol C)<sup>-1</sup>]:

$$258 \quad V_{CS} = v_{CS}^{max} \cdot \frac{CH_2O}{CH_2O + k_{CH_2O}^{CS}} \cdot \frac{CS_{max} - CS}{CS_{max}}, \quad (S17)$$

259 where  $v_{CS}^{max}$  [mol C (mol C)<sup>-1</sup> s<sup>-1</sup>] is the maximal production rate of the carbon skeleton,  $k_{CH_2O}^{CS}$   
260 [mol C (mol C)<sup>-1</sup>] is the half-saturation constant of carbohydrates for carbon skeleton production,  
261 and  $CS_{max}$  [mol C (mol C)<sup>-1</sup>] is the maximum CS storage.

262

#### 263 5. Respiratory protection

264 Respiratory protection rate is regulated by the requirement of N<sub>2</sub> fixation and intracellular O<sub>2</sub>  
265 <sup>4,5,34</sup>:

$$266 \quad V_{RP} = v_{RP}^{max} \cdot (1 - e^{-\alpha \cdot I}) \cdot \frac{CS}{CS + k_{CS}} \cdot \left( \frac{N_{max} - N}{N_{max}} \right) \cdot \frac{O_2}{O_2 + k_{O_2}^{NF}}, \quad (S18)$$

267 where  $v_{RP}^{max}$  [mol C (mol C)<sup>-1</sup> s<sup>-1</sup>] is the maximal respiratory protection rate,  $k_{CS}$  [mol C (mol C)<sup>-1</sup>]  
268 is the half-saturating coefficient of the carbon skeleton for respiratory protection, and  $N_{max}$  [mol  
269 N (mol C)<sup>-1</sup>] is the maximal N storage.

264 The O<sub>2</sub> consumption by RP [ $V_{O_2}^{RP}$ , mol O<sub>2</sub> (mol C)<sup>-1</sup> s<sup>-1</sup>] is:

$$V_{O_2}^{RP} = V_{RP} \cdot q_C^{O_2}, \quad (S19)$$

265 where  $q_C^{O_2}$  [mol O<sub>2</sub> (mol C)<sup>-1</sup>] is the ratio of O<sub>2</sub> to carbon in carbohydrate respiration.

266

## 267 6. O<sub>2</sub> and CO<sub>2</sub> diffusion

268 The rate of O<sub>2</sub> diffusion ( $T_{O_2}$ , mol O<sub>2</sub> m<sup>-3</sup> s<sup>-1</sup>) between the intracellular cytoplasm and the  
269 extracellular environment is parameterized by adopting the scheme in Staal, et al. <sup>35</sup>:

$$T_{O_2} = \frac{-2 \cdot \pi \cdot d_{O_2} \cdot L}{V} \cdot \left\{ \frac{1}{\varepsilon} \cdot \ln \left( \frac{R}{R + L_g} \right) - \ln \left( \frac{R + L_g + L_b}{R + L_g} \right) \right\}^{-1} \cdot (O_2^E - O_2), \quad (S20)$$

270 where  $d_{O_2}$  (m<sup>2</sup> s<sup>-1</sup>) is the O<sub>2</sub> diffusion coefficient in seawater,  $\varepsilon$  (dimensionless) is the ratio of the  
271 O<sub>2</sub> diffusion coefficient of the cell membrane relative to  $d_{O_2}$ ,  $L$  (m) and  $V$  (m<sup>3</sup>) are the length and  
272 the volume of the trichome,  $R$  (m) is the radius of the cytoplasm,  $L_g$  (m) is the thickness of the  
273 cell membrane,  $L_b$  (m) is the thickness of the boundary layer,  $O_2^E$  is the extracellular far-field O<sub>2</sub>  
274 concentration.

275

276 The CO<sub>2</sub> diffusion rate between cytoplasm and extracellular environment is

$$T_{CO_2} = \frac{-2 \cdot \pi \cdot d_{CO_2} \cdot L}{V} \cdot \left\{ \frac{1}{\varepsilon_{CO_2}} \cdot \ln \left( \frac{R}{R + L_g} \right) - \ln \left( \frac{R + L_g + L_b}{R + L_g} \right) \right\}^{-1} \cdot CO_2^E, \quad (S21)$$

277 where  $d_{CO_2}$  (m<sup>2</sup> s<sup>-1</sup>) is the CO<sub>2</sub> diffusion coefficient in seawater,  $\varepsilon_{CO_2}$  (dimensionless) is the ratio  
278 of the CO<sub>2</sub> diffusion coefficient of the cell membrane relative to  $d_{CO_2}$ ,  $CO_2^E$  is the extracellular  
279 far-field CO<sub>2</sub> concentration. CO<sub>2</sub> concentration in the cytoplasm was not simulated but set 0  
280 based on the assumption that CO<sub>2</sub> in the cytoplasm was assumed to be quickly transferred into  
281 carboxysome or leak into extracellular environment.

282

283  $T_{CO_2}^{bsl}$  is calculated based on the extracellular far-field CO<sub>2</sub> concentration under baseline  
284 condition:

$$T_{CO_2}^{bsl} = \frac{-2 \cdot \pi \cdot d_{CO_2} \cdot L}{V} \cdot \left\{ \frac{1}{\varepsilon_{CO_2}} \cdot \ln \left( \frac{R}{R + L_g} \right) - \ln \left( \frac{R + L_g + L_b}{R + L_g} \right) \right\}^{-1} \cdot CO_2^{E, bsl}. \quad (S22)$$

285

286 7. Intracellular Fe pools and translocation

287 *Trichodesmium* can uptake more Fe than that required by its metabolism (called “luxury uptake”)  
 288 particularly under high-Fe conditions, and the excess Fe is stored to enable the survival in low-  
 289 iron environments<sup>36,37</sup>. Therefore, the total intracellular Fe quota [ $Fe$ ,  $\mu\text{mol Fe (mol C)}^{-1}$ ]  
 290 consists of Fe in metabolism and storage [ $Fe_M$  and  $Fe_{ST}$ ,  $\mu\text{mol Fe (mol C)}^{-1}$ ], calculated based on  
 291 the threshold level of Fe [ $Fe_{TH}$ ,  $\mu\text{mol Fe (mol C)}^{-1}$ ]<sup>1</sup>:

$$Fe_{TH} = Fe_{TH}^{bsl} \cdot [1 + OA^{ST} \cdot (10^{pH_{bsl} - pH} - 1)], \quad (S23)$$

$$Fe_M = Fe, \quad \text{when } Fe \leq Fe_{TH}, \quad (S24)$$

$$Fe_M = Fe_{TH} + (1 - f_{ST}) \cdot (Fe - Fe_{TH}), \quad \text{when } Fe > Fe_{TH}, \quad (S25)$$

292 where  $Fe_{TH}^{bsl}$  [ $\mu\text{mol Fe (mol C)}^{-1}$ ] is the threshold level of Fe under the baseline condition,  $OA^{ST}$   
 293 (dimensionless) is the coefficient representing the strength of OA impact on  $Fe_{TH}$ ,  $f_{ST}$   
 294 (dimensionless) is the fraction of luxury Fe uptake.

295

296 Fe allocations are among  $Fe_M$ , including Fe in photosystems, active nitrogenase, inactivated  
 297 nitrogenase, maintenance and buffer [ $Fe_{PS}$ ,  $Fe_{NF}$ ,  $Fe_{NF}^{NA}$ ,  $Fe_{MT}$  and  $Fe_{BF}$ ,  $\mu\text{mol Fe (mol C)}^{-1}$ ]. Fe  
 298 in maintenance is set diurnally constant at 10% of  $Fe_M$  under ambient and acidified conditions<sup>1</sup>.  
 299 Fe used in the photosystems and nitrogenase is from the buffer pool<sup>34</sup>.

300

301 Ocean acidification seemingly does not affect the general diurnal patterns of both  $Fe_{PS}$  and  $Fe_{NF}$   
 302 but their initial levels at the beginning of the light period<sup>18</sup>, predefined in our model using  
 303 observations<sup>18</sup>. The differences in the absolute amount of  $Fe_{PS}$  or  $Fe_{NF}$  between ambient and  
 304 acidified conditions<sup>18</sup> were represented in the optimized maximal Fe translocation rates of  
 305 photosystems or nitrogenase (Supplementary Table 5), which ensured optimal intracellular Fe  
 306 allocations to achieve the maximal growth rate<sup>3</sup>.

307

308 The synthesis rate of photosystems [ $T_{PS}^{BF}$ ,  $\mu\text{mol Fe (mol C)}^{-1} \text{ s}^{-1}$ ] is stimulated by light intensity  
 309 and gradually saturated with  $Fe_{PS}$ :

$$T_{PS}^{BF} = T_{PS_{max}}^{BF} \cdot (1 - e^{-\alpha \cdot I}) \cdot (1 - \frac{Fe_{PS}}{Fe_{PS} + k_{Fe_{PS}}^{PS_{syn}}}), \quad (S26)$$

310 where  $T_{PS_{max}}^{BF}$  [ $\mu\text{mol Fe (mol C)}^{-1} \text{ s}^{-1}$ ] is the maximal synthesis rate of photosystems,  $k_{Fe_{PS}}^{PS_{syn}}$  [ $\mu\text{mol}$   
 311  $\text{Fe (mol C)}^{-1}$ ] is the half-saturating coefficients of  $Fe_{PS}$  for the synthesis of photosystems.

312 The decomposition rate of photosystems [ $T_{BF}^{PS}$ ,  $\mu\text{mol Fe (mol C)}^{-1} \text{ s}^{-1}$ ] is stimulated by  $Fe_{PS}$  but  
 313 inhibited by respiratory protection <sup>27</sup>:

$$T_{BF}^{PS} = T_{BF_{max}}^{PS} \cdot \frac{Fe_{PS}}{Fe_{PS} + k_{Fe_{PS}}^{PS_{dec}}} \cdot e^{-\beta \cdot V_{RP}}, \quad (S27)$$

314 where  $T_{BF_{max}}^{PS}$  [ $\mu\text{mol Fe (mol C)}^{-1} \text{ s}^{-1}$ ] is the maximal decomposition rate of photosystems,  $k_{Fe_{PS}}^{PS_{dec}}$   
 315 [ $\mu\text{mol Fe (mol C)}^{-1}$ ] is the half-saturating coefficient of  $Fe_{PS}$  for the decomposition of  
 316 photosystems. Fe released from decomposed photosystems returns to buffer pool <sup>34</sup>.  
 317

318 The nitrogenase synthesis rate [ $T_{NF}^{BF}$ ,  $\mu\text{mol Fe (mol C)}^{-1} \text{ s}^{-1}$ ] is:

$$\Phi = (1 - e^{-\alpha \cdot I}) \cdot \frac{CS}{CS + k_{CS}} \cdot \left( \frac{N_{max} - N}{N_{max}} \right), \quad (S28)$$

$$T_{NF}^{BF} = T_{NF_{max}}^{BF} \cdot \Phi \cdot \frac{Fe_{BF}}{Fe_{BF} + k_{Fe_{BF}}^{NF_{syn}}}, \quad (S29)$$

319 where  $\Phi$  represents the intracellular requirement of  $N_2$  fixation,  $T_{NF_{max}}^{BF}$  [ $\mu\text{mol Fe (mol C)}^{-1} \text{ s}^{-1}$ ] is  
 320 the maximal nitrogenase synthesis rate,  $k_{CS}$  [ $\text{mol C (mol C)}^{-1}$ ] and  $k_{Fe_{BF}}^{NF_{syn}}$  [ $\mu\text{mol Fe (mol C)}^{-1}$ ] are  
 321 half-saturating coefficients of the carbon skeleton and  $Fe_{BF}$  for the synthesis of nitrogenase,  
 322 respectively,  $N_{max}$  [ $\text{mol N (mol C)}^{-1}$ ] is the maximal N storage. Note that the requirement of  $N_2$   
 323 fixation ( $\Phi$ ) is assumed to be stimulated by the increase of light and the production of CS  
 324 stimulates but be suppressed by the accumulation of fixed N lowers the requirement.  
 325

326 The decomposition of nitrogenase seems to occur at night <sup>18,38</sup>, and therefore it is not considered  
 327 during the light period in our model. Notably, nitrogenase is inhibited upon exposure to  $O_2$ ,  
 328 flowing into the pool of inactivated nitrogenase <sup>27</sup> at the rate [ $T_{NF}^{NA}$ ,  $\mu\text{mol Fe (mol C)}^{-1} \text{ s}^{-1}$ ]:

$$T_{NF}^{NA} = T_{NF_{max}}^{NA} \cdot \frac{Fe_{NF}}{Fe_{NF} + k_{Fe}^{NA}} \cdot \frac{O_2}{O_2 + k_{O_2}^{NA}}, \quad (S30)$$

329 where  $T_{NF_{max}}^{NA}$  [ $\mu\text{mol Fe (mol C)}^{-1} \text{ s}^{-1}$ ] is the maximal inactivation rate of nitrogenase.  
 330

331 Note that The Fe in nitrogenase and photosystems from Shi, et al. <sup>18</sup> were estimated from  
 332 observed protein content, based on Fe atoms in per protein. PSII, Cyt *b6f*, PSI and Ferredoxin  
 333 together represents photosystems. Cyt *b6f* and Ferredoxin were not measured in Shi, et al. <sup>18</sup> but  
 334 estimated by assuming Cyt *b6f*:PSII = 1:1 in Fe quota and Ferredoxin:PSI = 1:1 in protein  
 335 content. Further details are in the supplementary information in <sup>1</sup>.

336 8. Integration of state variables during the daytime

337 The diurnal change rates (basically normalized to carbon biomass) of CH<sub>2</sub>O, CS, N, intracellular  
 338 O<sub>2</sub> and Fe are represented in ordinary differential equations (ODEs). Note that O<sub>2</sub> is in a unit  
 339 volumetric concentration (mol O<sub>2</sub> m<sup>-3</sup>):

$$\frac{dCH_2O}{dt} = V_{CF} - V_{CS} - V_{RP}, \quad (S31)$$

$$\frac{dCS}{dt} = V_{CS}, \quad (S32)$$

$$\frac{dN}{dt} = V_{NF}, \quad (S33)$$

$$\frac{dO_2}{dt} = (V_{O_2} - V_{O_2}^{RP}) \cdot Q_C + T_{O_2}, \quad (S34)$$

$$\frac{dFe_{PS}}{dt} = T_{PS}^{BF} - T_{BF}^{PS}, \quad (S35)$$

$$\frac{dFe_{NF}}{dt} = T_{NF}^{BF} - T_{NF}^{NA}, \quad (S36)$$

$$\frac{dFe_{NF}^{NA}}{dt} = T_{NF}^{NA}, \quad (S37)$$

$$\frac{dFe_{BF}}{dt} = T_{BF}^{PSI} - T_{PSI}^{BF} + T_{NF}^{BF}. \quad (S38)$$

340 ODEs are run over a 12-hour light period with ode15s integrator of MATLAB <sup>39</sup>.

341

342 9. Biosynthesis and growth rate

343 *Trichodesmium* might store newly fixed C and N during the daytime and assimilate them into  
 344 biomass mainly during the dark period <sup>40</sup>. Therefore, for simplification, no biomass synthesis  
 345 occurs during the light period in the model. Instead, the model calculates the amount of biomass  
 346 [Bio, mol C (mol C)<sup>-1</sup>] that can be synthesized using the carbohydrates, carbon skeletons and  
 347 fixed N at the end of the light period. Bio is the smaller value of N-based (Bio<sub>N</sub>) and C-based  
 348 biomass (Bio<sub>C</sub>), with Bio<sub>N</sub> calculated by dividing fixed N to the molar N:C (0.159) <sup>17</sup>. Bio<sub>C</sub> is  
 349 calculated from the carbohydrates and carbon skeleton considering mass and energy balance.  
 350 Notably, like PET, the impact of OA on the energy production by respiration is considered.

351

352 The energy needed for biosynthesis is from the respiration of carbohydrates (CH<sub>2</sub>O<sub>BIO</sub><sup>RESP</sup>):

$$Bio_C \cdot q_{BIO}^{ATP} \cdot (1 + \gamma_{MT}) = CH_2O_{BIO}^{RESP} \cdot q_{RESP}^{ATP} \cdot 10^{OA^{RESP} \cdot (pH - pH_{bsl})}, \quad (S39)$$

353 where q<sub>BIO</sub><sup>ATP</sup> = 2 mol ATP (mol C)<sup>-1</sup> is the ATP requirement rate by biosynthesis <sup>5</sup>, and q<sub>RESP</sub><sup>ATP</sup> = 5  
 354 mol ATP (mol C)<sup>-1</sup> is the ATP production rate from respiring carbohydrates <sup>14</sup>, OA<sup>RESP</sup>  
 355 (dimensionless) represents the strength of OA impact on the ATP production by respiration at

356 night. Given that the respiratory electron transfer chain shares the apparatuses in the PET chain  
 357 and its energy production is also driven by the proton gradient <sup>41</sup>,  $OA^{RESP}$  is set the same as  
 358  $OA^{PET}$ .

359

360 Meanwhile, the non-respired carbohydrates and all the carbon skeletons are involved in  
 361 biosynthesis:

$$Bio_C = CH_2O - CH_2O_{BIO}^{RESP} + CS. \quad (S40)$$

362  $Bio_C$  then can be solved from the above two equations. Note that the carbohydrate respiration  
 363 calculated in this step is counted in the daily integrated respiration as the ordinary respiration.

364

365 Noting that all the rates have been normalized to carbon biomass,  $Bio$  is therefore the relative  
 366 increase in biomass over one day. The growth rate ( $G$ ) is then the natural log of  $(1 + Bio)$  divided  
 367 by 1 day.

368

#### 369 10. Colony model framework

370 The colony is modeled as a porous sphere (the radius,  $R_C = 800 \mu\text{m}$ ), exhibiting spatially variable  
 371 porosity with the variable porosity [ $\psi(r)$ , dimensionless] from the center to the edge of colony <sup>2</sup>.

372 The porosity [ $\psi(r)$ ] is calculated as the ratio of the non-biological volume to the sum of non-  
 373 biological and biological volumes at the location, from which to the center of colony the radical  
 374 distance is  $r$  (m), using the scheme in Klawonn, et al. <sup>2</sup>:

$$\psi(r) = 1 - 1.7141 \times 10^{-3} \cdot [1 + \tanh(2 - (2r/R_C - 0.6)/0.3)]. \quad (S41)$$

375

376 Biological processes within the colony are parameterized similar to those in the single trichome  
 377 model described above. Note that the light intensity in the colony [ $I(t, r)$ ,  $\mu\text{mol m}^{-2} \text{s}^{-1}$ ] is  
 378 designed by multiplying  $I(t)$  (see description about the trichome model above) with  $\psi(r)$ .

379 Considering that there might be DIC limitation for carbon fixation of colony especially at the  
 380 center, we introduced the parameter ( $\eta$ , dimensionless) to evaluate the strength of DIC limitation  
 381 effect.  $\eta$  is regulated by the concentration of  $\text{CO}_2$  and  $\text{HCO}_3^-$  in the microenvironment of colony:

$$\eta(r) = \min \left\{ \frac{\text{CO}_2^M(r) + \text{HCO}_3^M(r)}{\text{CO}_{2, bsl}^E + \text{HCO}_{3, bsl}^E}, 1 \right\}, \quad (S42)$$

382 where  $\text{HCO}_3^E_{\text{bsl}}$  is the extracellular far-field  $\text{HCO}_3^-$  concentration ( $\text{mol C m}^{-3}$ ). The carbon  
 383 fixation of colony could be calculated based on ATP- and NADPH-dependent carbon fixation  
 384 (see above) and  $\eta$ .

385  
 386 In the non-biological microenvironment of the colony, concentrations of  $\text{O}_2^M(r)$ ,  $\text{mol O}_2 \text{ m}^{-3}$ ,  
 387  $\text{CO}_2^M(r)$ ,  $\text{mol C m}^{-3}$ ,  $\text{HCO}_3^M(r)$ ,  $\text{mol C m}^{-3}$ ,  $\text{CO}_3^{2-}[CO_3^M(r)]$ ,  $\text{mol C m}^{-3}$ ,  $\text{H}^+$   
 388  $[H^M(r)]$ ,  $\text{mol H}^+ \text{ m}^{-3}$ , and  $\text{OH}^- [OH^M(r)]$ ,  $\text{mol OH}^- \text{ m}^{-3}$  are simulated at the radical distance  $r$  ( $\leq$   
 389  $R_C$ ). These concentrations are controlled by the physical diffusion, extracellular chemical  
 390 reactions of carbonate system, and intracellular biological processes (e.g., net uptake or release).  
 391 Therefore, their changing rates with time ( $t$ ) and radical distance ( $r$ ) can be represented using  
 392 diffusion-reaction equations:

$$\frac{\partial O_2^M(r)}{\partial t} \cdot \psi(r) = \frac{1}{r^2} \cdot \frac{\partial}{\partial r} \left\{ r^2 \cdot [d_{O_2} \cdot \psi(r)] \cdot \frac{\partial O_2^M(r)}{\partial r} \right\} - T_{C, O_2}^M(r) \cdot [1 - \psi(r)], \quad (\text{S43})$$

$$\frac{\partial CO_2^M(r)}{\partial t} \cdot \psi(r) = \frac{1}{r^2} \cdot \frac{\partial}{\partial r} \left\{ r^2 \cdot [d_{CO_2} \cdot \psi(r)] \cdot \frac{\partial CO_2^M(r)}{\partial r} \right\} + J_{CO_2^M(r)} \cdot \psi(r) - T_{C, CO_2}^M(r) \cdot [1 - \psi(r)], \quad (\text{S44})$$

$$\frac{\partial HCO_3^M(r)}{\partial t} \cdot \psi(r) = \frac{1}{r^2} \cdot \frac{\partial}{\partial r} \left\{ r^2 \cdot [d_{HCO_3} \cdot \psi(r)] \cdot \frac{\partial HCO_3^M(r)}{\partial r} \right\} + J_{HCO_3^M(r)} \cdot \psi(r) - T_{C, HCO_3}^M(r) \cdot [1 - \psi(r)], \quad (\text{S45})$$

$$\frac{\partial CO_3^M(r)}{\partial t} \cdot \psi(r) = \frac{1}{r^2} \cdot \frac{\partial}{\partial r} \left\{ r^2 \cdot [d_{CO_3} \cdot \psi(r)] \cdot \frac{\partial CO_3^M(r)}{\partial r} \right\} + J_{CO_3^M(r)} \cdot \psi(r), \quad (\text{S46})$$

$$\frac{\partial H(r)}{\partial t} \cdot \psi(r) = \frac{1}{r^2} \cdot \frac{\partial}{\partial r} \left\{ r^2 \cdot [d_H \cdot \psi(r)] \cdot \frac{\partial H(r)}{\partial r} \right\} + J_{H^M(r)} \cdot \psi(r) - T_{C, H}^M(r) \cdot [1 - \psi(r)], \quad (\text{S47})$$

$$\frac{\partial OH(r)}{\partial t} \cdot \psi(r) = \frac{1}{r^2} \cdot \frac{\partial}{\partial r} \left\{ r^2 \cdot [d_OH \cdot \psi(r)] \cdot \frac{\partial OH(r)}{\partial r} \right\} + J_{OH^M(r)} \cdot \psi(r). \quad (\text{S48})$$

393 where  $d_{O_2}$ ,  $d_{CO_2}$ ,  $d_{HCO_3}$ ,  $d_{H^+}$  and  $d_{OH^-}$  are the diffusion coefficients of  $\text{O}_2$ ,  $\text{CO}_2$ ,  $\text{HCO}_3^-$ ,  $\text{H}^+$  and  
 394  $\text{OH}^-$  in seawater, respectively. Note that  $J$  represents the flux driven by the chemical  
 395 reactions in microenvironmental carbonate systems, and  $T$  denotes the flux interreacted with  
 396 intracellular concentrations or processes, both of which are described later.  $M$  denotes the  
 397 microenvironment.

398

399 The change rates of  $\text{CO}_2 [J_{CO_2^M(r)}]$ ,  $\text{mol C m}^{-3} \text{ s}^{-1}$ ,  $\text{HCO}_3^- [J_{HCO_3^M(r)}]$ ,  $\text{mol C m}^{-3}$ ,  $\text{CO}_3^{2-} [J_{CO_3^M(r)}]$ ,  
 400  $\text{mol C m}^{-3}$ ,  $\text{H}^+ [J_{H^M(r)}]$ ,  $\text{mol H}^+ \text{ m}^{-3}$ , and  $\text{OH}^- [J_{OH^M(r)}]$ ,  $\text{mol OH}^- \text{ m}^{-3}$ , driven by the chemical  
 401 reactions in carbonate systems, are:





$$J_{\text{CO}_2^M}(r) = [k_{-1} \cdot H^M(r) \cdot \text{HCO}_3^M(r) - k_{+1} \cdot \text{CO}_2^M(r)] + [k_{-4} \cdot \text{HCO}_3^M(r) - k_{+4} \cdot \text{OH}^M(r) \cdot \text{CO}_2^M(r)], \quad (\text{S53})$$

$$\begin{aligned} J_{\text{HCO}_3^M}(r) = & [-k_{-1} \cdot H^M(r) \cdot \text{HCO}_3^M(r) + k_{+1} \cdot \text{CO}_2^M(r)] + [-k_{-4} \cdot \text{HCO}_3^M(r) + k_{+4} \cdot \text{OH}^M(r) \cdot \text{CO}_2^M(r)] \\ & + [k_{+5} \cdot H^M(r) \cdot \text{CO}_3^M(r) - k_{-5} \cdot \text{HCO}_3^M(r)]. \end{aligned} \quad (\text{S54})$$

$$J_{\text{CO}_3^M}(r) = [k_{-5} \cdot \text{HCO}_3^M(r) - k_{+5} \cdot H^M(r) \cdot \text{CO}_3^M(r)], \quad (\text{S55})$$

$$\begin{aligned} J_{\text{H}^M}(r) = & [-k_{-1} \cdot H^M(r) \cdot \text{HCO}_3^M(r) + k_{+1} \cdot \text{CO}_2^M(r)] + [k_{-5} \cdot \text{HCO}_3^M(r) - k_{+5} \cdot H^M(r) \cdot \text{CO}_3^M(r)] \\ & + [-k_{-6} \cdot H^M(r) \cdot \text{OH}^M(r) + k_{+6}], \end{aligned} \quad (\text{S56})$$

$$J_{\text{OH}^M}(r) = [k_{-4} \cdot \text{HCO}_3^M(r) - k_{+4} \cdot \text{OH}^M(r) \cdot \text{CO}_2^M(r)] + [-k_{-6} \cdot H^M(r) \cdot \text{OH}^M(r) + k_{+6}], \quad (\text{S57})$$

402 where  $k$  represents the reaction rate coefficient, and its subscript with positive or negative  
403 number represents the forward or reverse reaction, respectively.

404

405 The  $\text{O}_2$  diffusion rate [ $T_{C, \text{O}_2}^M(r)$ , mol  $\text{O}_2 \text{ m}^{-3} \text{ s}^{-1}$ ] between the intracellular cytoplasm and the  
406 extracellular microenvironment is:

$$T_{C, \text{O}_2}^M(r) = \frac{-2 \cdot \pi \cdot d_{\text{O}_2} \cdot L}{V} \cdot \left\{ \frac{1}{\varepsilon} \cdot \ln \left( \frac{R}{R + L_g} \right) \right\}^{-1} \cdot [\text{O}_2^M(r) - \text{O}_2(r)]. \quad (\text{S58})$$

407

408 Considering the complexity of intracellular carbonate system with diffusion between cytoplasm  
409 and carboxysome, for simplification, the concentration of DIC and the reactions of carbonate  
410 system are not simulated in the intracellular cytoplasm as mentioned above. The exchange rates  
411 of  $\text{CO}_2$  [ $T_{C, \text{CO}_2}^M(r)$ , mol  $\text{C m}^{-3} \text{ s}^{-1}$ ] was regulated by the  $\text{CO}_2$  diffusion flux from

412 microenvironment into cytoplasm [ $\frac{\frac{-2 \cdot \pi \cdot d_{\text{CO}_2} \cdot L}{V} \cdot \left\{ \frac{1}{\varepsilon_{\text{CO}_2}} \cdot \ln \left( \frac{R}{R + L_g} \right) \right\}^{-1} \cdot \text{CO}_2^M(r)}{Q_C}$ ] and leakage flux into  
413 microenvironment [ $(1 - f_{RP}^{CF}) \cdot V_{RP}(r)$ ]. The exchange rate of  $\text{HCO}_3^-$  [ $T_{C, \text{HCO}_3}^M(r)$ , mol  $\text{C m}^{-3} \text{ s}^{-1}$ ]  
414 was based on the requirement of  $\text{HCO}_3^-$  to support carbon fixation. The exchange rate of  $\text{HCO}_3^-$   
415 [ $T_{C, \text{H}}^M(r)$ , mol  $\text{H}^+ \text{ m}^{-3} \text{ s}^{-1}$ ] was the same as  $T_{C, \text{HCO}_3}^M(r)$ <sup>7</sup>:

$$T_{C, \text{CO}_2}^M(r) = \frac{\frac{-2 \cdot \pi \cdot d_{\text{CO}_2} \cdot L}{V} \cdot \left\{ \frac{1}{\varepsilon_{\text{CO}_2}} \cdot \ln \left( \frac{R}{R + L_g} \right) \right\}^{-1} \cdot \text{CO}_2^M(r)}{Q_C} - (1 - f_{RP}^{CF}) \cdot V_{RP}(r), \quad (\text{S59})$$

$$T_{C, HCO_3}^M(r) = V_{CF}(r) - f_{RP}^{CF} \cdot V_{RP}(r) - \frac{\frac{-2 \cdot \pi \cdot d_{CO_2} \cdot L}{V} \cdot \left\{ \frac{1}{\varepsilon_{CO_2}} \cdot \ln \left( \frac{R}{R + L_g} \right) \right\}^{-1} \cdot CO_2^M(r)}{Q_c}, \quad (S60)$$

$$T_{C, H}^M(r) = T_{C, HCO_3}^M(r). \quad (S61)$$

416

417 11. Model experiments with ammonia and copper toxicity

418 Ammonia ( $NH_3$ ) and/or copper (Cu) toxicity can impact the response of the trichome to ocean  
 419 acidification <sup>22</sup>. Furthermore, previous study reported that the colony could also create a  
 420 chemical gradient of  $NH_4^+$  and copper from the center to the edge <sup>2,42</sup>. Accordingly, we  
 421 conducted model experiments that incorporated the toxic effects of  $NH_3$  and/or Cu into the  
 422 models for both trichome and colony.

423

424 Considering that  $NH_3$  and/or Cu can inhibit photosystem II activity and photosynthetic ATP  
 425 production <sup>22,43</sup>, we hypothesized that that  $NH_3$  and/or Cu toxicity would negatively affect the  
 426 ATP production by the photosynthetic electron transfer chain. This effect ( $\xi$ , dimensionless) is  
 427 regulated by extracellular  $NH_3$  and/or dissolved inorganic Cu concentration with pH level:

$$\xi = 1 - \frac{NH_3}{NH_3 + k_{NH_3}} \cdot \frac{Cu}{Cu + k_{Cu}} \cdot 10^{OA^{Cu} \cdot (pH - pH_{bst})}, \quad (S62)$$

428 where  $k_{NH_3} = 3 \times 10^{-5}$  mol N m<sup>-3</sup> and  $k_{Cu} = 2.5 \times 10^{-7}$  mol Cu m<sup>-3</sup> are the half-saturating coefficient  
 429 of  $NH_3$  and Cu concentrations for the toxic effect, and  $OA^{Cu} = 1.65$  represents the strength of  
 430 negative effect from acidification on copper availability.

431

432 The concentration of  $NH_3$  was calculated based on the pH level,  $NH_4^+$  concentration, and the  
 433 equilibrium constant for the chemical reaction between  $NH_3$  and  $NH_4^+$ . In the colony model,  
 434 microenvironmental  $NH_4^+$  concentration profile was predefined according to the findings of  
 435 Klawonn, et al. <sup>2</sup>. The pattern of microenvironmental Cu was set the same as that of  $NH_4^+$ , with  
 436 the highest concentration (1 nmol L<sup>-1</sup>) at the center of the colony. This concentration selection is  
 437 supported by observations from Wang, et al. <sup>42</sup>.

438

439 Given an approximate colony volume of ~1  $\mu$ L, dust loads of 0.2–1  $\mu$ g per colony yield an  
 440 effective dust concentration of 200–1,000 mg/L <sup>42</sup>. In situ observations of puff-shaped colonies  
 441 indicate that each colony typically contains less than 200 ng of dust, corresponding to ~200 mg/L  
 442 <sup>42</sup>. Based on these estimations and relationship between dust and Cu concentrations <sup>42</sup>, a Cu

443 concentration of 1 nmol L<sup>-1</sup> could be considered a conservative estimate. Additionally,  
444 observations of trichome growth in YBC-II media with 1 nmol L<sup>-1</sup> Cu have likely demonstrated  
445 toxic effects <sup>22</sup>, further supporting the relevance of this concentration for the colony model  
446 experiments.

447

448 **SUPPLEMENTAL REFERENCES**

- 449 1. Luo, Y.W. *et al.* Reduced nitrogenase efficiency dominates response of the globally  
450 important nitrogen fixer *Trichodesmium* to ocean acidification. *Nature Communications* **10**,  
451 1521 (2019).
- 452 2. Klawonn, I. *et al.* Distinct nitrogen cycling and steep chemical gradients in *Trichodesmium*  
453 colonies. *The ISME Journal* **14**, 399-412 (2020).
- 454 3. Luo, W. & Luo, Y.-W. Diurnally dynamic iron allocation promotes N<sub>2</sub> fixation in marine  
455 dominant diazotroph *Trichodesmium*. *Computational and Structural Biotechnology  
456 Journal* **21**, 3503-3512 (2023).
- 457 4. Luo, W., Inomura, K., Zhang, H. & Luo, Y.-W. N<sub>2</sub> fixation in *Trichodesmium* does not  
458 require spatial segregation from photosynthesis. *mSystems* **7**, e00538-22 (2022).
- 459 5. Inomura, K., Wilson, S.T. & Deutsch, C. Mechanistic model for the coexistence of nitrogen  
460 fixation and photosynthesis in marine *Trichodesmium*. *mSystems* **4**, e00210-19 (2019).
- 461 6. Benson, B.B. & Krause, D. The concentration and isotopic fractionation of oxygen  
462 dissolved in freshwater and seawater in equilibrium with the atmosphere. *Limnology and  
463 Oceanography* **29**, 620-632 (1984).
- 464 7. Wolf-Gladrow, D. & Riebesell, U. Diffusion and reactions in the vicinity of plankton: A  
465 refined model for inorganic carbon transport. *Marine Chemistry* **59**, 17-34 (1997).
- 466 8. Allen, J.F. Cyclic, pseudocyclic and noncyclic photophosphorylation: New links in the  
467 chain. *Trends in Plant Science* **8**, 15-19 (2003).
- 468 9. Geider, R.J., Moore, C.M. & Ross, O.N. The role of cost–benefit analysis in models of  
469 phytoplankton growth and acclimation. *Plant Ecology and Diversity* **2**, 165-178 (2009).
- 470 10. Flores, E. & Herrero, A. Assimilatory nitrogen metabolism and its regulation. in *The  
471 Molecular Biology of Cyanobacteria* (ed. Bryant, D.A.) 487-517 (Kluwer Academic  
472 Publishers, Dordrecht, 1994).
- 473 11. Flores, E., Frías, J.E., Rubio, L.M. & Herrero, A. Photosynthetic nitrate assimilation in  
474 cyanobacteria. *Photosynthesis Research* **83**, 117-133 (2005).
- 475 12. Baker, N.R., Harbinson, J. & Kramer, D.M. Determining the limitations and regulation of  
476 photosynthetic energy transduction in leaves. *Plant Cell and Environment* **30**, 1107-1125  
477 (2007).
- 478 13. Raven, J.A., Beardall, J. & Giordano, M. Energy costs of carbon dioxide concentrating  
479 mechanisms in aquatic organisms. *Photosynthesis Research* **121**, 111-124 (2014).
- 480 14. Mitchell, P. Aspects of the chemiosmotic hypothesis. *Biochemical Journal* **116**, 5-6 (1970).
- 481 15. Bratbak, G. & Dundas, I. Bacterial dry matter content and biomass estimations. *Applied  
482 and Environmental Microbiology* **48**, 755-757 (1984).
- 483 16. Carpenter, E.J. *et al.* The tropical diazotrophic phytoplankton *Trichodesmium*: Biological  
484 characteristics of two common species. *Marine Ecology Progress Series* **95**, 295-304  
485 (1993).
- 486 17. LaRoche, J. & Breitbarth, E. Importance of the diazotrophs as a source of new nitrogen in  
487 the ocean. *Journal of Sea Research* **53**, 67-91 (2005).
- 488 18. Shi, D., Kranz, S.A., Kim, J.M. & Morel, F.M. Ocean acidification slows nitrogen fixation  
489 and growth in the dominant diazotroph *Trichodesmium* under low-iron conditions.  
490 *Proceedings of the National Academy of Sciences of the United States of America* **109**,  
491 E3094-100 (2012).
- 492 19. Shao, Z. *et al.* Global oceanic diazotroph database version 2 and elevated estimate of global  
493 oceanic N<sub>2</sub> fixation. *Earth System Science Data* **15**, 3673-3709 (2023).

494 20. Capone, D.G., Zehr, J.P., Paerl, H.W., Bergman, B. & Carpenter, E.J. *Trichodesmium*, a  
495 globally significant marine cyanobacterium. *Science* **276**, 1221-1229 (1997).

496 21. Chen, Y.B., Dominic, B., Mellon, M.T. & Zehr, J.P. Circadian rhythm of nitrogenase gene  
497 expression in the diazotrophic filamentous nonheterocystous cyanobacterium  
498 *Trichodesmium* sp. strain IMS 101. *Journal of Bacteriology* **180**, 3598-3605 (1998).

499 22. Hong, H. *et al.* The complex effects of ocean acidification on the prominent N<sub>2</sub>-fixing  
500 cyanobacterium *Trichodesmium*. *Science* **356**, 527-531 (2017).

501 23. Shi, D., Shen, R., Kranz, S.A., Morel, F.M.M. & Hong, H. Response to Comment on "The  
502 complex effects of ocean acidification on the prominent N<sub>2</sub>-fixing cyanobacterium  
503 *Trichodesmium*". *Science* **357**(2017).

504 24. Reimers, A.M., Knoop, H., Bockmayr, A. & Steuer, R. Cellular trade-offs and optimal  
505 resource allocation during cyanobacterial diurnal growth. *Proceedings of the National  
506 Academy of Sciences of the United States of America* **114**, E6457-E6465 (2017).

507 25. Milligan, A.J., Berman-Frank, I., Gerchman, Y., Dismukes, G.C. & Falkowski, P.G. Light-  
508 dependent oxygen consumption in nitrogen-fixing cyanobacteria plays a key role in  
509 nitrogenase protection. *Journal of Phycology* **43**, 845-852 (2007).

510 26. Behrenfeld, M.J. & Milligan, A.J. Photophysiological expressions of iron stress in  
511 phytoplankton. *Annual Review of Marine Science* **5**, 217-246 (2013).

512 27. Berman-Frank, I. *et al.* Segregation of nitrogen fixation and oxygenic photosynthesis in  
513 the marine cyanobacterium *Trichodesmium*. *Science* **294**, 1534-1537 (2001).

514 28. Gallon, J.R. The oxygen sensitivity of nitrogenase: A problem for biochemists and micro-  
515 organisms. *Trends In Biochemical Sciences* **6**, 19-23 (1981).

516 29. Hutchins, D.A. *et al.* CO<sub>2</sub> control of *Trichodesmium* N<sub>2</sub> fixation, photosynthesis, growth  
517 rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry.  
518 *Limnology and Oceanography* **52**, 1293-1304 (2007).

519 30. Eichner, M., Kranz, S.A. & Rost, B. Combined effects of different CO<sub>2</sub> levels and N  
520 sources on the diazotrophic cyanobacterium *Trichodesmium*. *Physiologia Plantarum* **152**,  
521 316-330 (2014).

522 31. Levitan, O. *et al.* Elevated CO<sub>2</sub> enhances nitrogen fixation and growth in the marine  
523 cyanobacterium *Trichodesmium*. *Global Change Biology* **13**, 531-538 (2007).

524 32. Kranz, S.A., Süttemeyer, D., Richter, K.-U. & Rost, B. Carbon acquisition by  
525 *Trichodesmium*: The effect of pCO<sub>2</sub> and diurnal changes. *Limnology and Oceanography*  
526 **54**, 548-559 (2009).

527 33. Barcelos e Ramos, J., Biswas, H., Schulz, K.G., LaRoche, J. & Riebesell, U. Effect of  
528 rising atmospheric carbon dioxide on the marine nitrogen fixer *Trichodesmium*. *Global  
529 Biogeochemical Cycles* **21**, GB2028 (2007).

530 34. Inomura, K. *et al.* Quantifying oxygen management and temperature and light  
531 dependencies of nitrogen fixation by *Crocospaera watsonii*. *mSphere* **4**, e00531-19  
532 (2019).

533 35. Staal, M., Meysman, F.J. & Stal, L.J. Temperature excludes N<sub>2</sub>-fixing heterocystous  
534 cyanobacteria in the tropical oceans. *Nature* **425**, 504-507 (2003).

535 36. Kustka, A.B. *et al.* Iron requirements for dinitrogen - and ammonium - supported growth  
536 in cultures of *Trichodesmium* (IMS 101): Comparison with nitrogen fixation rates and iron:  
537 carbon ratios of field populations. *Limnology and Oceanography* **48**, 1869-1884 (2003).

538 37. Berman-Frank, I., Cullen, J.T., Shaked, Y., Sherrell, R.M. & Falkowski, P.G. Iron  
539 availability, cellular iron quotas, and nitrogen fixation in *Trichodesmium*. *Limnology and*

540 38. *Oceanography* **46**, 1249-1260 (2001).

541 38. Capone, D.G., O'Neil, J.M., Zehr, J.P. & Carpenter, E.J. Basis for diel variation in  
542 nitrogenase activity in the marine planktonic cyanobacterium *Trichodesmium thiebautii*.  
543 *Applied and Environmental Microbiology* **56**, 3532-3536 (1990).

544 39. Shampine, L.F. & Reichelt, M.W. The MATLAB ODE Suite. *SIAM J Sci Comput* **18**, 1-22  
545 (1997).

546 40. Finzi-Hart, J.A. *et al.* Fixation and fate of C and N in the cyanobacterium *Trichodesmium*  
547 using nanometer-scale secondary ion mass spectrometry. *Proceedings of the National  
548 Academy of Sciences of the United States of America* **106**, 6345-6350 (2009).

549 41. Shi, T., Sun, Y. & Falkowski, P.G. Effects of iron limitation on the expression of metabolic  
550 genes in the marine cyanobacterium *Trichodesmium erythraeum* IMS101. *Environmental  
551 Microbiology* **9**, 2945-56 (2007).

552 42. Wang, S. *et al.* Costs of Dust Collection by *Trichodesmium*: Effect on Buoyancy and Toxic  
553 Metal Release. *Journal of Geophysical Research: Biogeosciences* **129**, e2023JG007954  
554 (2024).

555 43. Cid, A., Herrero, C., Torres, E. & Abalde, J. Copper toxicity on the marine microalga  
556 *Phaeodactylum tricornutum*: effects on photosynthesis and related parameters. *Aquatic  
557 Toxicology* **31**, 165-174 (1995).

558