

1 Supplemental Information for “On predictability of slip,
2 rupture geometry, and rupture speed of the $M_w 7.8$ 2025
3 Mandalay (Myanmar) Earthquake”

4 Thomas Ulrich^{1†}, Xiaoyu Zou^{2†}, Mathilde Marchandon¹, Nico Schliwa¹,
5 Fengzhou Tan², Alice-Agnes Gabriel^{1,2*}, Wenyuan Fan², Peter Shearer²,
6 Myo Thant³, Tha Zin Htet Tin⁴, Eric O. Lindsey⁵, Yuri Fialko²

7 ¹*Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität
8 München, Munich, 80539, Germany.

9 ²Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography,
10 University of California San Diego, La Jolla, 92093, CA, USA.

11 ³Myanmar Institute of Earth and Planetary Sciences, Yangon, Myanmar.

12 ⁴Department of Geology, University of Yangon, Yangon, Myanmar.

13 ⁵Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque,
14 87131, NM, USA.

15 *Corresponding author(s). E-mail(s): algabriel@ucsd.edu;
16 Contributing authors: thomas.ulrich@lmu.de; x3zou@ucsd.edu;
17 mathilde.marchandon@lmu.de; nico.schliwa@lmu.de; f4tan@ucsd.edu;
18 wenyuanfan@ucsd.edu; pshearer@ucsd.edu; myothant05@gmail.com;
19 thazinhettin@gmail.com; eol@unm.edu; yfialko@ucsd.edu;

20 [†]These authors contributed equally to this work.

21 **Contents of this file**

22 1. Texts S1 to S13
23 2. Tables S1 to S3
24 3. Figures S1 to S34
25 4. Animation S1

26 **Text S1. Space Geodetic Data Processing**

27 We use Synthetic Aperture Radar (SAR) data acquired by Sentinel-1A satellite in TOPS mode (ascending
28 tracks 70 and 143; descending tracks 33 and 106) and ALOS-2 satellite in ScanSAR mode (ascending track
29 152; descending tracks 41 and 42). The respective acquisition dates are listed in Table S1. All data are
30 processed using GMTSAR¹ and the Shuttle Radar Topography Mission (SRTM) digital elevation model
31 with 30 m postings². For the Sentinel-1A data, we estimate azimuth offsets using pixel-tracking. We
32 cross-correlate the Single Look Complex (SLC) images with a sampling interval of 8 pixels in azimuth and
33 range. To improve the signal to noise ratio, we only select pixels for which the calculated azimuth offset
34 is less than 10 meters. We then use the fault trace projected in the radar (range-Doppler) coordinates
35 to split the scene into two parts. For each part, we fit a low-order 2-D spline to a scattered set of pixels
36 using a surface modeling tool *gridfit*³. We then remove pixels with offsets that deviate more than 2 m
37 from the best-fit spline. The remaining set of pixels is filtered using a Gaussian filter with wavelength of
38 0.5 km. The two parts of the image are recombined and projected from radar to geographic coordinates.
39 Separate processing of the 2 parts is meant to avoid filtering of averaging of discontinuous data along
40 the fault trace. The resulting offsets are shown in Fig. S2. We do not use interferometric phase from
41 Sentinel-1A measurements because it is highly decorrelated, especially in the near field (5-10 km) of the
42 earthquake rupture.

43 For the ALOS-2 data, we process 3 ScanSAR frames from each track spanning the earthquake rupture.
44 Each frame consists of 5 sub-swathes that are co-registered, filtered, and merged into a full frame. The
45 merged frames are unwrapped using the branch-cut algorithm⁴. This allows to confidently unwrap the
46 radar phase in frames that cover the rupture tips. For the central frames that are completely crossed by
47 the ~500 km long earthquake rupture, we use data from the overlap areas between the adjacent frames to
48 solve for the 2π ambiguity, and manually bridge the phase across the fault trace. Finally, we merge the 3
49 frames by minimizing phase difference in the overlap areas. Fig. S3a shows an example of interferometric
50 phase from 3 merged frames from the descending track 41. The phase data are dominated by a long-
51 wavelength ramp, most likely due to ionospheric variability. Noting that coseismic displacements are
52 expected to vanish at distances of the order of 50-100 km away from the fault trace, we take advantage of
53 the wide-swath capability of ALOS-2 to remove the long-wavelength contribution due to ionosphere. We
54 resample the merged unwrapped interferogram to grid spacing of 1 km, mask out data within ~100 km
55 from the fault trace, and fit a tension spline to the remaining set of pixels. The best-fit spline surface is
56 then upsampled and subtracted from the original data at full resolution. Fig. S3b shows the interferometric
57 phase upon the respective correction. The coseismic signal is clearly visible, along with some fringes that
58 likely represent uncorrected tropospheric and ionospheric artifacts. The phase remains coherent all the
59 way to the rupture trace, due to a larger wavelength of the ALOS-2 radar (0.23 m, compared to 0.06
60 m for Sentinel-1A satellite). Line of sight (LOS) displacements obtained from the merged, unwrapped,
61 and de-trended ALOS-2 interferograms are shown in Fig. S4. While the predominantly strike-slip sense
62 of motion on a North-South trending earthquake rupture implies that only a small fraction of strike-slip
63 motion can be observed along the satellite LOS, interferometric data nevertheless represent a valuable
64 constraint because they have a high sensitivity to the dip-slip component, and therefore reduce possible
65 trade-offs between the strike- and dip-slip. Also, because of the large magnitude of strike-slip, a LOS
66 projection as small as several percents still has a signal to noise ratio that is larger than that in pixel
67 offsets (Figs. S2, S4).

68 The azimuth offset and LOS displacement data (Figs. S2, S4) are sub-sampled using a quad-tree
69 algorithm⁵⁻⁷ to reduce the computational cost and achieve a better model resolution. The unit-look
70 vectors are computed by averaging the original values in the same groups of pixels as used for sub-sampling
71 the phase and pixel offset data.

72 In addition to the LOS and azimuth displacements derived from the SAR images, we also measure
73 the horizontal surface displacement field of the Mandalay earthquake by cross-correlating optical

74 images collected by Sentinel-2 satellite. The Sentinel-2 images have a pixel size of about 10 m. Twelve
75 pairs of pre-earthquake (2025/03/25-27) and post-earthquake (2025/03/30 and 2025/04/01) images are
76 needed to cover the 500 km long rupture area (Table S1). As the Sentinel-2 images are provided already
77 orthorectified, no geometrical correction is applied prior the correlation. We use the phase correlator of
78 the software package COSI-Corr [8-10](#) with a multiscale sliding correlation window of 128 to 64 pixels and
79 a measurement step of 6 pixels. We discard from the resulting 60 m East-West (EW) and North-South
80 (NS) displacement fields any data point having a signal-to-noise ratio lower than 0.95 and a displacement
81 amplitude higher than 10 m. Finally, we smooth the EW and NS displacement fields using a median filter
82 with a 5x5 pixels window.

83 **Text S2. Measurement of Surface Fault Offsets**

84 Fault-parallel offsets are obtained from the Sentinel-2 horizontal displacement field using a series of
85 uniformly distributed, fault-perpendicular stacked profiles. Each profile spans 70 km long and is laterally
86 averaged over a width of 2 km to enhance the signal-to-noise ratio. Displacement offsets are measured by
87 performing linear regression fits to the displacement data on either side of the fault trace and computing
88 the offset as the difference between the extrapolated values of the regressions at the fault. Associated
89 uncertainties are estimated by calculating the root mean square (RMS) of the 1-sigma standard deviations
90 of the regression fits on both sides of the fault. In total, we measured 258 profiles. Fault zone width is also
91 quantified by measuring the distance between the inflection points in the displacement profile on either
92 side of the fault.

93 **Text S3. Retrieval of 3 Orthogonal Components of Surface Displacements from 94 SAR Data**

95 The azimuth offsets and LOS displacements from 7 different satellite tracks (Figs. [S2](#), [S4](#)) are used to
96 retrieve the three orthogonal components of the coseismic displacement field [11;12](#). The respective geocoded
97 data sets are first resampled onto a common grid. To reduce speckle, the azimuth offsets are filtered
98 using a 1 km Gaussian filter. For each pixel of a common grid we form a system of linear equations by
99 adding the respective unit look vectors as rows to the design matrix and the observed quantity to the
100 data vector. The resulting system is solved using least squares for the three orthogonal components of
101 the displacement vector if the following two conditions are met: (i) more than two observations from
102 different data sets are available for a given pixel and (ii) a condition number of the design matrix is less
103 than some threshold (100 in our calculations). The first condition ensures that the system is not under-
104 determined; the second condition ensures that there is sufficient diversity in the look angles (that is, the
105 solution is not highly unstable with respect to the data errors). The resulting horizontal component of
106 the displacement field is shown in Fig. 1b in the main text.

107 **Text S4. A 1-D model of S-wave Velocity and Shear Modulus for the Sagaing 108 Fault**

109 We construct a depth-dependent S-wave velocity model using depth-averaged, binned shear wave velocity
110 data from stations within approximately 50 km of the Sagaing Fault [13](#). The bin boundaries are determined
111 by identifying depths where the cumulative absolute change in velocity exhibits local maxima. The shear
112 modulus corresponding to each depth layer (bin) is calculated based on the empirical relationship between
113 seismic wave velocity and density [14](#). The resulting 1-D S-wave velocity and shear modulus distributions
114 as a function of depth are shown in Fig. [S5](#).

115 **Text S5. Estimation of Subsurface Fault Geometry from Geodetic Data**

116 To constrain the three-dimensional geometry of the Sagaing Fault, we first digitize the surface trace of
117 the 2025 earthquake rupture using azimuth offsets derived from Sentinel-1 data, and the NS component
118 of horizontal displacements derived from Sentinel-2 data. We then partition the rupture trace into seven
119 linear segments (Fig. S6a). Except for the relatively short segment 1 which represents a small kink near
120 the northern end of the earthquake rupture, the rest of the segments (segments 2–7) are nearly equal
121 in length, about 80 km each. Segments 2–7 are modeled as planar faults sub-divided into rectangular
122 dislocations. For every segment, we extract 60 km wide swathes of data centered on, and perpendicular to
123 the segment, and invert them for the best-fit slip distribution using SlipSolve algorithm¹⁵. The algorithm
124 calculates Green's functions assuming a layered elastic half-space¹⁶, using a 1-D rigidity model shown in
125 Fig. S5b. For each segment, we perform several inversions for different assumed dip angles. Resulting data
126 misfits are shown in Fig. S6. Dip angles that yield a minimum misfit value are taken to be representative
127 of the respective segments. We do not perform a separate grid search for segment 1, as it is too short
128 for a 2-D approximation. Instead, we constrain the dip of segment 1 to be equal to that of segment 2.
129 We then project each planar sub-fault using its inferred dip angle to a depth of 25 km. Finally, we fit a
130 smooth continuous 3-D surface to a set of points spanning the fault trace and (on average) the individual
131 sub-faults 1–7¹⁷. The resulting surface has a helical geometry with a dip angle varying smoothly along
132 strike, as illustrated in Fig. 2a in the main text.

133 **Text S6. Inversion of Geodetic Data for Static Slip Model**

134 Inversions of coseismic displacements for the subsurface slip distribution typically approximate faults as
135 a superposition of dislocations^{5;6;18}. The most popular choice is a rectangular dislocation in a homo-
136 geneous¹⁹ or layered¹⁶ elastic half-space. Triangular Dislocation Elements (TDE) are generally better
137 suited for approximating complex non-planar surfaces^{17;20;21}. However, finite dislocations give rise to an
138 unphysical piece-wise constant ("staircase") approximation of coseismic slip. Here, we use a novel method
139 for inverting surface displacements using piece-wise linear triangular boundary elements in a layered elas-
140 tic half-space that ensures a continuous slip distribution. As a first step, we tessellate the 3-D curved
141 fault surface (Fig. 2a) to produce a "watertight" mesh of triangular elements. The element size gradually
142 increases from ~ 1 km at the Earth's surface to ~ 5 km at the bottom of the fault model (20–25 km), to
143 keep the model resolution matrix close to diagonal²². Each triangular element is given by a superposi-
144 tion of equally spaced point sources¹⁷. The Green's functions for point sources are computed assuming a
145 1-D rigidity structure shown in Fig. S5b, except for elements at the free surface, for which we use regular
146 TDEs²¹ to avoid singularities in the near field of the fault trace. We then calculate Green's functions for
147 the vertices of the triangular elements, imposing a slip of unity at the given vertex, and a linear decrease
148 of slip to zero to the other vertices of all adjacent triangular elements. This is similar to a treatment of
149 triangular elements with linear basis functions in the Finite Element Method²³. Finally, we solve for slip
150 u at the nodes (vertices of interconnected triangular elements) of the mesh by forming a linear system
151 of equations $Gu = d$, where G is the Green's function matrix, and d is the data vector consisting of sub-
152 sampled Sentinel-1 azimuth offsets and ALOS-2 LOS displacements. Vector u consists of strike-slip and
153 dip-slip components for each node. The matrix G accounts for the projection of the 3-component surface
154 displacement field onto the respective lines of sight or flight directions. We seek the slip distribution u
155 that minimizes a functional

$$F(u, \lambda) = \|Gu - d\|_2 + \lambda\|\nabla^2 u\|_2, \quad (1)$$

156 where $\|\cdot\|_2$ is the Euclidean (L_2) norm, ∇^2 is the Laplacian operator that penalizes curvature in the slip
157 distribution and serves as a regularization operator to avoid ill-posedness²⁴, and λ is the smoothness
158 parameter. The latter is chosen to optimize the trade-off between the model smoothness and fit to the
159 data (Fig. S7). We implement a discrete Laplacian operator on a triangular mesh using an edge-level
160 hybrid scheme: for triangular elements having acute angles, we use a cotangent formula, and mean-value

161 weights otherwise²⁵. Assume two nodes i and j share the same edge, ij (Fig. S8); $\theta_{ikj}, \theta_{ilj}$ are the vertex
162 angles opposite to the edge ij ; k and l are the vertices of triangles at $\theta_{ikj}, \theta_{ilj}$, and $\mathbf{p}_i, \mathbf{p}_j$ are the 3-D
163 position vectors of nodes i and j ,

$$w_{ij} = \begin{cases} \frac{1}{2}(\cot \theta_{ikj} + \cot \theta_{ilj}), & \text{if } \theta_{ikj}, \theta_{ilj} \in (0, \frac{\pi}{2}) \text{ (both acute),} \\ \frac{\tan(\theta_{kij}/2) + \tan(\theta_{lij}/2) + \tan(\theta_{kji}/2) + \tan(\theta_{lji}/2)}{\|\mathbf{p}_i - \mathbf{p}_j\|}, & \text{otherwise,} \end{cases} \quad (2)$$

164 where θ_{kij} is an angle between triangle sides ki and ij . The discrete Laplacian operator at a node i is
165 given by²⁵

$$\nabla^2 u_i = \frac{1}{S_i} \sum_{j=1}^N w_{ij} (u_j - u_i), \quad (3)$$

166 where S_i is the mixed-Voronoi area^{26;27} for node i to provide relative scaling across variable triangle sizes
167 (Fig S8), and N is the total number of nodes immediately adjacent to node i . For each triangle T (vertices
168 i, j and k , with coordinate vectors $\mathbf{p}_i, \mathbf{p}_j$ and \mathbf{p}_k , and area A_T) that forms the cell area surrounding
169 node i , the area of the respective Voronoi cell is calculated as

$$S_i^{(T)} = \begin{cases} \frac{1}{8}(\cot \theta_{ijk} \|\mathbf{p}_i - \mathbf{p}_k\|^2 + \cot \theta_{ikj} \|\mathbf{p}_i - \mathbf{p}_j\|^2), & \text{if } T \text{ is non-obtuse,} \\ \frac{1}{2} A_T, & \text{if } \theta_{kij} > \frac{\pi}{2} \text{ (obtuse at } i\text{),} \\ \frac{1}{4} A_T, & \text{if } T \text{ is obtuse at } j \text{ or } k. \end{cases} \quad (4)$$

170 S_i is a union of all Voronoi cells $S_i^{(T)}$ around the node i (Fig. S8).

171 The design matrix of an inverse problem consists of G and a symmetric, sparse regularization matrix
172 that independently constrains strike- and dip-slip components of u . TDEs at the top of the slip model are
173 constrained to have the same slip as the top nodes of the linear triangular elements immediately below.
174 In addition, we impose “soft” zero-slip conditions at the lateral and bottom boundaries of the mesh²⁸.
175 The inversions are performed using SlipSolve package¹⁵. The best-fit slip model of the 2025 Mandalay
176 earthquake is shown in Fig. S9.

177 The uncertainties are estimated using a bootstrap method. We perform several inversions using the
178 same parameters, but excluding one of the datasets. Azimuth offsets from Sentinel-1A track D106 are
179 kept in all runs, since this track is well centered on the earthquake rupture. At each node, we take the
180 difference between the maximum and minimum slip values in all of the inversions as uncertainty in the
181 respective component of slip (Fig. S10).

182 To validate the resolving power of our inverse models, we execute a set of inversions using synthetic
183 data. Using the same fault geometry and the same mesh, we replace each triangular element with analytic
184 TDEs²¹. We then apply a slip distribution that tapers elliptically from the maximum slip of 5 m in the
185 middle of the fault trace to zero at the depth of 17 km, and toward the side (“North” and “South”) edges
186 of the mesh. The dip-slip component is zero. We compute surface displacements and project them onto
187 the lines of sight and flight directions corresponding to the Sentinel-1A and ALOS-2 datasets (Figs. S11–
188 S17). To simulate realistic noise, we use residuals (Figs. S11c–S17c) in which we mask out pixels within
189 3 km from the fault trace and replace them with residuals from the far-field (> 20 km from the fault
190 trace). The respective noise is added to synthetic data, which are then sub-sampled and inverted for the
191 best-fit slip distribution using the same procedure as described above, except the Green’s functions are
192 calculated for a homogeneous elastic half-space. The recovered slip distribution closely reproduces the

193 input model in the top 15 km (Fig. S18). Below 15 km, the inverse model somewhat over-predicts the
194 synthetic model due to loss of model resolution.

195 **Text S7. Dynamic rupture modeling approach, fault friction and initial shear 196 stresses**

197 To generate ensembles of 3D dynamic rupture simulations²⁹, we use the open-source software SeisSol³⁰.
198 SeisSol solves the coupled problem of spontaneous dynamic rupture and seismic wave propagation with
199 high-order accuracy in space and time³¹. It implements the Arbitrary high-order accurate DERivative
200 Discontinuous Galerkin method (ADER-DG³²) and incorporates end-to-end optimization for mod-
201 ern high-performance computing architectures³³⁻³⁷. SeisSol has been extensively verified through a
202 broad suite of community benchmark problems designed by the SCEC/USGS Dynamic Rupture Code
203 Verification project³⁸⁻⁴⁰.

204 We adopt a linear slip-weakening friction law^{41,42}. The dynamic friction coefficient is assumed constant
205 at $\mu_d = 0.15$. The critical slip weakening distance d_c and static friction coefficient μ_s vary across the fault
206 (Fig. S24b, Table S2).

207 We constrain the geometry and initial shear stresses of all 3D dynamic rupture models using the fault
208 geometry and slip distribution from the geodetic slip model. Kinematic (time-dependent) finite fault mod-
209 els have been previously employed to determine initial parameters for dynamic rupture simulations⁴³⁻⁴⁸.
210 We use a pseudo-static simulation, hereafter referred to as ‘dynamic relaxation simulation’ using the same
211 computational mesh and the same fault geometry as the subsequent dynamic rupture simulations^{49;50}.
212 We impose the time-independent geodetic slip distribution across the entire fault using a 3 s rise-time
213 Gaussian slip-rate function, applied through an internal boundary condition to determine the correspond-
214 ing stress-change distribution. This time-dependent fault slip is enforced as a displacement discontinuity
215 along the prescribed fault interface of the tetrahedral mesh. This dynamic relaxation simulation is run
216 for 99 seconds, allowing all seismic waves to exit the computational domain.

217 **Text S8. Structural model, adaptive meshing and resolution**

218 We construct a structural model that incorporates GEBCO-derived topography and bathymetry at 900 m
219 resolution. This free surface is intersected by a smoothed curved fault geometry, derived from the geometry
220 of the geodetic slip model. The fault is embedded within the same 1D velocity model as used in the
221 geodetic inversion. The computational domain spans $630 \times 900 \times 200$ km³.

222 For the ensemble rupture models, we employ a non-uniform unstructured tetrahedral mesh comprising
223 approximately 4 million elements. Along the Sagaing Fault, this mesh resolves fault geometry with 700 m
224 element size, while surface topography and bathymetry are represented at 2 km resolution. A refined
225 mesh region measuring $80 \times 500 \times 40$ km³, centered on the fault, uses element sizes of 2 km. Outside
226 this region, the mesh is progressively coarsened up to a maximum element size of 15 km. We use high-
227 order polynomials of degree $p = 4$, enabling sub-element resolution in space and high-order accuracy in
228 time. Simulating 130 s of rupture dynamics and seismic wave propagation requires 350 CPU hours on the
229 Skylake-based SuperMUC-NG Phase 2 supercomputer at the Leibniz Supercomputing Center, Garching,
230 Germany. The total computational cost of the 180 model ensemble is therefore only \sim 60k CPUh.

231 The on-fault resolution is chosen to resolve the process zone width⁵¹, the region behind the rupture
232 front where shear stress drops, controlled by fault friction and stress parameters (52, Table S2). In our
233 preferred dynamic rupture model, the median process zone width is ≈ 1960 m, with 95% of ruptured
234 fault elements exceeding 625 m in size. SeisSol simulations with $p = 4$ require at least 2-3 elements
235 across the median process zone for adequate resolution⁵³. With a fault element size of $h = 700$ m and
236 25 quadrature points per cell, our simulations meet this requirement, ensuring accurate resolution of the
237 dynamic rupture process.

238 **Text S9. Dynamic rupture model frictional strength, stress drop and nucle-
239 ation**

240 We prescribe a constant dynamic friction coefficient, enforce a minimum friction drop of $\mu_s - \mu_d \geq 0.2$,
241 and introduce spatial variations in static friction μ_s , thereby adopting heterogeneous initial shear stress
242 (τ_{gsm}) while maintaining a constant relative prestress ratio R in regions where $\mu_s > 0.35$.

243 R is a key dynamic rupture parameter (e.g. ⁵⁴), and is critical in determining rupture style and speed
244 (e.g., ⁵⁵) and relates the potential maximum stress drop $\tau_0 - \tau_d$, with τ_0 the initial shear stress and τ_d
245 the dynamic shear stress, to the frictional strength drop $\tau_s - \tau_d$, with τ_s the static shear stress, as

$$R = (\tau_0 - \tau_d)/(\tau_s - \tau_d), \quad (5)$$

246 with τ_s the static fault strength defined as

$$\tau_s = \mu_s \sigma'_n, \quad (6)$$

247 and τ_d is the dynamic fault strength defined as

$$\tau_d = \mu_d \sigma'_n, \quad (7)$$

248 with σ'_n the effective normal stress.

249 We assume an effective normal stress that increases linearly from 1 MPa at the surface to 16 MPa
250 at 1.5 km depth, and remains constant below this depth. Such low effective normal stress is motivated
251 by the modest stress changes implied by the inferred slip distribution and are consistent with pore-
252 fluid overpressure observations at interplate boundaries, following the lithostatic gradient below a critical
253 depth ⁵⁶:

$$\sigma'_n = \min(-1 \times 10^6, \max(-16 \times 10^6, 0.4\rho g z)). \quad (8)$$

254 Here, σ'_n is negative in compression. The sharp near-surface gradient of $|\sigma'_n|$ is required to allow
255 sufficient potential stress drop at shallow depth and to capture the large shallow slip observed near the
256 surface.

257 Assuming simple friction parameter distributions in conjunction with a heterogeneous initial stress
258 derived from the geodetic slip distribution provides a simple and parsimonious way of setting up initial
259 conditions for dynamic rupture models. However, this strategy is often inefficient in practice: the stress
260 field inferred from the slip distribution is typically too heterogeneous, and regions of low slip then tend to
261 remain insufficiently critically stressed ⁴⁷. Therefore, many previous studies constraining dynamic rupture
262 models from slip distributions ^{29;47;57} introduce small-scale spatial variations in static or dynamic friction,
263 reflecting the heterogeneous shear stress (here τ_{gsm}), thereby effectively enforcing a constant R across
264 the entire fault. However, there is no clear physical basis for prescribing static and dynamic friction
265 coefficients as functions of a heterogeneous initial shear stress distribution.

266 Here, we enforce a constant $R = R_{\text{param}}$ in region of sufficient large intial stress (resulting in $\mu_s \geq 0.35$),
267 while enforcing a relatively large minimum friction drop ($\mu_s - \mu_d \geq 0.2$) so that low-intial-stress regions
268 are not unrealistically close to failure. This strategy leads to a heterogeneous relative prestress ratio R
269 distribution, with $R < R_{\text{param}}$ in low initial-stress regions and $R = R_{\text{param}}$ elsewhere (Figure S24e.).

270 Figs. S25 and S24 illustrate how spatial variations in initial stress and friction parameters affect shear
271 stress and fault strength, shown for three representative depth profiles and for their distribution in the
272 preferred dynamic rupture model.

273 In all models, we prescribe the same nucleation patch that grows smoothly in time and across a
274 minimal-sized perturbation area ⁵⁸, adapted to the respective friction and stress parameters. The center
275 of this patch is placed at the USGS inferred hypocenter location (22.011°N 95.936°W, 7.6 km depth) ⁵⁹.

276 **Text S10. Dynamic rupture ensemble parameter space**

277 To generate an ensemble of 180 dynamic rupture simulations systematically exploring unconstrained
 278 dynamic parameters, we vary only three fault-wide defined quantities: (i) C , scaling the critical slip-
 279 weakening distance d_c in the linear slip-weakening friction law, (ii) B , modulating the potential maximum
 280 stress drop proportionally to the shear stress changes derived from the geodetic slip model, and (iii)
 281 R_{param} , the prescribed relative prestress ratio (Equation 5) in region where $\mu_s > 0.35$. We explore
 282 all combinations of (B, C, R_{param}) with B in $[0.9, 0.95, 1.0]$, C in $[0.05, 0.1, 0.15, 0.2, 0.25, 0.3]$, and R in
 283 $[0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95]$, leading to $3 \times 6 \times 10 = 180$ models.

284 The critical slip-weakening distance d_c is defined proportional to the slip distribution of the geodetic
 285 slip model u_{gsm} (Fig. S24a) as

$$d_c = C \max(0.15 \max(u_{\text{gsm}}), u_{\text{gsm}}). \quad (9)$$

286 This proportionality is tapered to 15% of the maximum slip, limiting computational cost and prevents
 287 unrealistically low fracture energy and dynamic rupture propagation far into low-slip regions.

288 A slip-scaled d_c assumption^{29;57} produces scale-dependent fracture energy^{52;60} with fault slip, as
 289 proposed by^{61;62}). This promotes dynamic rupture propagation in regions of low slip while using larger d_c
 290 in where slip is high, which is consistent with near-source seismic observation during large earthquakes⁶³
 291 and Bayesian dynamic rupture inversion^{64;65}.

292 The initial fault traction vector τ_0 is set as

$$\tau_0 = B\tau_{\text{gsm}} + \tau_d, \quad (10)$$

293 where τ_{gsm} is the shear stress change vector from the geodetic slip model, and τ_d is the dynamic
 294 strength vector defined as:

$$\tau_d = \mu_d \sigma'_n \mathbf{u}_{180}, \quad (11)$$

295 with \mathbf{u}_{180} a unit vector pointing in the rake 180° direction, and σ'_n the effective normal stress.

296 This formulation ensures that the potential stress drop $\tau_0 - \tau_d$ equals τ_{gsm} . This allows the dynamic
 297 rupture models to accurately and spontaneously reproduce the geodetic slip distribution (see Fig. S23).

298 Our back-projection analysis (Figure 4 in the main text) indicates that the fault region north of
 299 the hypocenter ruptured at subshear velocity, which can only be reproduced with sufficiently high local
 300 fracture energy. We therefore modify the parameterization north of the hypocenter by reducing the
 301 relative prestress ratio to $R_{\text{north}} = \min(0.6, R_{\text{param}})$ and increasing the fracture energy coefficient to
 302 $C_{\text{north}} = \max(0.25, C)$. We find a single fault-wide parametrization cannot simultaneously capture both
 303 the subshear rupture to the north and the supershear rupture rapidly accelerating toward P-wave velocity
 304 in the south.

305 The preferred dynamic rupture model is obtained with $B = 0.95$, $C = 0.15$, and $R = 0.95$ (see
 306 Table S2). $B = 0.95$ corresponds to a slightly reduced prestress level relative to that directly inferred
 307 from the geodetic slip model. With $C = 0.15$, the resulting d_c ranges from 0.12 m to 0.82 m, lower than
 308 estimates of 1.2 m from on-fault inferences at the CCTV site⁶⁶ and 2.4 m from analysis of parallel velocity
 309 pulses in strong-motion records at the near-fault NPW station⁶⁷ using the method of Fukuyama and
 310 Mikumo (2007)⁶⁷. Finally, $R_{\text{param}} = 0.95$ corresponds to a near-critical fault stress state. The preferred
 311 dynamic rupture model is characterized by a very low fracture energy $G_c = 8 \times 10^5 \text{ J/m}^2$, compared to
 312 estimates from previous 3D earthquake rupture scenarios (Table S1 in⁶²). Figure S24 illustrates the spatial
 313 distribution of fault friction, slip-weakening distance, shear and normal stress, and relative prestress ratio
 314 R of the preferred dynamic rupture model.

315 **Text S11. Goodness of fit and preferred dynamic rupture model validation**

316 We identify a preferred model from the ensemble of dynamic rupture scenarios by ranking all 180
 317 simulations according to a weighted, combined goodness-of-fit metric, denoted as $\text{GOF}_{\text{combined}}$. This met-
 318 ric integrates multiple individual goodness-of-fit (GOF) measures, each reflecting a distinct evaluation
 319 criterion.

320 The combined score is defined as

$$\text{GOF}_{\text{combined}} = \sum_i w_i \text{GOF}_i, \quad (12)$$

321 where GOF_i is the GOF value for criterion i and w_i is the corresponding weight.

322 Specifically, we combine constraints from (i) the slip distribution of the geodetic model, (ii) the
 323 NS displacement component at near-fault seismic static NPW, (iii) slip-rate inferred from the CCTV
 324 observations, (iv) surface fault-offsets, (v) the moment-rate function of the USGS finite-fault model,
 325 and (vi) fits to teleseismic surface and body waveforms. A short description of each component and its
 326 associated weight is given in Table S3.

327 To emphasize the most diagnostic constraints on rupture dynamics, we assign higher weights to the
 328 near-fault NPW and CCTV record, the geodetic slip distribution and fault offsets, compared to teleseismic
 329 inferences (e.g., ⁶⁸). The preferred model has a GOF of 0.71, and the ensemble shows a large spread in
 330 GOF (Fig. S26).

331 Validation of the preferred dynamic rupture model is illustrated in Figure 4 of the main text. Modeled
 332 fault-parallel surface offsets are consistent with Sentinel-2 optical image cross-correlation. The moment-
 333 rate function of the preferred model shows an early high-amplitude peak associated with the bilateral
 334 phase, followed by a prolonged tail from unilateral supershear propagation, and compares well with the
 335 USGS kinematic model ⁶⁹, the SCARDEC source time function ⁷⁰, and an alternative kinematic model ⁷¹.
 336 Ground displacement at near-fault station NPW ⁷² matches the modeled displacement, with the observed
 337 series derived by double integration and detrending of accelerations and subject to an estimated ± 0.8 s
 338 timing uncertainty. Along-strike slip-rate inferred from CCTV footage ⁷³, recorded 124 km south of the
 339 epicenter, is also reproduced in both shape and peak amplitude, with absolute timing aligned based on
 340 onset time using a slip-rate threshold of 0.15 m/s. Back-projection results from seismic arrays in Australia,
 341 Europe, and Alaska (Figs. 4e,f and S34) are consistent with the modeled rupture front, with marker size
 342 representing normalized beam energy and color denoting rupture time. Finally, rupture speeds inferred
 343 from back projection align with those of the preferred model, with the model's median rupture onset time
 344 and depth-dependent spread reproducing the observed along-strike evolution.

345 **Text S12. Variability within the dynamic rupture model ensemble**

346 We analyze the ensemble of 180 dynamic rupture simulations, synthesized in Figures S27, S28, and S29.
 347 Each figure illustrates model variability with varying critical slip weakening distance (via C) and relative
 348 prestress ratio (R_{param}), while keeping B fixed. Most models rupture the full fault extent as defined by
 349 the geodetic slip model, producing a moment magnitude near M_w 7.8. Rupture duration, however, varies
 350 widely, ranging from 81 s to 148 s. The fastest models nucleate early and propagate nearly continuously
 351 at supershear rupture speeds approaching the local P-wave velocity, whereas slower models alternate
 352 between sub-shear and supershear propagation (Fig. S30). The unique near-fault observations of the
 353 Myanmar earthquake clearly distinguish between these variable rupture speeds.

354 The surface-averaged fracture energy G_c (Figure S27c) helps explain this variability. It is calculated as

$$G_c = \frac{1}{2}(\mu_s - \mu_f) \min(u, d_c) \sigma'_n, \quad (13)$$

355 where u is the accumulated fault slip and μ_f is the local friction coefficient at the end of the simulation.
356 G_c decreases with smaller C and larger R . Models with similar G_c tend to produce comparable rupture
357 durations and moment magnitudes, although variability in moment magnitude is generally smaller.

358 Figure S31 shows the variation of individual goodness-of-fit (GOF, Text S11, Table S3) components
359 with C and R at fixed $B = 0.95$, which yields the highest combined GOF. Distinct trade-offs emerge,
360 highlighting the challenge of finding a dynamic rupture model compatible with all observables: models that
361 best reproduce the NS displacement waveform at NPW favor short durations (82–83 s), low C (0.05), and
362 moderate closeness to failure R (0.75). In contrast, the CCTV-inferred slip-rate⁷³ favors larger $C = 0.2$
363 and higher relative prestress ($R > 0.75$). However, in the regime where the fault slip distribution is well
364 reproduced ($GOF > 0.90$), the CCTV slip-rate GOF is nearly insensitive to the prestress ratio R . This
365 indicates that C , and thus the slip weakening distance d_c , primarily controls the shape of the on-fault slip-
366 rate pulse. Models that optimize fit to the teleseismic body waveforms require even larger C (0.3). Fitting
367 the geodetic slip distribution, the USGS moment rate function, and teleseismic surface waves (Figures
368 S31c,f,g) excludes longer-duration models (>110 s) dominated by subshear rupture phases. However,
369 these observables do not strongly discriminate among shorter-duration models. This is consistent with
370 Figure S27e, where we show that several short-duration models reproduce the inferred USGS moment rate
371 function. The GOF distributions of teleseismic body and surface waveforms (Fig. S31d,g) are complex
372 and contradictory, providing limited guidance for identifying favorable models. We therefore assign these
373 observables a lower weight in our combined GOF definition.

374 Text S13. Back-projection

375 Teleseismic back projection⁷⁴ is widely used to image the rupture process of large earthquakes and to estimate
376 rupture speed. Here, we apply a time-domain, phase-weighted, relative back-projection technique⁷⁵
377 to track the rupture of the 2025 Mandalay earthquake. This variation of back-projection has been shown
378 to enhance correlated signals.

379 We use data from three regional arrays in Alaska, Australia, and Europe, and perform back projection
380 for each array independently (Fig. S34). Stations with epicentral distances between 40° and 90° are
381 considered, followed by several preprocessing steps. All waveforms are band-pass filtered between 0.4 and
382 2 Hz using a fourth-order Butterworth filter. One station with a high signal-to-noise ratio (SNR) is chosen
383 as the reference for each array. SNR is calculated as the ratio of the mean-squared amplitude within a
384 1-s window containing the beginning of the P wave to that of the 10-s window immediately preceding
385 the P-wave onset. Station AK.BARN (SNR = 2.2) is selected for Alaska, 2O.BTL02 (SNR = 2.6) for
386 Australia, and BW.FFB1 (SNR = 2.3) for Europe. For each region, we extract a 10-s window that begins
387 4 s before the P arrival at the reference station. We slide this window along every other station's trace
388 near the expected P-wave onset, compute the cross-correlation at each lag, and keep the lag that yields
389 the maximum coefficient. Stations whose peak coefficient exceeds an empirically determined threshold
390 (Alaska > 0.7; Australia > 0.85; Europe > 0.8) are retained, and each accepted trace is shifted by the lag
391 of its peak to align the P-wave onsets. These thresholds were chosen empirically to account for regional
392 differences in data quality. To maintain uniform station spacing, any station within 0.5° of a selected
393 station is discarded. The final arrays comprise 81 stations in Alaska, 62 in Australia, and 31 in Europe.

394 Given the fault's simple, subvertical geometry, we restrict candidate rupture nodes to be beneath the
395 mapped surface trace. This method has been applied in previous studies⁴⁸. The surface trace, derived
396 from Sentinel-2 optical offsets, is resampled onto a grid with 1 km spacing. We assume the hypocenter
397 to be 22.012153°N, 95.982254°E and 7.6 km deep, which is the closest fault trace node from the USGS
398 epicenter⁵⁹. Travel times from each grid node to every station are computed with the global IASP91
399 one-dimensional velocity model⁷⁶. Waveforms are then stacked in a 10-s moving window with 1-s increments.
400 At each step we identify the grid node with the highest stacked energy as the preliminary subevent,

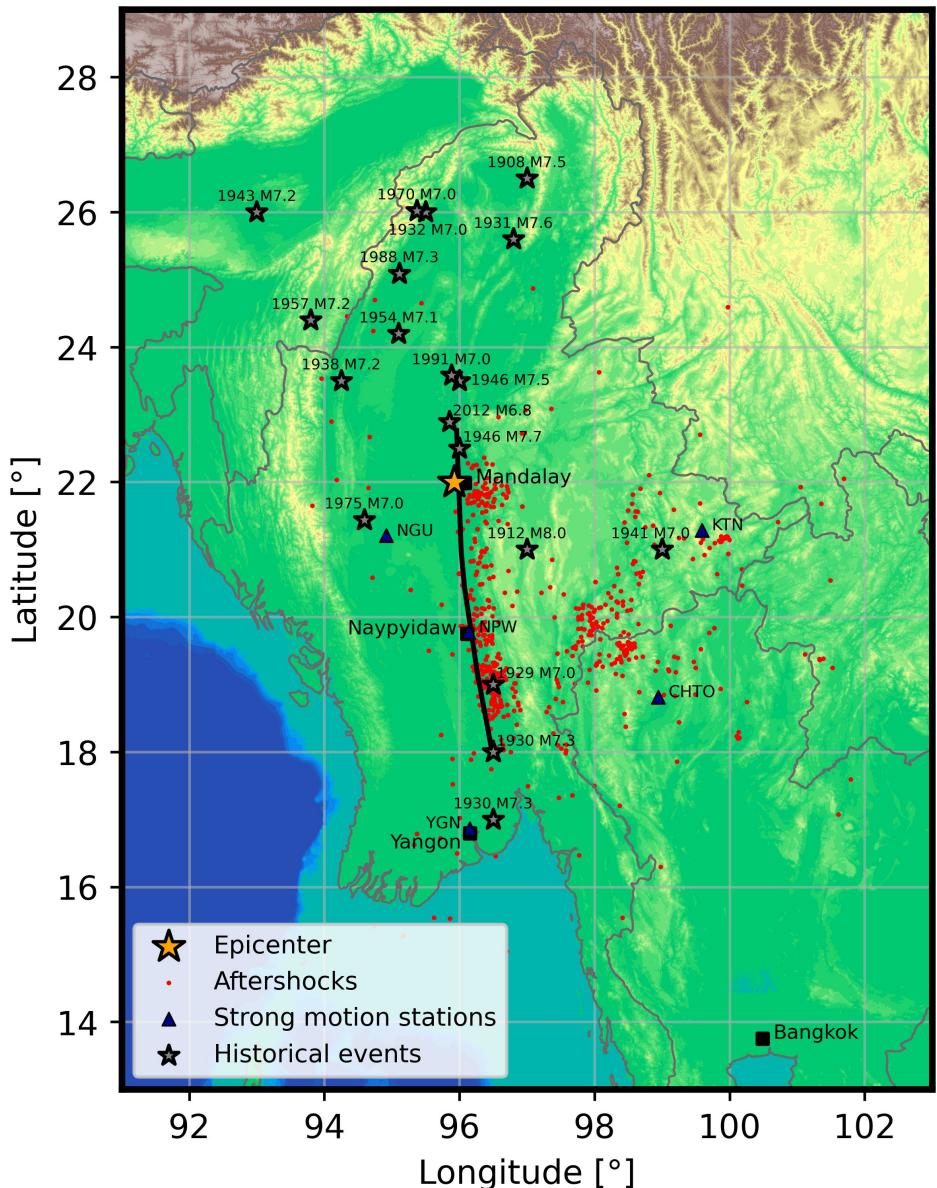
401 continuing this procedure until 110 s after the origin time. Only subevents whose energy exceeds 2% of
402 the overall maximum are retained in the final rupture model.

403 **Supplementary Animation**

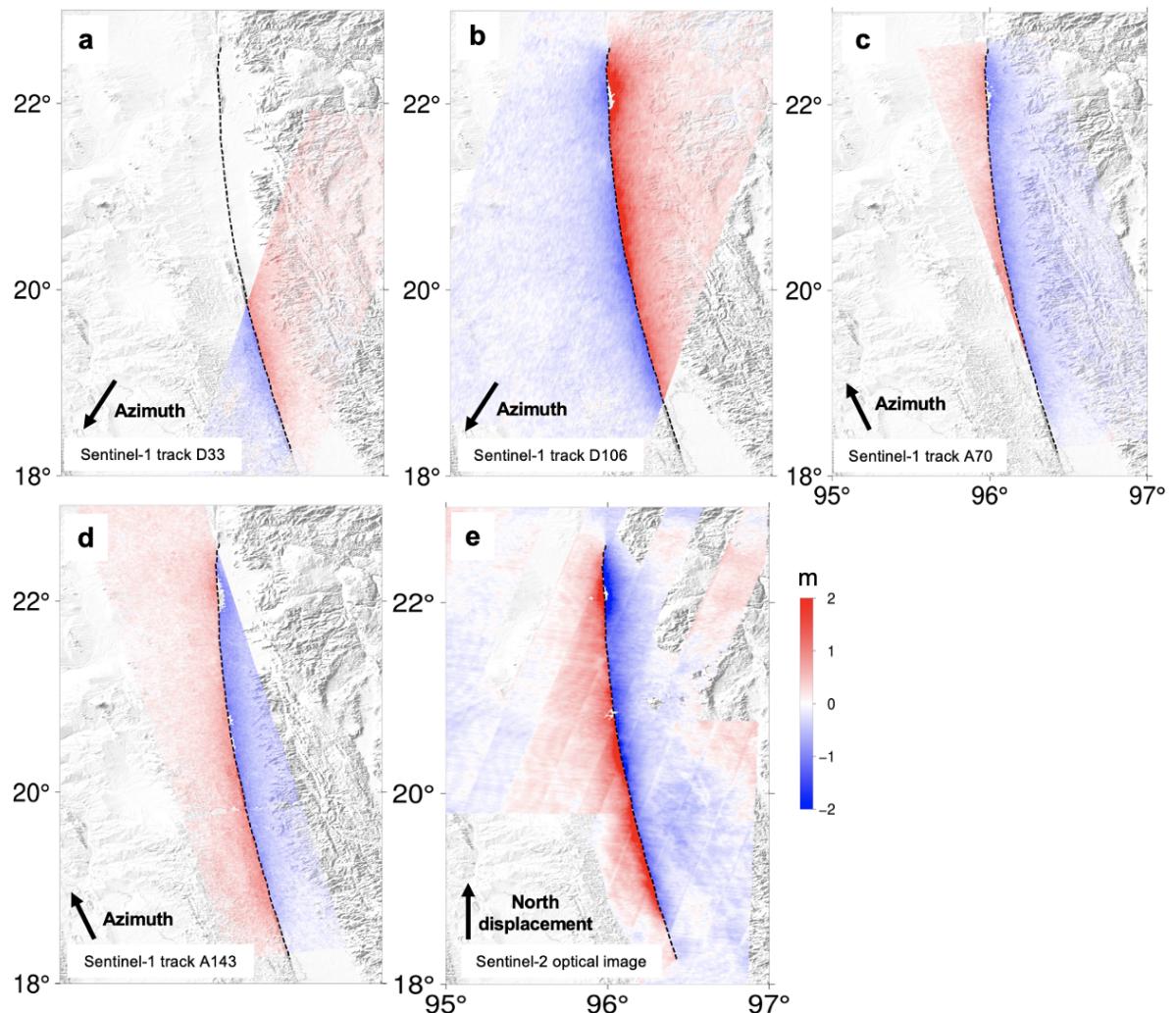
404 We provide an animation illustrating the preferred dynamic models at [https://syncandshare.lrz.de/
405 getlink/fi6jJWvERN2pajq6kaxqHk/](https://syncandshare.lrz.de/getlink/fi6jJWvERN2pajq6kaxqHk/).

406 **Animation S1 (Preferred_dynamic_rupture_model_Myanmar.mp4):** Rupture evolution in
407 the preferred dynamic model, shown as absolute slip rate (m/s).

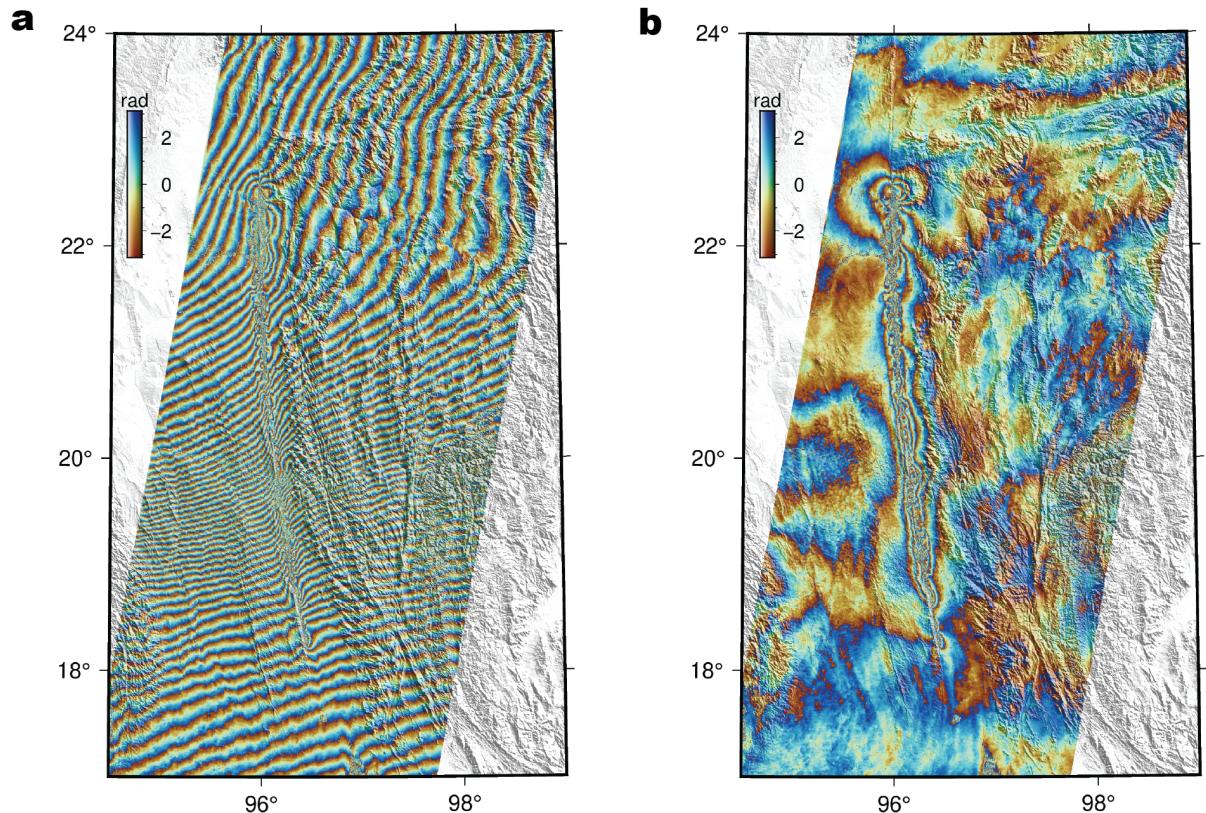
Satellite	Track	Orbit	Acquisition dates	B_{\perp} (m)
ALOS-2	152	ascending	2025/02/11 – 2025/04/08	179
ALOS-2	41	descending	2025/01/09 – 2025/03/30	305
ALOS-2	42	descending	2025/02/21 – 2025/05/02	6
Sentinel-1A	33	descending	2025/03/19 – 2025/03/31	103
Sentinel-1A	106	descending	2025/03/24 – 2025/04/05	160
Sentinel-1A	70	ascending	2025/03/22 – 2025/04/03	18
Sentinel-1A	143	ascending	2025/03/24 – 2025/04/05	23

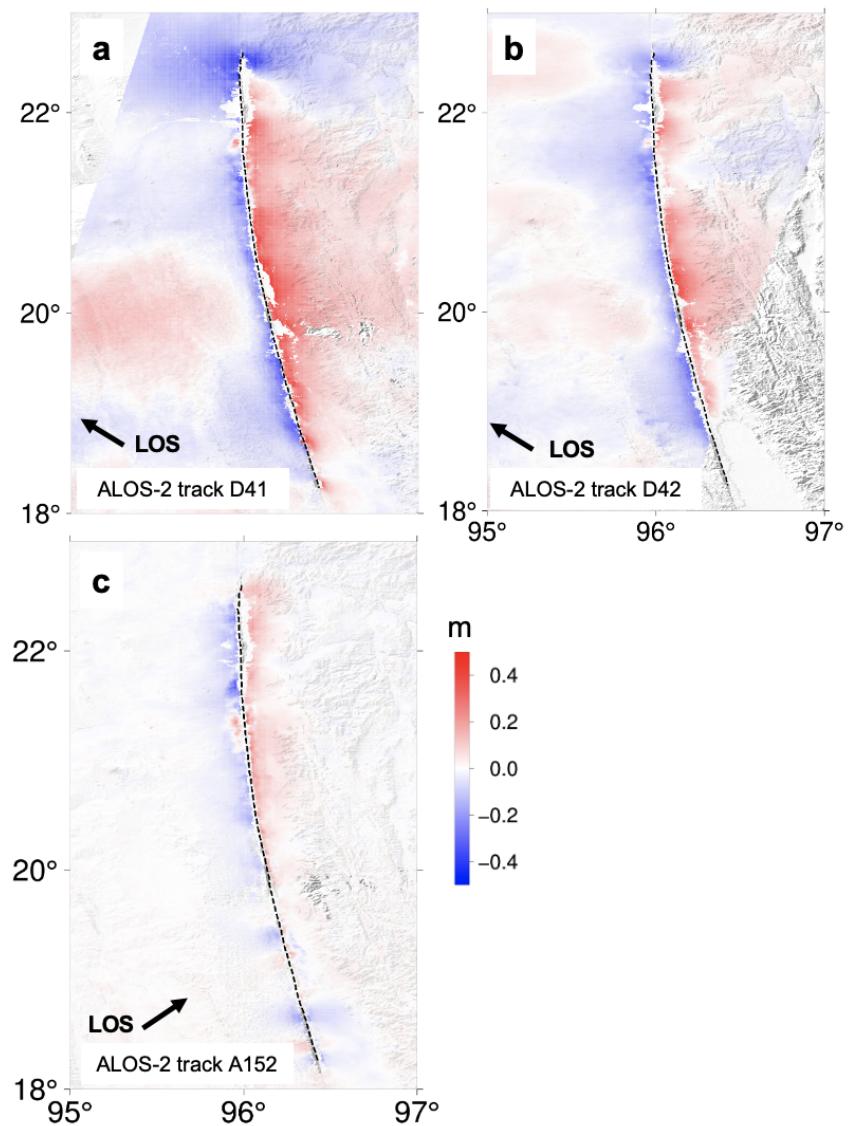

Table S1: SAR data used in this study. B_{\perp} is a perpendicular baseline between the respective repeat orbits.

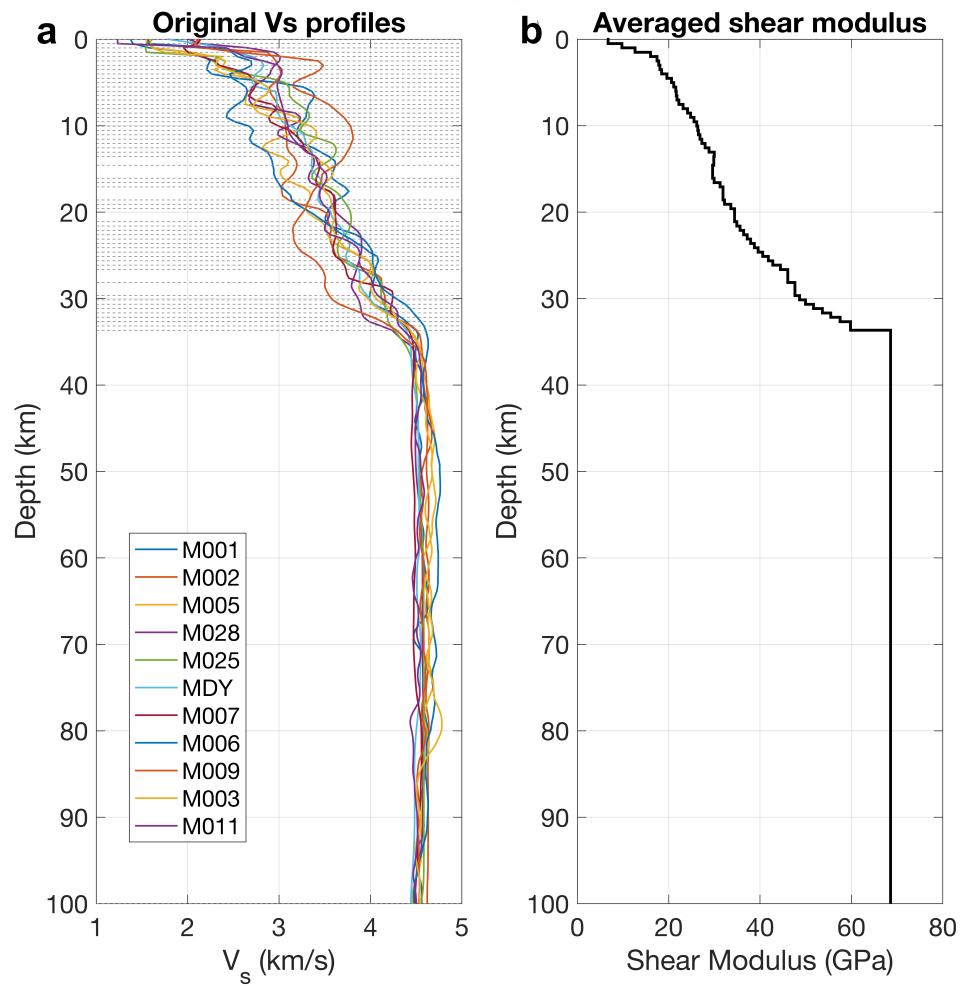
Parameter	Symbol	Range	Preferred Value
Static friction coefficient	μ_s	0.35–0.65	
Dynamic friction coefficient	μ_d	0.15	
Critical slip weakening distance	d_c	proportional to slip ($\times C$)	
Cohesion	c	0.25–1.25 MPa	
Effective normal stress	$ \sigma'_n $	1–16 MPa	
Heterogeneity strength scaling	B	0.9 - 1.0	0.95
Fracture energy scaling	C	0.05 - 0.3	0.15
Relative prestress ratio	R	0.5 - 0.95	0.95

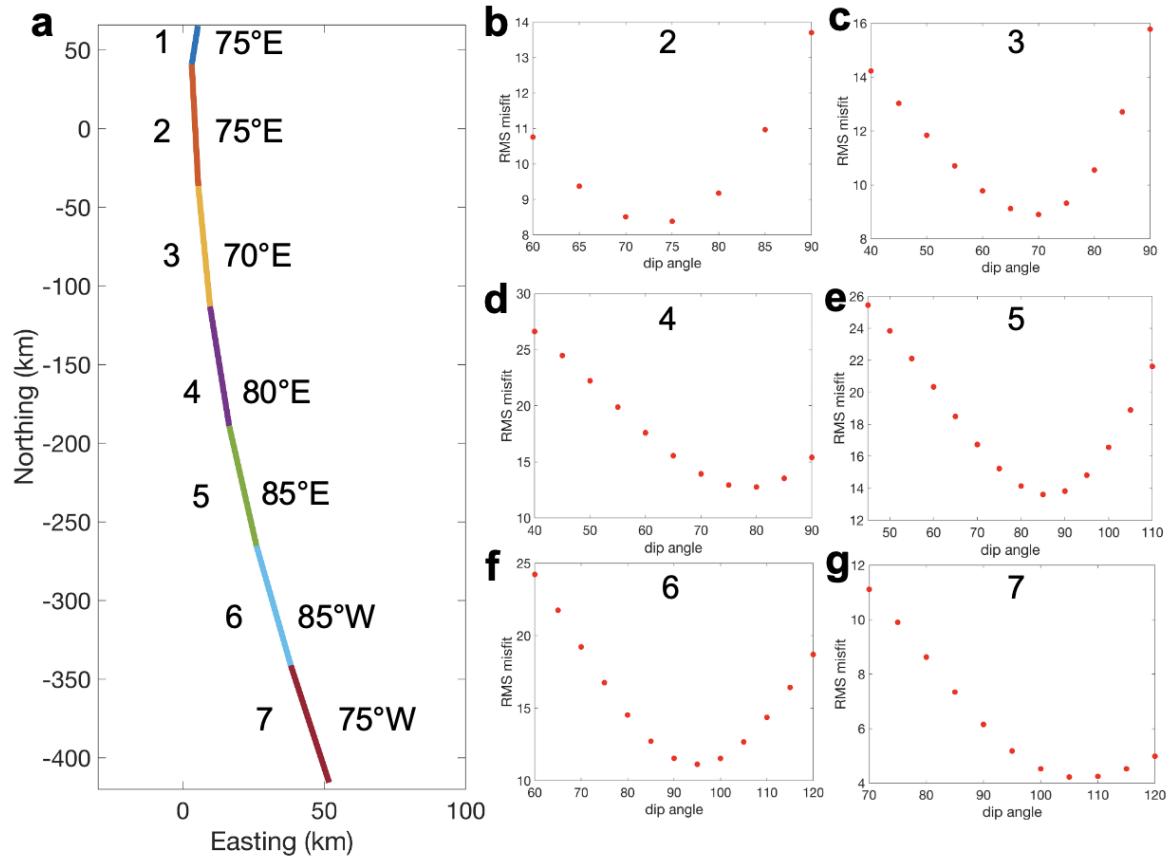

Table S2: Dynamic rupture model ensemble parameters assumed constant or varied within a certain range.

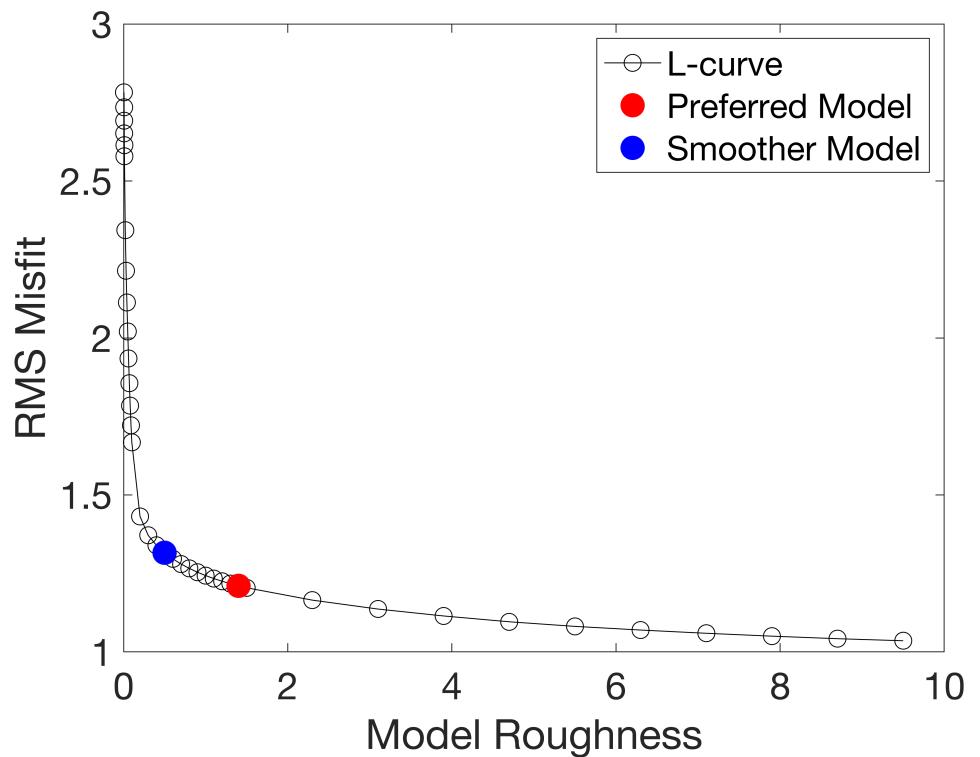
GOF component	Weight	Description
Slip distribution	1.5	GOF to the geodetic slip model (interpolated onto the same grid, and computed as $1 - \exp(\text{RMS})$)
Slip rate at CCTV	2.5	GOF to the inferred slip rate at the CCTV location (computed as $1 - \exp(\text{RMS})$), aligned using cross-correlation
Displacement waveform at NPW	2.0	GOF, computed as $1 - \exp(\text{RMS})$, to the NS component displacement waveform at station NPW, obtained by double integration
Fault offsets	1.5	GOF with Sentinel-2-derived fault offsets, computed as $1 - \exp(\text{RMS})$
Moment rate function	1.0	GOF from cross-correlation with the moment rate function of the USGS finite-fault model
Teleseismic body waveforms	1.0	GOF from cross-correlation (max shift = 2.5% of travel time) of observed and synthetic P and SH displacements, using a 170 s window (starting 20 s before arrival) and band-pass filtered to 20–150 s
Teleseismic surface waveforms	1.0	GOF from cross-correlation (max shift = 100 s) of observed and synthetic 3-component displacements, using a 3000 s window (from event onset) and band-pass filtered to 100–500 s

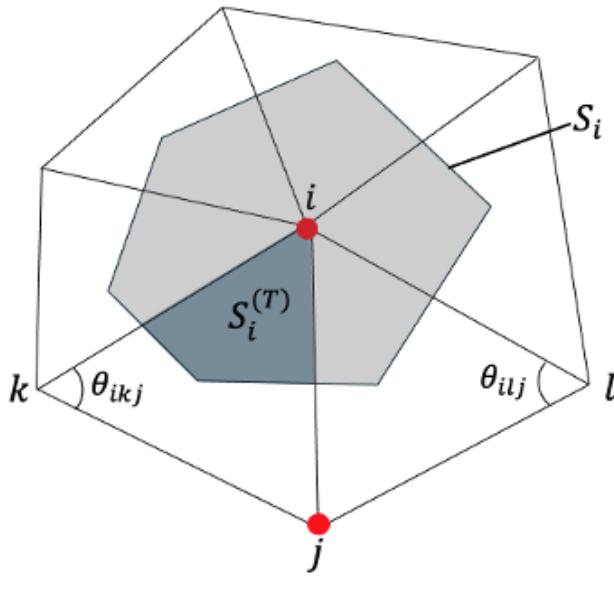
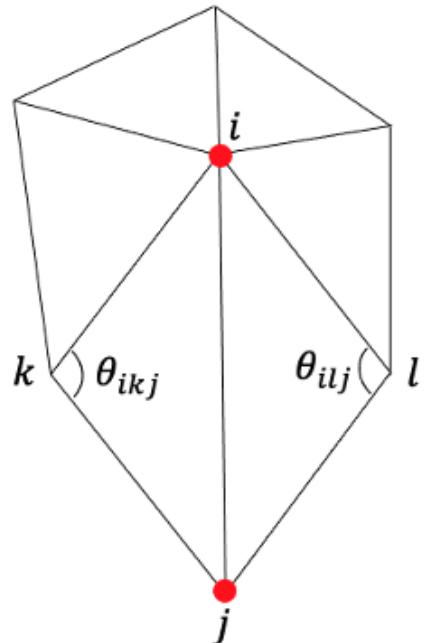

Table S3: Goodness-of-fit (GOF) components and associated weights used to select a preferred dynamic rupture model.

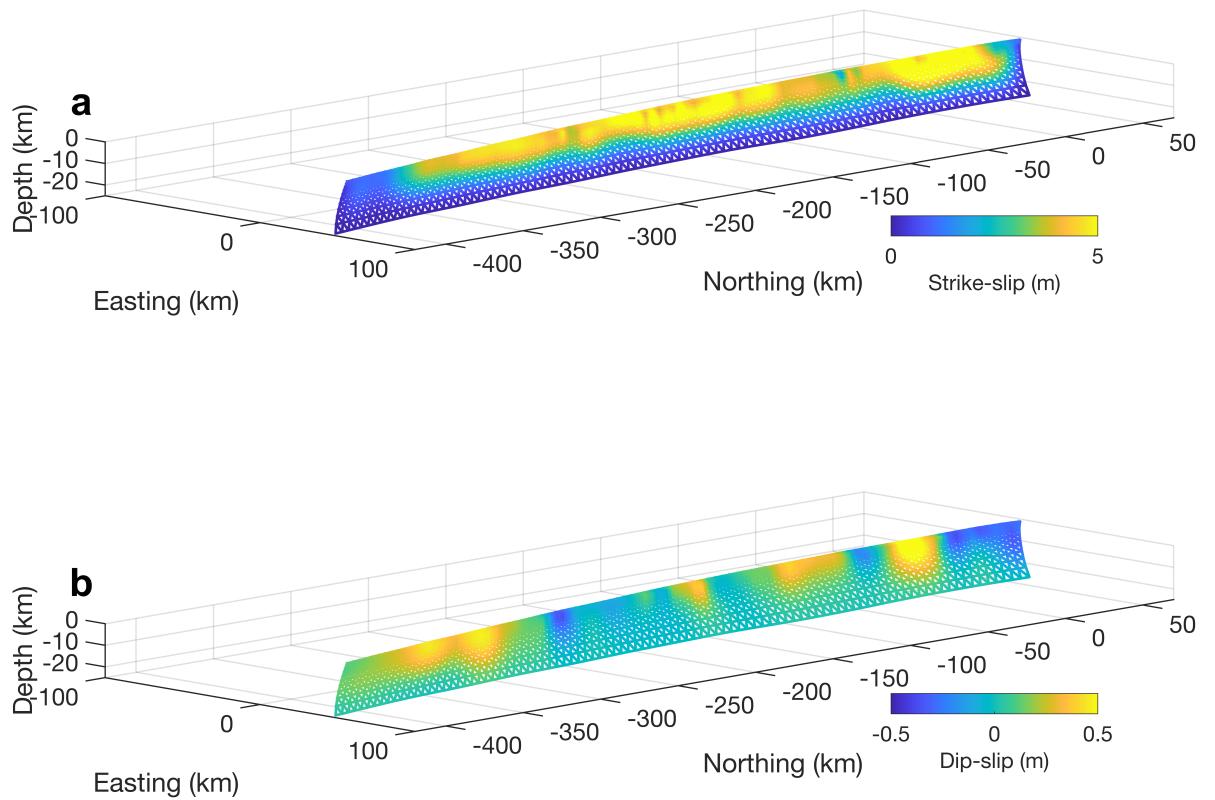

Fig. S1: Map of the study area. Colors represent topography. The solid black line marks the rupture trace of the 2025 Mandalay earthquake. Red dots show aftershock epicenters, black triangles mark strong-motion seismometer locations, and stars indicate epicenters of significant historical earthquakes ⁷⁷.

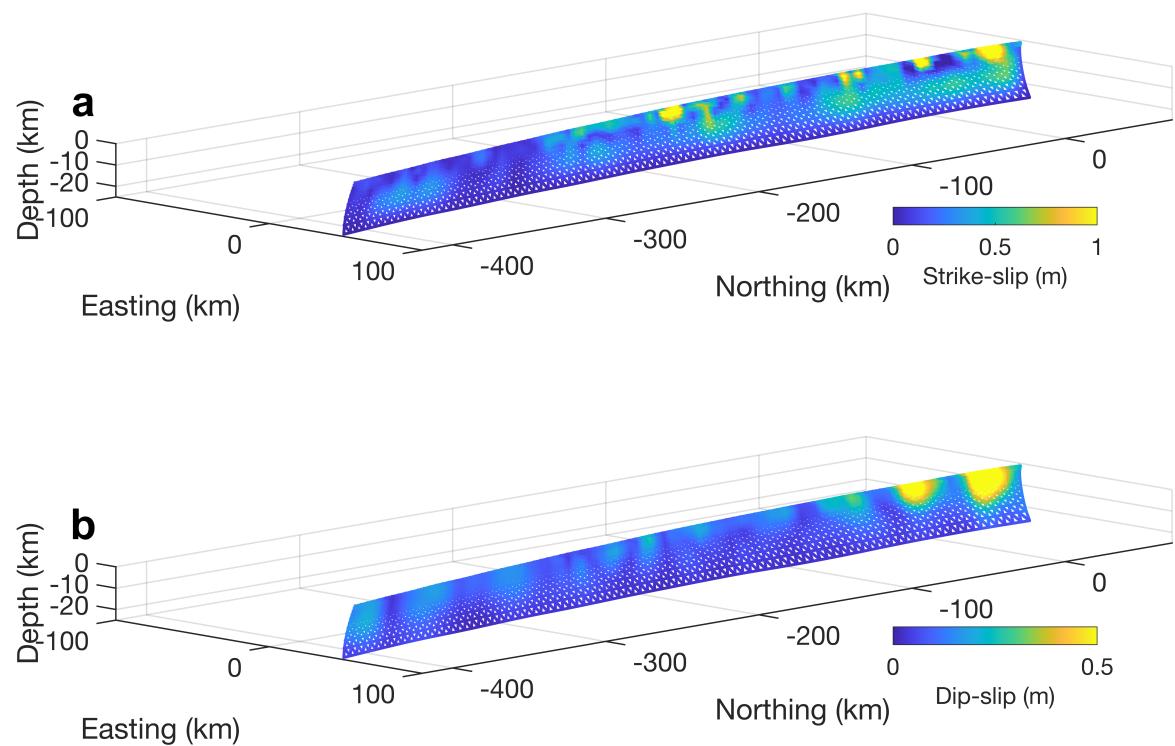

Fig. S2: (a-d) Azimuth offsets from Sentinel-1A SAR data (e) North-South offsets from Sentinel-2 optical image data. Arrows denote the direction on which the horizontal displacements are projected. Color denotes the displacement amplitude, in meters. Background shading denotes topography.


Fig. S3: (a) ALOS-2 interferogram from descending track 41. The interferogram is merged from 3 standard frames (3150, 3200, 3250) that were processed separately. (b) Same interferogram, after correcting for the long-wavelength trend. Each color fringe is equivalent to a displacement of 0.12 m in the satellite line of sight. Background shading denotes topography.


Fig. S4: Line of sight displacements (color), in meters, from ALOS-2 ScanSAR interferograms from 3 different satellite tracks. Motion toward the satellite is deemed positive. All maps cover the same area and have the same color range.

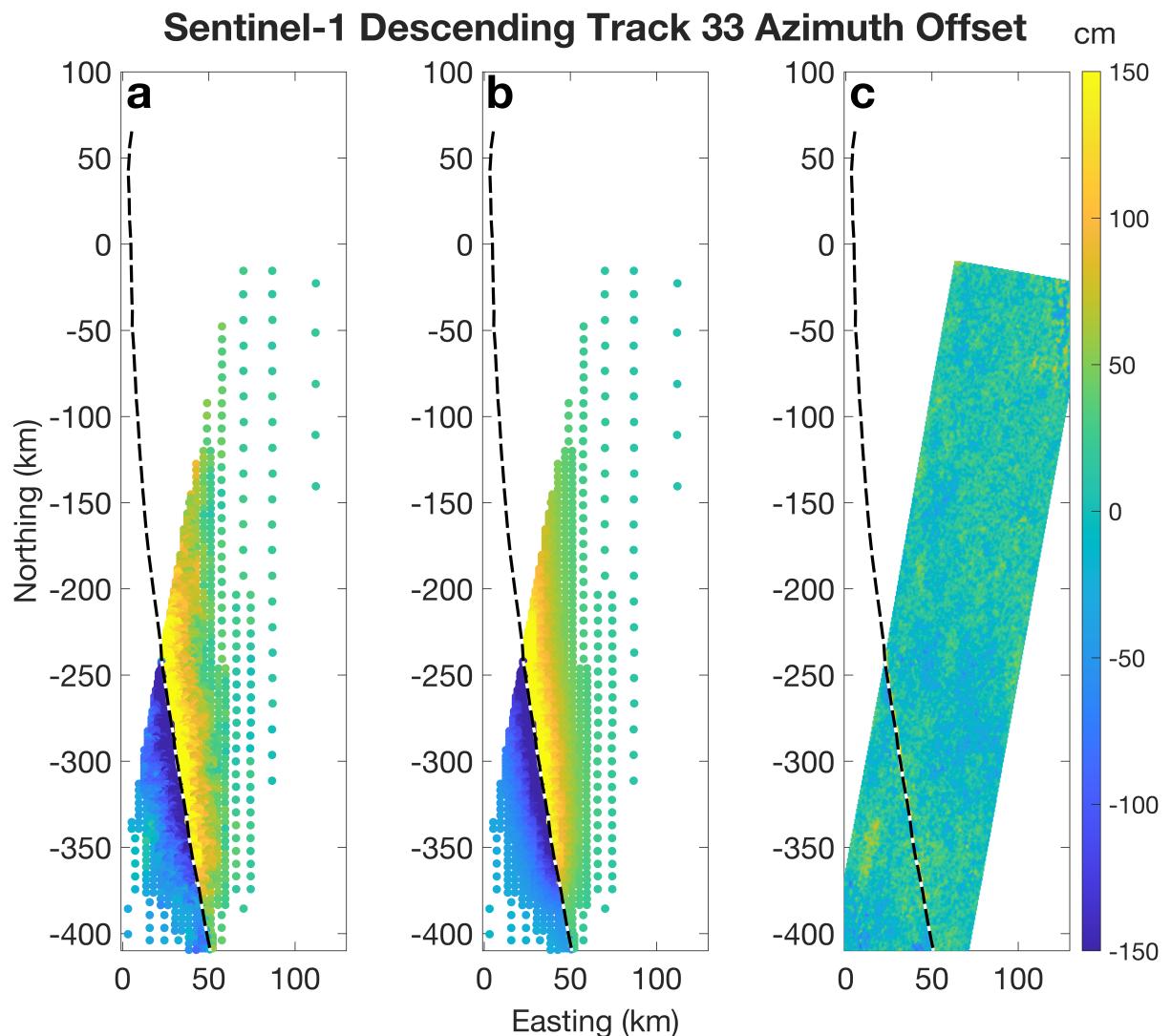


Fig. S5: Panel a: the 1-D shear wave velocity profile from the stations located within ~ 50 km from the Sagaing fault. The dashed lines indicate the bin boundaries. Panel b: the shear modulus calculated based on the depth-averaged shear wave velocity within each bin.

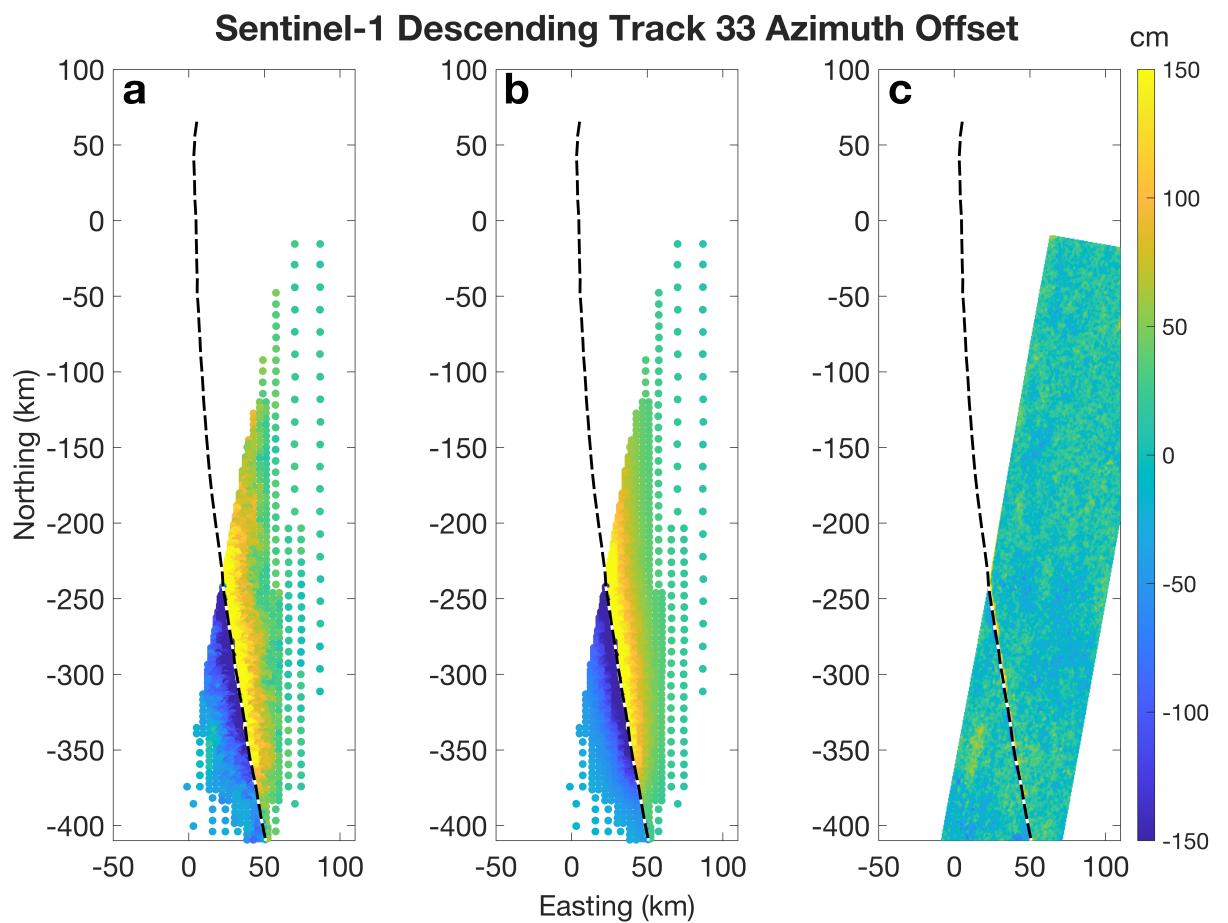

Fig. S6: Left panel: the segmented fault trace for the local dip angle estimation, plotted on UTM coordinates centered at (95.936°E, 22.011°N). Each segment is represented by a unique color and indexed by the number to the left. The preferred dip angle for each segment is marked to the right. Right panels: the dip angle vs RMS misfit test results for the determination of the preferred dip angle. The numbers on top represent the corresponding fault segment. The dip angle corresponding to Segment 1 is assumed to be the same as Segment 2.

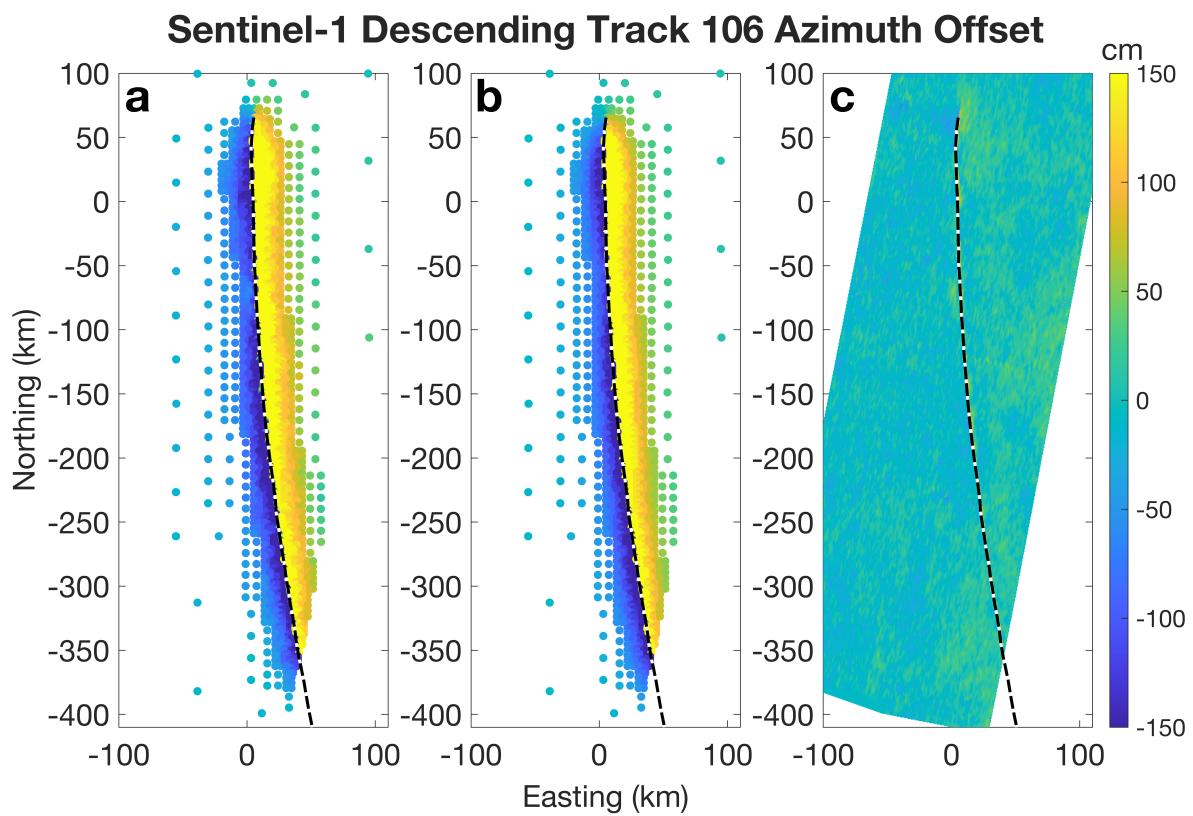

Fig. S7: The trade-off curve for selecting the preferred smoothness for the geodetic linear inversion. Red point: preferred model smoothness. Blue point: smoothness for a model with almost no shallow slip deficit without degrading significant data-model fitting (also see Fig S20.)

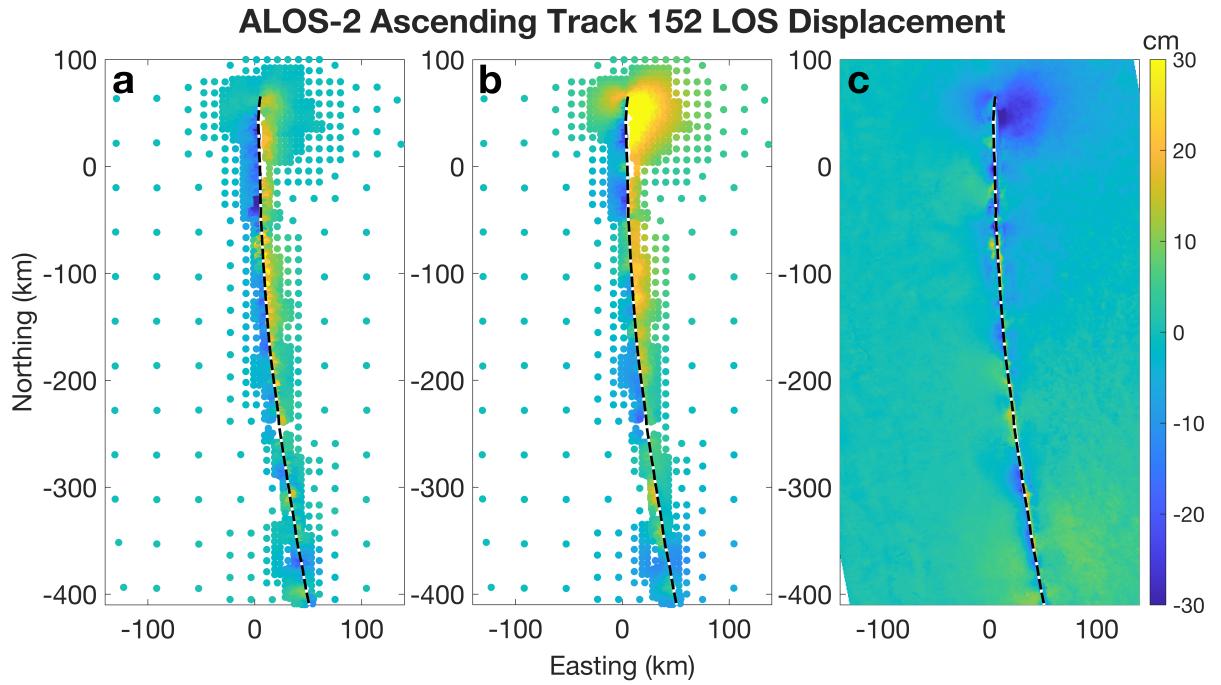
a**b**

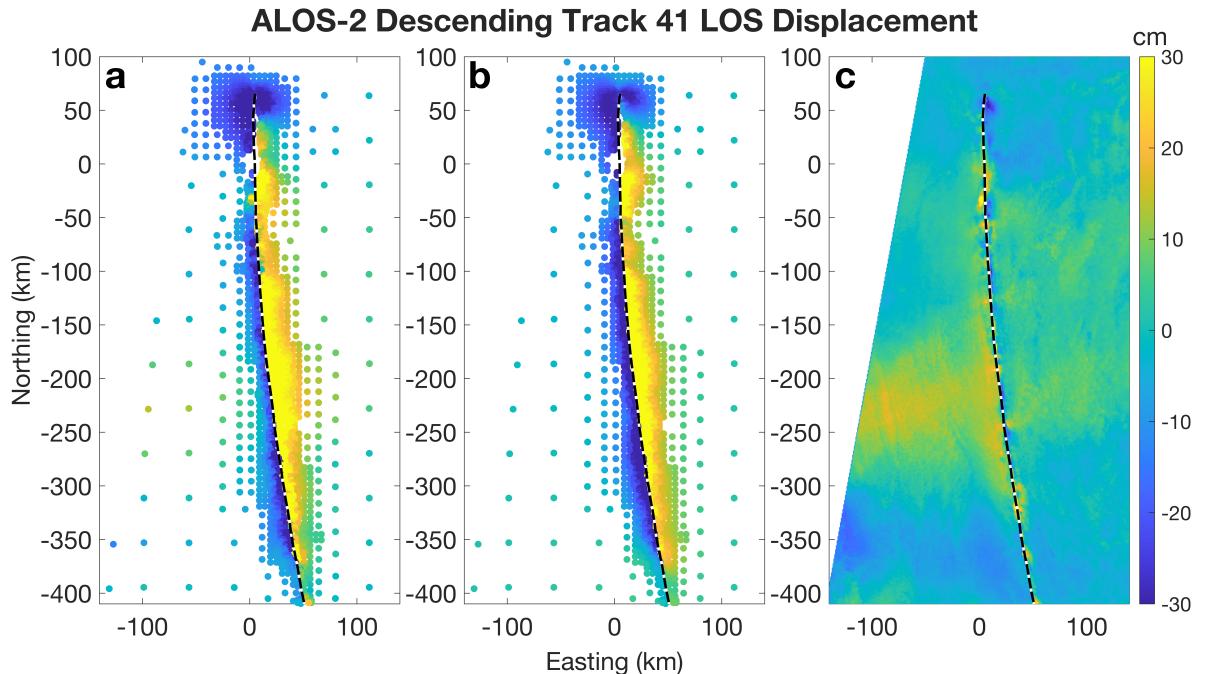

Fig. S8: Illustration of Laplacian weighting schemes for acute (panel a) and obtuse (panel b) triangles. S_i denotes the Voronoi cell area in the case when none of the triangles are obtuse. The dark-shaded area $S_i^{(T)}$ represents the Voronoi cell of an individual triangle ijk , part of the total Voronoi cell S_i of node i .

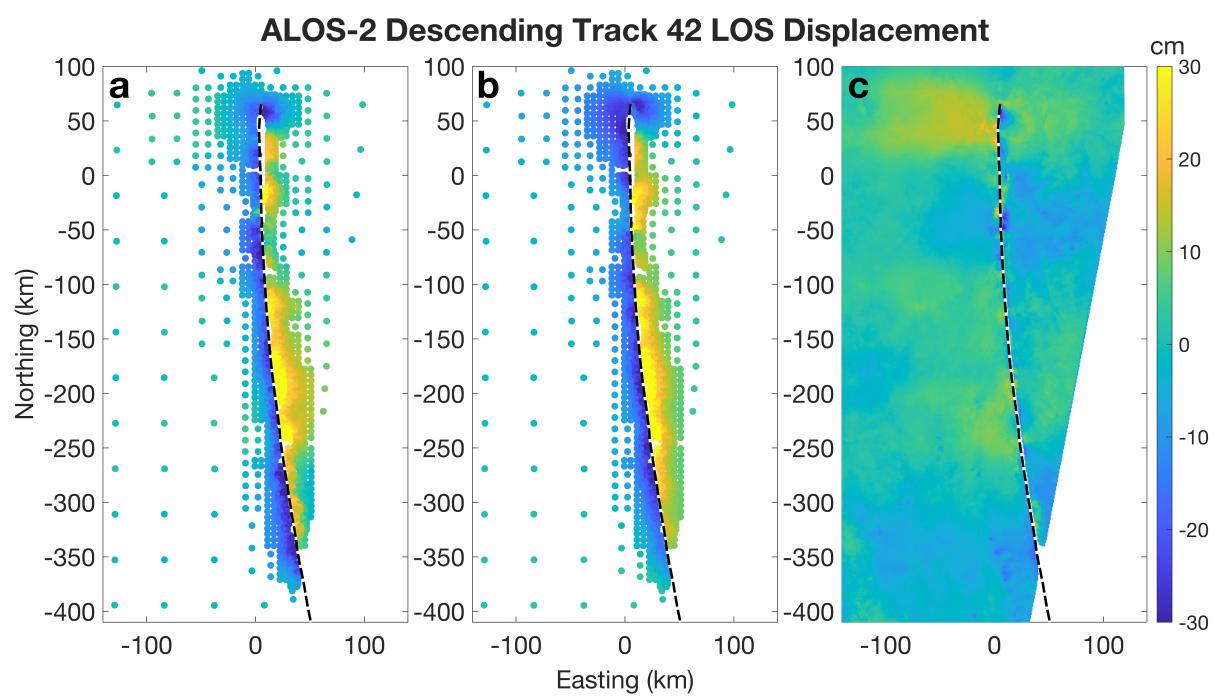

Fig. S9: The preferred static slip model from geodetic inversion assuming a curved rupture geometry with variable dip. Panel a: strike-slip; Panel b: dip-slip. Right-lateral strike slip and west-side-up dip slip are deemed positive.

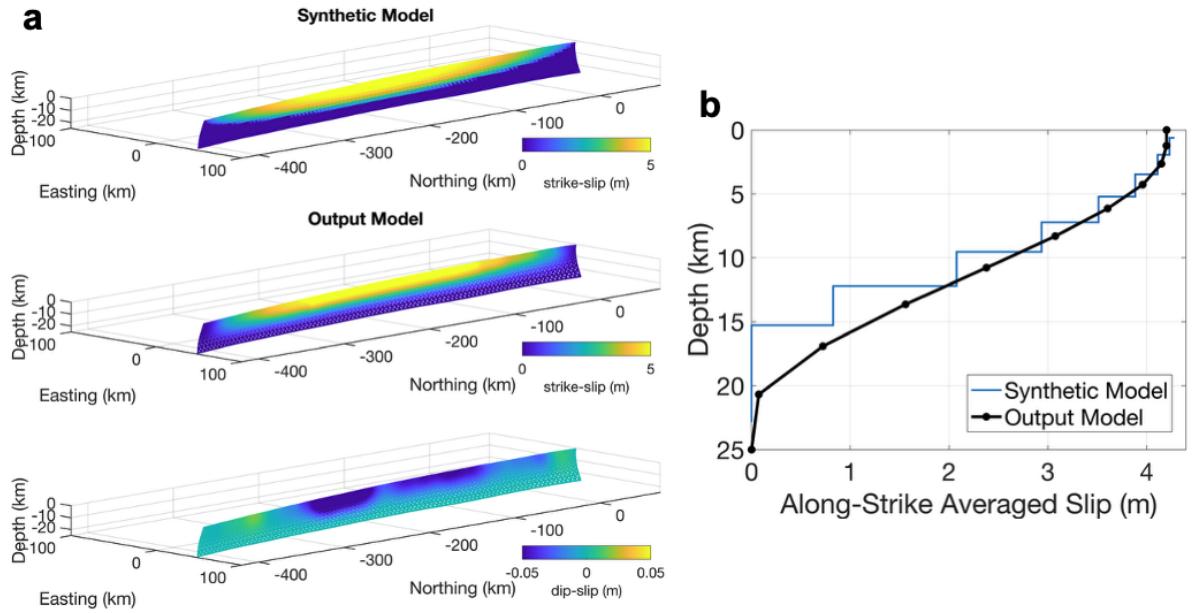

Fig. S10: The uncertainty of the static slip model computed using a bootstrap method. Panel a: strike-slip; Panel b: dip-slip.

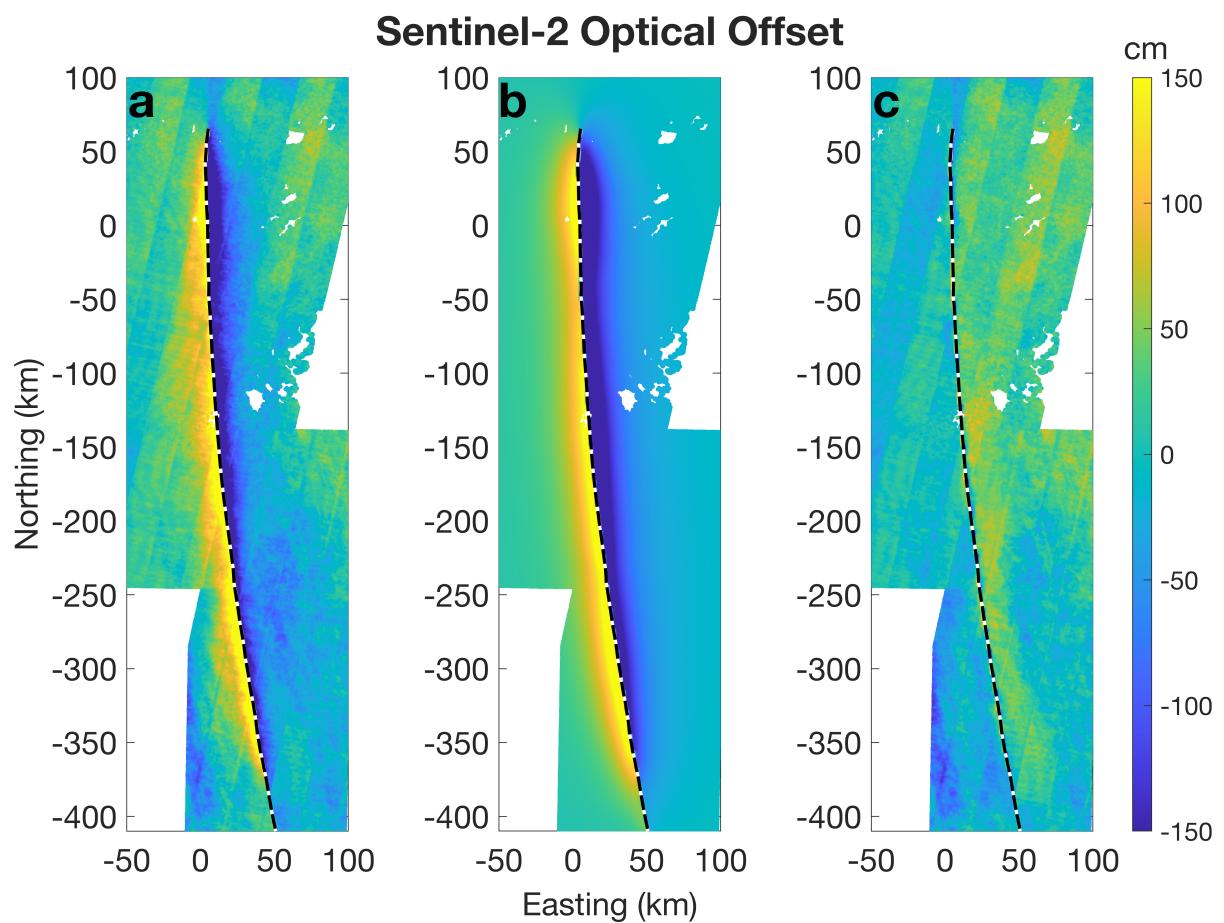

Fig. S11: (a) Sub-sampled data. (b) Best-fit model. (c) Residuals (difference between (a) and (b), evaluated at full resolution). The dashed line denotes the rupture trace.

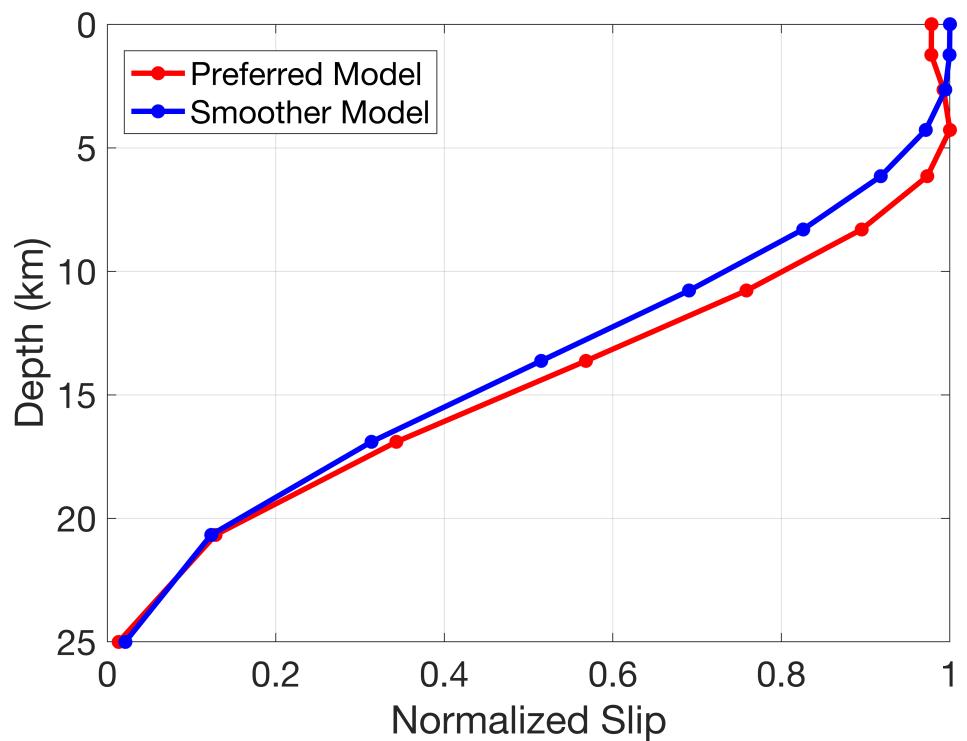

Fig. S12: (a) Sub-sampled data. (b) Best-fit model. (c) Residuals (difference between (a) and (b), evaluated at full resolution). The dashed line denotes the rupture trace.

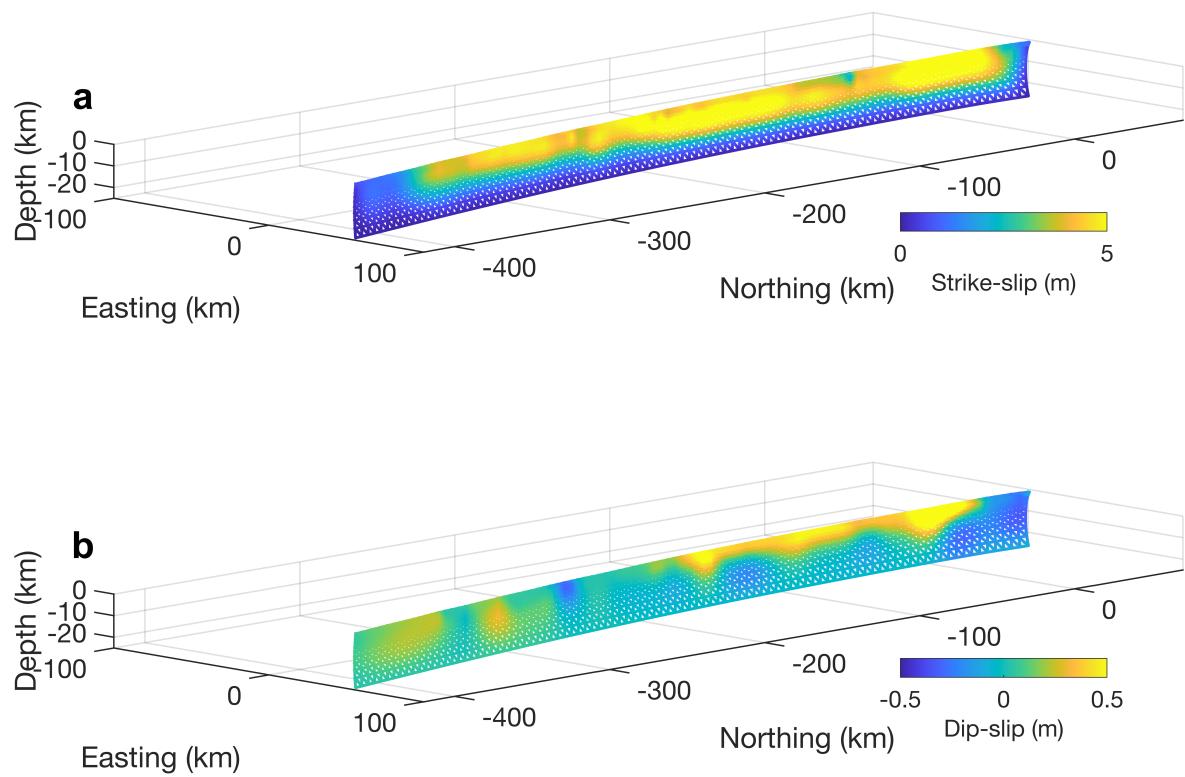

Fig. S13: (a) Sub-sampled data. (b) Best-fit model. (c) Residuals (difference between (a) and (b), evaluated at full resolution). The dashed line denotes the rupture trace.

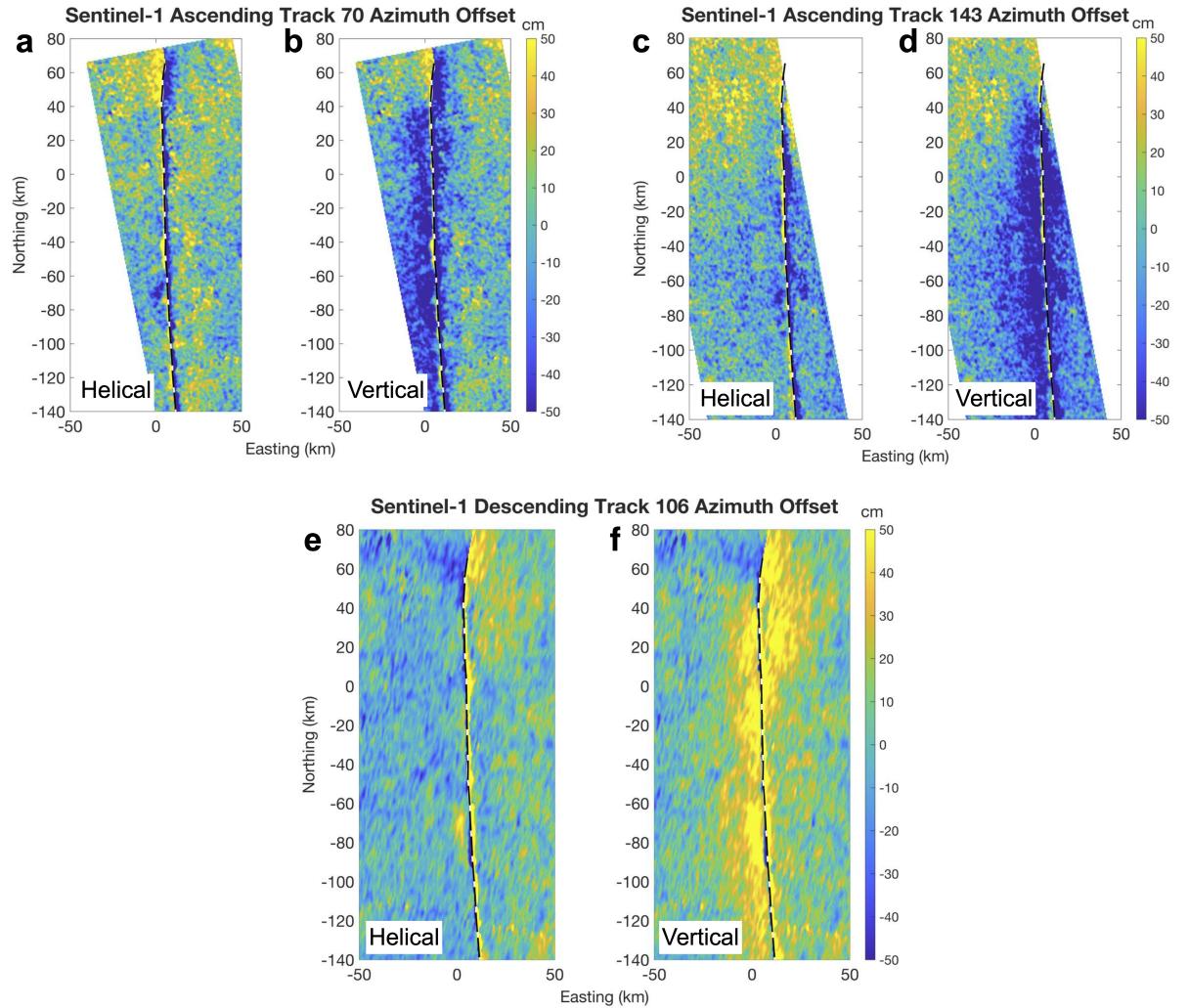

Fig. S14: (a) Sub-sampled data. (b) Best-fit model. (c) Residuals (difference between (a) and (b), evaluated at full resolution). The dashed line denotes the rupture trace.

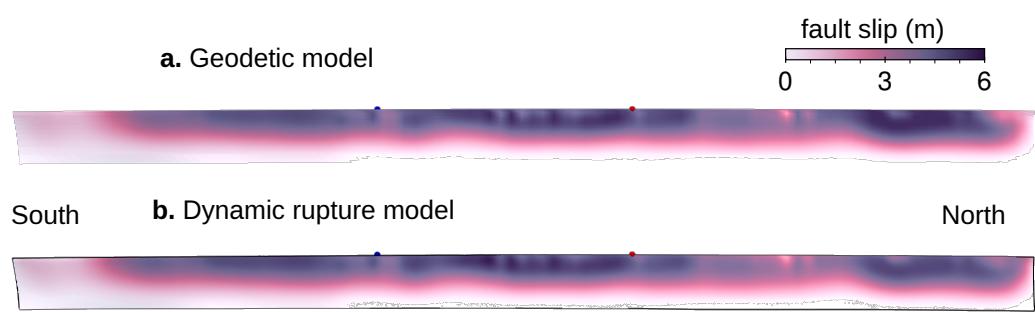

Fig. S15: (a) Sub-sampled data. (b) Best-fit model. (c) Residuals (difference between (a) and (b), evaluated at full resolution). The dashed line denotes the rupture trace.

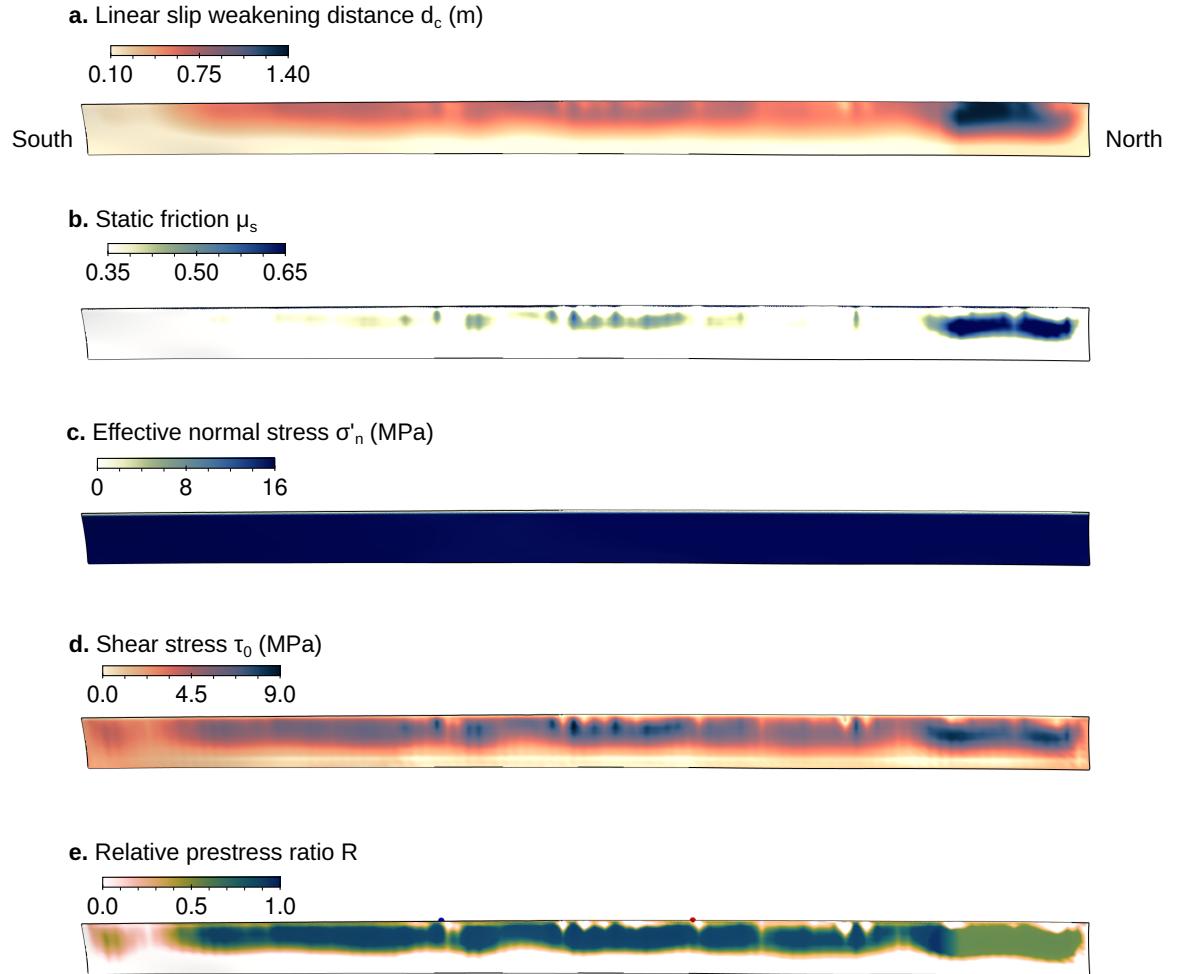

Fig. S16: (a) Sub-sampled data. (b) Best-fit model. (c) Residuals (difference between (a) and (b), evaluated at full resolution). The dashed line denotes the rupture trace.

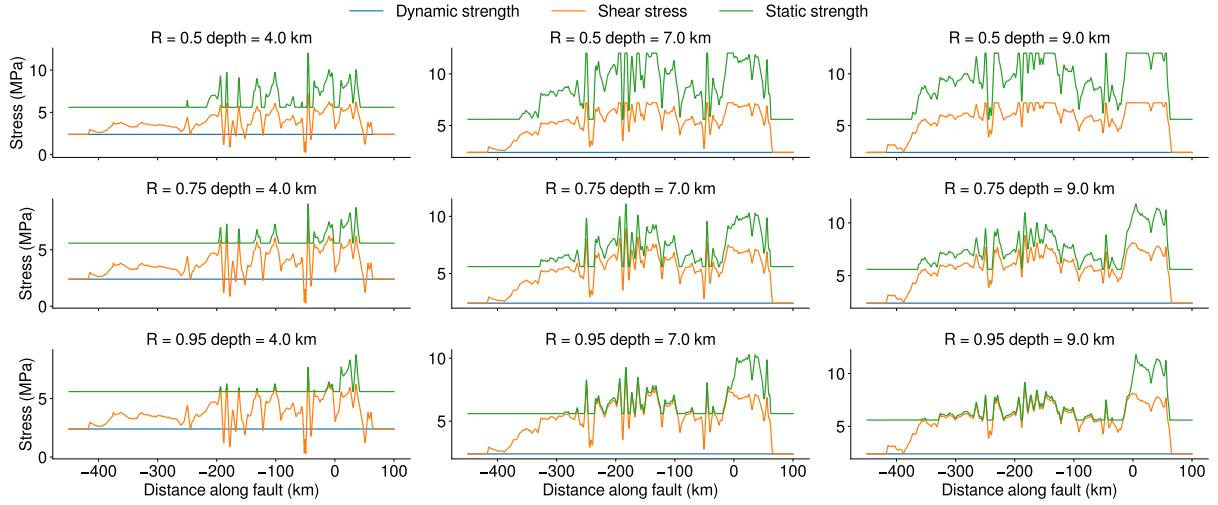

Fig. S17: (a) Sub-sampled data. (b) Best-fit model. (c) Residuals (difference between (a) and (b), evaluated at full resolution). The dashed line denotes the rupture trace.

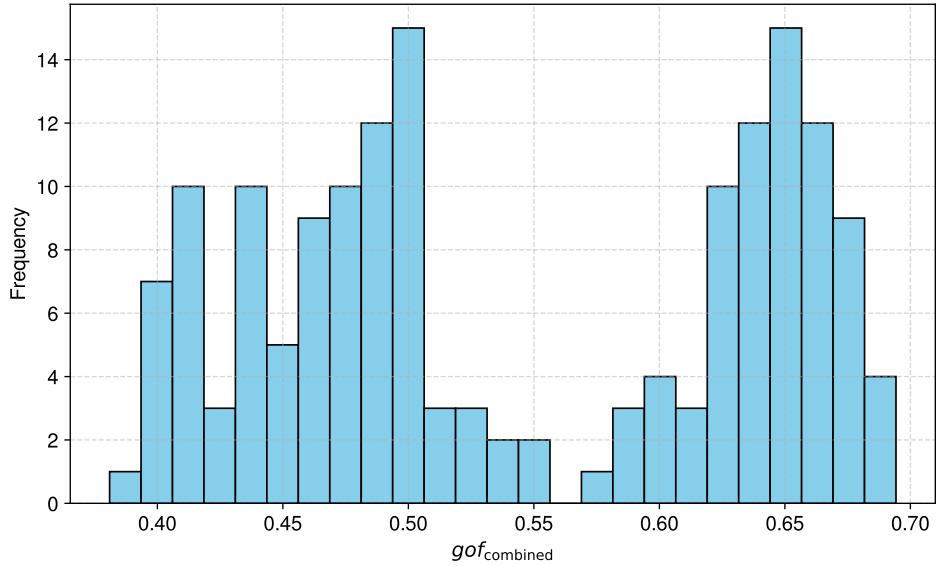

Fig. S18: Panel a, top: synthetic TDE model (strike-slip only) for resolution test; bottom: recovered slip from inversion of synthetic data and added noise, for strike-slip and dip-slip components. Right-lateral strike slip and west-side-up dip slip are deemed positive. Panel b: the along-strike averaged slip profile for the input model and inverse model.


Fig. S19: (a) North-South component of pixel offsets from cross-correlation of Sentinel-2 optical imagery (not used in the inversion for the static slip model). (b) Prediction of the preferred slip model (Fig. S9). (c) Residuals. The dashed line denotes the rupture trace.


Fig. S20: Along-strike averaged slip as a function of depth. Slip is normalized by the maximum value. Red line: preferred model; blue line: a smoother model (see Fig S7 for the respective smoothness parameters). Both models fit the data equally well.


Fig. S21: Static slip distribution for a model assuming a vertical fault. Panel a: strike-slip; Panel b: dip-slip. Right-lateral strike slip and west-side-up dip slip are deemed positive.


Fig. S22: A comparison between azimuth offset residuals for models with helical and vertical fault geometry. Shown are Sentinel-1A tracks with the largest residuals. The residuals are zoomed in on parts of the rupture where the difference is most notable.


Fig. S23: Comparison of fault slip distributions in the geodetic model (a) and the preferred dynamic rupture model (b).

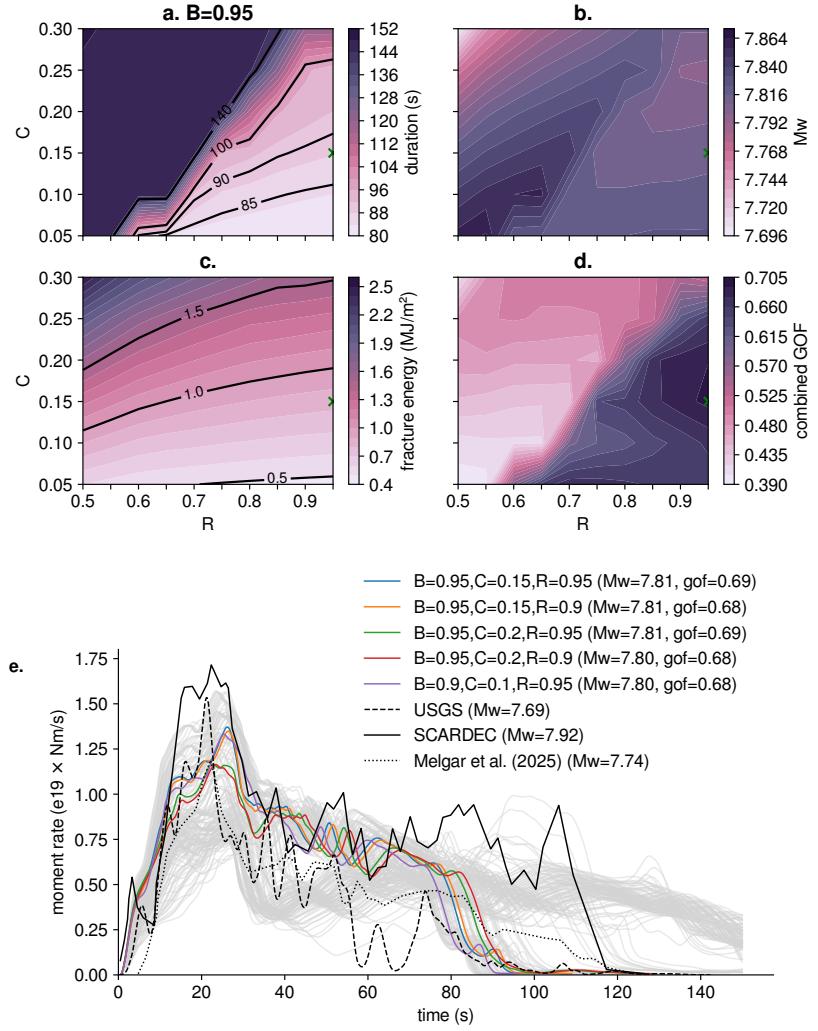
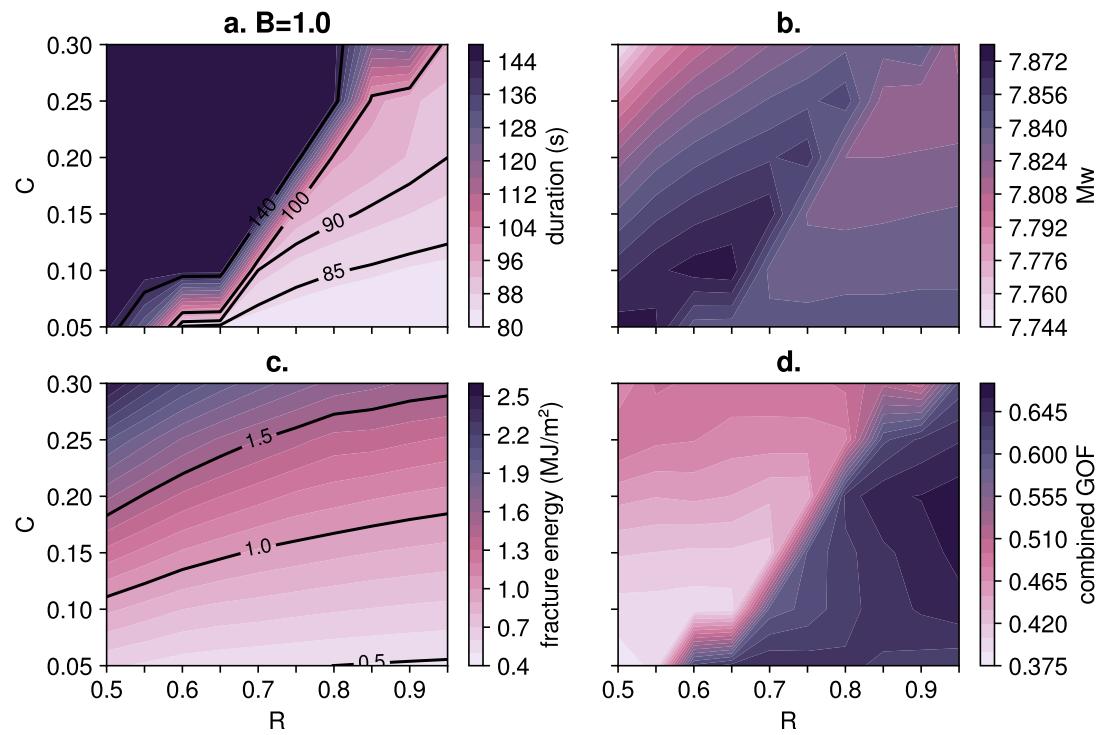
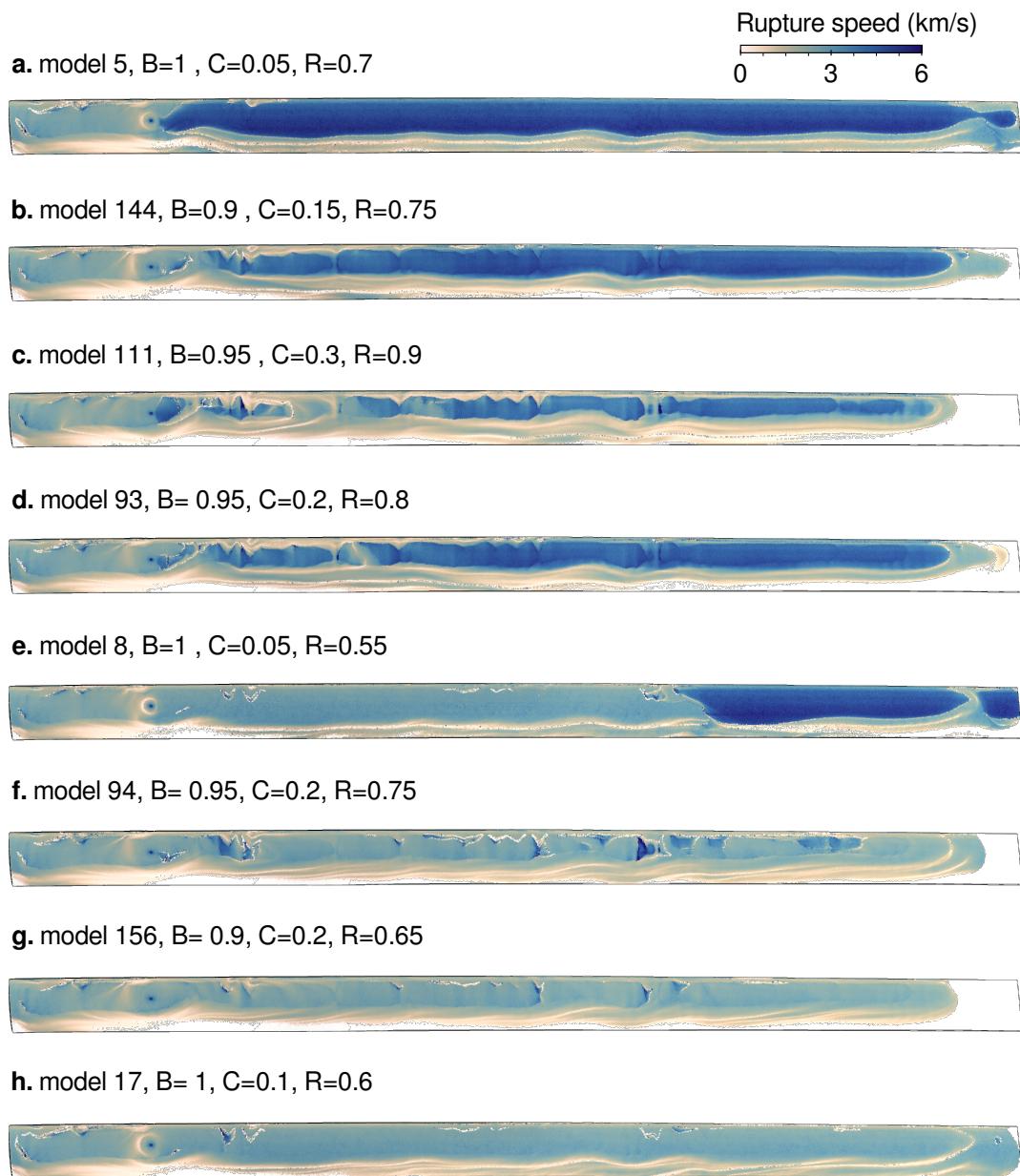
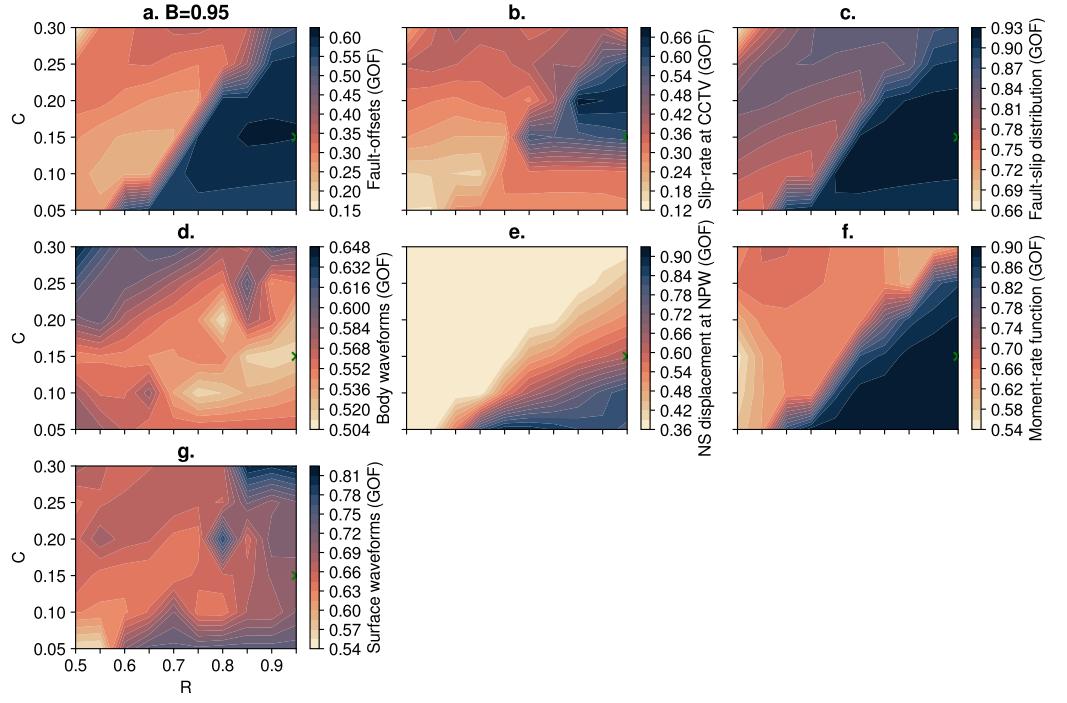
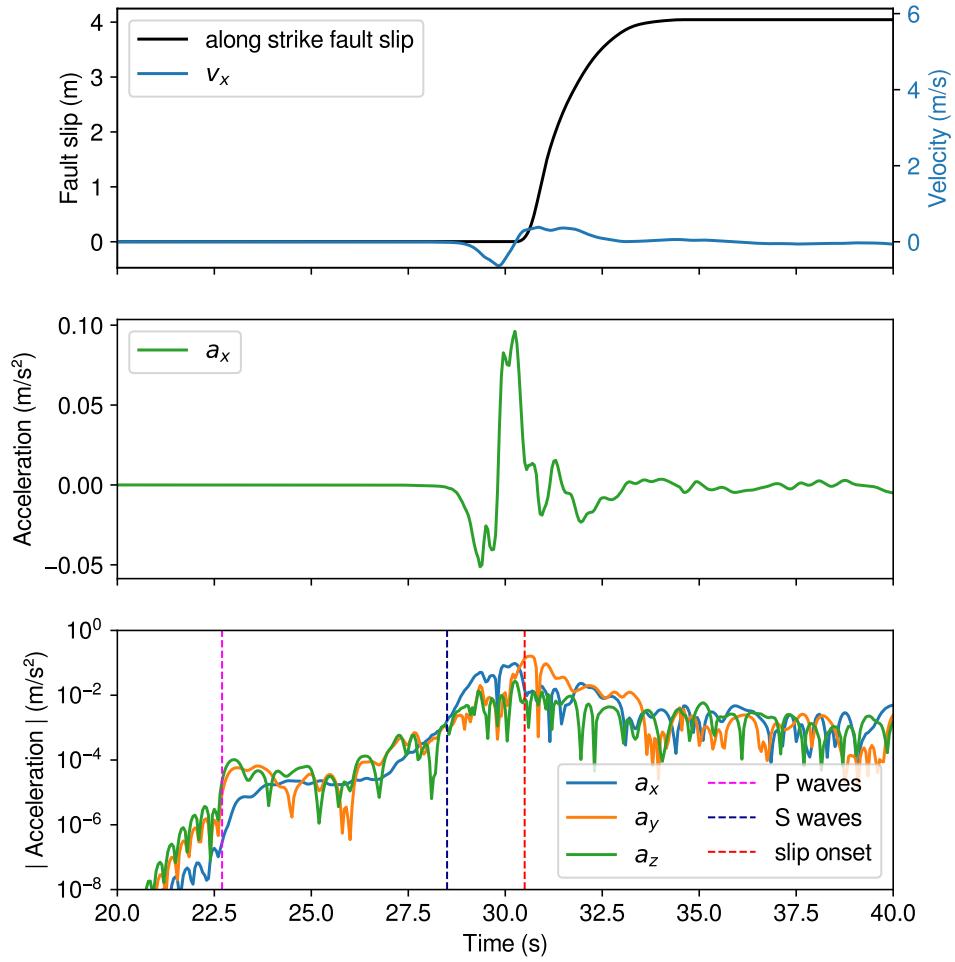

Fig. S24: Distribution of fault friction parameters and prestress in the preferred dynamic rupture model. (a) Slip-weakening distance d_c , scaled proportionally to fault slip. (b) Static friction coefficient μ_s , set to 0.35 and increased in regions of high shear stress, up to a maximum of 0.65. (c) Depth-dependent effective normal stress, increasing linearly from 1 MPa at the surface to 16 MPa at 1.5km depth, constant below. (d) Initial fault shear stress τ_0 , derived from the stress change in the finite-fault model and the dynamic strength. (e) Relative prestress ratio R (e.g., ⁵⁴), relating the potential stress drop $\tau_0 - \tau_d$ to the frictional strength drop $\tau_s - \tau_d$, and quantifying fault criticality.

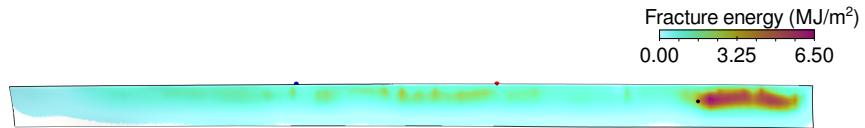

Fig. S25: Depth-dependent profiles of shear stress and fault strengths along the fault for three relative prestress ratio R_{param} : $R_{\text{param}} = 0.5, 0.75$ and 0.95 (preferred model), evaluated at depths of 4 km , 7 km , and 9 km , assuming $B=0.95$ (preferred model). Each subplot shows shear stress (orange), static strength (green), and dynamic strength (blue) as functions of the y (north–south) coordinate along the fault. The profiles illustrate how μ_s is locally increased above its background value 0.35 to enforce the prescribed R , and also highlight the effect of the background μ_s value on fault criticality.


Fig. S26: Histogram of the combined goodness-of-fit values across the dynamic rupture ensemble consisting of 180 models.


Fig. S27: Dynamic rupture simulation ensemble. Ensemble results across 60 dynamic rupture simulations with varying slip weakening distance (C) and relative prestress ratio (R), while keeping $B = 0.95$ fixed. (a) Rupture duration. (b) Moment magnitude. (c) Fracture energy (in MJ/m^2). (d) Combined goodness of fit (GOF) score. (e) Moment rate functions (MRFs): All 180 simulated MRFs are plotted. The 5 best-fitting models based on combined GOF are highlighted in color and indexed in the legend. The blue curve represents the preferred model. The remaining 175 models are shown in grey. For comparison, the SCARDEC source time function⁷⁰ and source time functions from two kinematic models^{69;71} are also shown.


Fig. S28: Dynamic rupture simulation ensemble for $B = 0.9$. Ensemble results across 60 dynamic rupture simulations with varying slip weakening distance (C) and prestress ratio (R), while keeping $B = 0.9$ fixed. (a) Rupture duration. (b) Moment magnitude. (c) Fracture energy (in MJ/m^2). (d) Combined goodness of fit (GOF) score.


Fig. S29: Dynamic rupture simulation ensemble for $B = 1.0$. Ensemble results across 60 dynamic rupture simulations with varying slip weakening distance (C) and prestress ratio (R), while keeping $B = 1.0$ fixed. (a) Rupture duration. (b) Moment magnitude. (c) Fracture energy (in MJ/m^2). (d) Combined goodness of fit (GOF) score.


Fig. S30: Rupture speed in selected models from the dynamic rupture simulation ensemble, showing wide variability from fully subshear, through piecewise supershear, to fully supershear rupture.

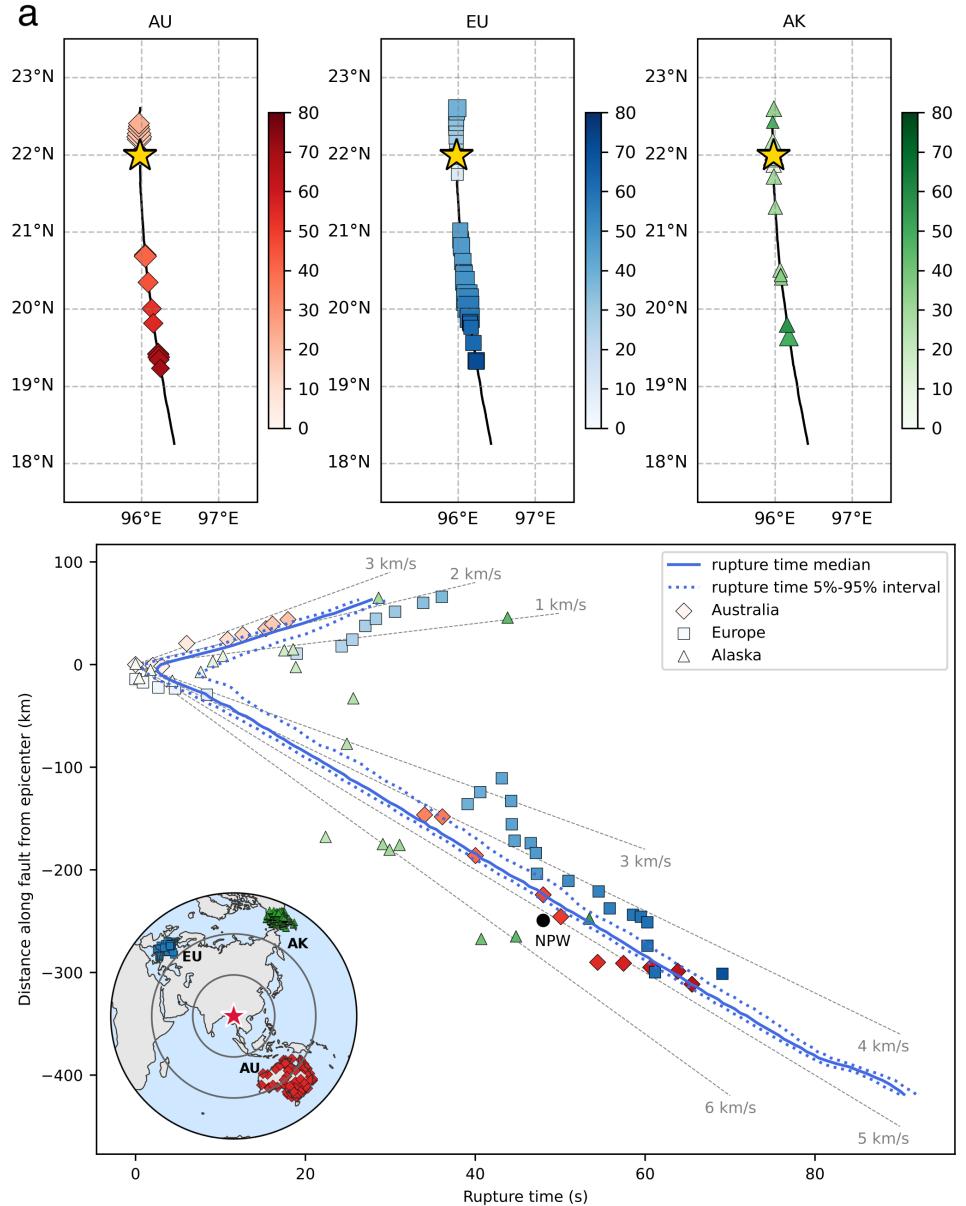

Fig. S31: Goodness-of-fit (GOF) variations for selected observational constraints at fixed $B = 0.95$. Each panel shows ensemble results from 60 dynamic rupture simulations with varying slip weakening distance (C) and prestress ratio (R). Metrics shown: (a) fit to fault offsets; (b) fit to slip-rate at CCTV⁷³; (c) fit to fault-slip distribution; (d) fit to teleseismic body waveforms at six stations; (e) fit to north-south displacement at station NPW; (f) fit to the moment-rate function; (g) fit to teleseismic surface waveforms at six stations. The green ‘ \times ’ marker in each panel indicates the parameter combination used in the preferred model.

Fig. S32: Modeled ground motion at the CCTV site. Top: Fault slip and east–west ground velocity. Middle: East–west acceleration, showing an eastward pulse preceding local slip, consistent with the gate motion seen in footage and attributed to subshear rupture (supershear would reverse the polarity)⁷⁸. Bottom: Component-wise acceleration amplitudes, with P- and S-wave arrivals preceding the rupture front. The strong shaking in footage 2 s before slip onset has been attributed to S-waves^{66;78}, supporting locally subshear rupture.

Fig. S33: Distribution of fracture energy in the preferred dynamic rupture model.

Fig. S34: Teleseismic back projection analysis of the earthquake rupture process. (a) Back projection results from arrays around Australia (red diamonds), Europe (blue squares), and Alaska (green triangles). The color scale represents the rupture time. The size of the markers represents normalized array beam energy. Stars show the epicenter location of the mainshock. (b). Rupture speed from back projection and the preferred dynamic rupture model. Markers are the same as in (a). The black dot represents the location of the NPW station. The solid blue curve represents the median rupture onset time of the preferred dynamic rupture model along the respective along-strike distance. The dotted blue curves indicate the 5% and 95% percentiles of the rupture onset time. The 5% percentile corresponds to the earlier arrival of the rupture front at depth, while the spread between the 5% and 95% percentiles reflects the local curvature of the rupture front. Grey dashed lines show different constant rupture speeds for reference. The inset shows stations and epicenter locations.

408 **13. References**

[1] Sandwell, D., Mellors, R., Tong, X., Wei, M. & Wessel, P. Open radar interferometry software for mapping surface deformation. *EOS, Trans. AGU* **92**, 234–234 (2011).

[2] Farr, T. & Kobrick, M. Shuttle Radar Topography Mission produces a wealth of data. *AGU Eos* **81**, 583–585 (2000).

[3] D'Errico, J. Surface fitting using gridfit (2025). URL <https://www.mathworks.com/matlabcentral/fileexchange/8998-surface-fitting-using-gridfit>.

[4] Goldstein, R. M., Zebker, H. A. & Werner, C. L. Satellite radar interferometry: two-dimensional phase unwrapping. *Radio science* **23**, 713–720 (1988).

[5] Simons, M., Fialko, Y. & Rivera, L. Coseismic deformation from the 1999 Mw 7.1 Hector Mine, California, earthquake as inferred from InSAR and GPS observations. *bssa* **92**, 1390–1402 (2002).

[6] Jonsson, S., Zebker, H., Segall, P. & Amelung, F. Fault slip distribution of the 1999 M_w 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements. *Bull. Seism. Soc. Am.* **92**, 1377–1389 (2002).

[7] Wang, K. & Fialko, Y. Slip model of the 2015 M_w 7.8 Gorkha (Nepal) earthquake from inversions of ALOS-2 and GPS data. *Geophys. Res. Lett.* **42**, 7452–7458 (2015).

[8] Ayoub, F., Leprince, S. & Keene, L. User's guide to COSI-CORR co-registration of optically sensed images and correlation. *California Institute of Technology: Pasadena, CA, USA* **38**, 49s (2009).

[9] Leprince, S., Ayoub, F., Klinger, Y. & Avouac, J.-P. Co-Registration of optically sensed images and correlation (COSI-Corr): an operational methodology for ground deformation measurements. In *2007 IEEE International Geoscience and Remote Sensing Symposium*, 1943–1946 (2007).

[10] Aati, S., Milliner, C. & Avouac, J.-P. A new approach for 2-D and 3-D precise measurements of ground deformation from optimized registration and correlation of optical images and ICA-based filtering of image geometry artifacts. *Remote Sensing of Environment* **277**, 113038 (2022).

[11] Fialko, Y., Simons, M. & Agnew, D. The complete (3-D) surface displacement field in the epicentral area of the 1999 M_w 7.1 Hector Mine earthquake, southern California, from space geodetic observations. *Geophys. Res. Lett.* **28**, 3063–3066 (2001).

[12] Fialko, Y. & Jin, Z. Simple shear origin of the cross-faults ruptured in the 2019 Ridgecrest earthquake sequence. *Nature Geoscience* **14**, 513–518 (2021).

[13] Wang, X. *et al.* A 3-D shear wave velocity model for Myanmar region. *Journal of Geophysical Research: Solid Earth* **124**, 504–526 (2019).

[14] Brocher, T. M. Empirical relations between elastic wavespeeds and density in the earth's crust. *Bulletin of the seismological Society of America* **95**, 2081–2092 (2005).

[15] Jin, Z., Zou, X., Wang, K. & Fialko, Y. SlipSolve: Geodetic Linear Inversion (2025). URL https://github.com/ZeyuJin/geodetic_inversion.

[16] Wang, R., Martin, F. & Roth, F. Computation of deformation induced by earthquakes in a multi-layered elastic crust - FORTRAN programs EDGRN/EDCMP. *Comp. Geosci.* **29**, 195–207 (2003).

[17] Jin, Z., Fialko, Y., Yang, H. & Li, Y. Transient deformation excited by the 2021 M7.4 Maduo (China) earthquake: Evidence of a deep shear zone. *J. Geophys. Res.* **128**, e2023JB026643 (2023).

[18] Jin, Z., Fialko, Y., Zubovich, A. & Schöne, T. Lithospheric deformation due to the 2015 M7.2 Sarez (Pamir) earthquake constrained by 5 years of space geodetic observations. *J. Geophys. Res.* **127**, e2021JB022461 (2022).

[19] Okada, Y. Surface deformations due to shear and tensile faults in a halfspace. *Bull. Seism. Soc. Am.* **75**, 1135–1154 (1985).

[20] Meade, B. J. AlgorithMs for the calculation of exact displacements, strains, and stresses for triangular dislocation elements in a uniform elastic half space. *Computers & geosciences* **33**, 1064–1075 (2007).

[21] Nikkhoo, M. & Walter, T. R. Triangular dislocation: an analytical, artefact-free solution. *Geophysical Journal International* **201**, 1119–1141 (2015).

456 [22] Fialko, Y. Probing the mechanical properties of seismically active crust with space geodesy: Study
 457 of the co-seismic deformation due to the 1992 $M_w 7.3$ Landers (southern California) earthquake. *J.
 458 Geophys. Res.* **109**, B03307, 10.1029/2003JB002756 (2004).

459 [23] Zienkiewicz, O. *The finite element method* (McGraw-Hill Book Company, London, 1977), 3 edn.

460 [24] Golub, G. H., Hansen, P. C. & O'Leary, D. P. Tikhonov regularization and total least squares. *SIAM
 461 journal on matrix analysis and applications* **21**, 185–194 (1999).

462 [25] Meyer, M., Desbrun, M., Schröder, P. & Barr, A. H. Discrete differential-geometry operators for
 463 triangulated 2-manifolds. In *Visualization and mathematics III*, 35–57 (Springer, 2003).

464 [26] Voronoi, G. Nouvelles applications des paramètres continus à la théorie des formes quadratiques.
 465 deuxième mémoire. recherches sur les paralléloèdres primitifs. *Journal für die reine und angewandte
 466 Mathematik (Crelles Journal)* **1908**, 198–287 (1908).

467 [27] Devroye, L., Györfi, L., Lugosi, G. & Walk, H. On the measure of voronoi cells. *Journal of Applied
 468 Probability* **54**, 394–408 (2017).

469 [28] Jin, Z. & Fialko, Y. Finite slip models of the 2019 Ridgecrest earthquake sequence constrained by
 470 space geodetic data and aftershock locations. *Bull. Seism. Soc. Am.* **110**, 1660–1679 (2020).

471 [29] Ulrich, T., Magen, Y. & Gabriel, A.-A. The complex rupture dynamics of an oceanic transform fault:
 472 supershear rupture and deep slip during the 2024 Mw7. 0 cape mendocino earthquake. Preprint at
 473 EarthArXiv (2025).

474 [30] Gabriel, A.-A. *et al.* SeisSol (2025). URL <https://doi.org/10.5281/zenodo.15685917>.

475 [31] Käser, M., Hermann, V. & Puente, J. d. l. Quantitative accuracy analysis of the discontinuous
 476 galerkin method for seismic wave propagation. *Geophysical Journal International* **173**, 990–999
 477 (2008).

478 [32] Dumbser, M. & Käser, M. An arbitrary high-order discontinuous Galerkin method for elastic waves
 479 on unstructured meshes—II. The three-dimensional isotropic case. *Geophysical Journal International*
 480 **167**, 319–336 (2006).

481 [33] Breuer, A. *et al.* Sustained Petascale Performance of Seismic Simulations with SeisSol on SuperMUC.
 482 In *Supercomputing. ISC 2014. Lecture Notes in Computer Science*, vol 8488, 1–18 (Springer, 2014).

483 [34] Heinecke, A. *et al.* Petascale high order dynamic rupture earthquake simulations on heterogeneous
 484 supercomputers. In *SC'14: International Conference for High-Performance Computing, Networking,
 485 Storage and Analysis* (2014).

486 [35] Rettenberger, S., Meister, O., Bader, M. & Gabriel, A.-A. ASAGI: A Parallel Server for Adaptive
 487 Geoinformation. In *Proceedings of the Exascale applications and Software Conference 2016*, EASC
 488 '16, 2:1–2:9 (ACM, New York, NY, USA, 2016).

489 [36] Uphoff, C. *et al.* Extreme scale multi-physics simulations of the tsunamigenic 2004 Sumatra megath-
 490 rust earthquake. In *Proceedings of the International Conference for High Performance Computing,
 491 networking, Storage and Analysis, SC 2017* (2017).

492 [37] Krenz, L. *et al.* 3D acoustic-elastic coupling with gravity: the dynamics of the 2018 Palu, Sulawesi
 493 earthquake and tsunami. In *Proceedings of the International Conference for High-Performance
 494 Computing, Networking, Storage and Analysis, SC '21* (ACM, New York, NY, USA, 2021).

495 [38] Pelties, C., Gabriel, A.-A. & Ampuero, J.-P. Verification of an ADER-DG method for complex
 496 dynamic rupture problems. *Geoscientific Model Development* **7**, 847–866 (2014).

497 [39] Harris, R. A. *et al.* A suite of exercises for verifying dynamic earthquake rupture codes. *Seismol.
 498 Res. Lett.* **89**, 1146–1162 (2018).

499 [40] Vyas, J. C., Gabriel, A., Ulrich, T., Mai, P. M. & Ampuero, J. How does thermal pressurization
 500 of pore fluids affect 3D strike-slip earthquake dynamics and ground motions? *Bulletin of the
 501 Seismological Society of America* **113**, 1992–2008 (2023).

502 [41] Ida, Y. Cohesive force across the tip of a longitudinal-shear crack and griffith's specific surface
 503 energy. *Journal of Geophysical Research* **77**, 3796–3805 (1972).

504 [42] Andrews, D. Rupture propagation with finite stress in antiplane strain. *Journal of Geophysical*
 505 *Research* **81**, 3575–3582 (1976).

506 [43] Day, S. M., Yu, G. & Wald, D. J. Dynamic stress changes during earthquake rupture. *Bulletin of*
 507 *the Seismological Society of America* **88**, 512–522 (1998).

508 [44] Tinti, E., Spudich, P. & Cocco, M. Earthquake fracture energy inferred from kinematic rupture
 509 models on extended faults. *Journal of Geophysical Research: Solid Earth* **110** (2005).

510 [45] Causse, M., Dalguer, L. A. & Mai, P. M. Variability of dynamic source parameters inferred from
 511 kinematic models of past earthquakes. *Geophysical Journal International* **196**, 1754–1769 (2014).

512 [46] Yang, H., Yao, S., He, B., Newman, A. V. & Weng, H. Deriving rupture scenarios from interseismic
 513 locking distributions along the subduction megathrust. *Journal of Geophysical Research: Solid Earth*
 514 **124**, 10376–10392 (2019).

515 [47] Tinti, E. *et al.* Constraining families of dynamic models using geological, geodetic and strong ground
 516 motion data: The Mw 6.5, October 30th, 2016, Norcia earthquake, Italy. *Earth and Planetary*
 517 *Science Letters* **576**, 117237 (2021).

518 [48] Jia, Z. *et al.* The complex dynamics of the 2023 Kahramanmaraş, Turkey, M_w 7.8-7.7 earthquake
 519 doublet. *Science* **381**, 985–990 (2023).

520 [49] Glehman, J. *et al.* Partial ruptures governed by the complex interplay between geodetic slip deficit,
 521 rigidity, and pore fluid pressure in 3D Cascadia dynamic rupture simulations. *Seismica* **2** (2025).

522 [50] Marchandon, M. *et al.* Forecasting 3D rupture dynamics of the alto tiberina Low-Angle normal
 523 fault, Italy. *Seismica* **4** (2025).

524 [51] Day, S. M., Dalguer, L. A., Lapusta, N. & Liu, Y. Comparison of finite difference and boundary
 525 integral solutions to Three-Dimensional spontaneous rupture. *Journal of Geophysical Research: Solid*
 526 *Earth* **110** (2005).

527 [52] Kammer, D. S. *et al.* Earthquake energy dissipation in a fracture mechanics framework. *Nature*
 528 *Communications* **15**, 4736 (2024).

529 [53] Wollherr, S., Gabriel, A.-A. & Uphoff, C. Off-fault plasticity in three-dimensional dynamic rupture
 530 simulations using a modal Discontinuous Galerkin method on unstructured meshes: Implementation,
 531 verification and application. *Geophys. J. Int.* **214**, 1556–1584 (2018).

532 [54] Aochi, H. & Madariaga, R. The 1999 Izmit, Turkey Earthquake: nonplanar pault structure, dynamic
 533 rupture process, and strong ground motion. *Bulletin of the Seismological Society of America* **93**,
 534 1249–1266 (2003).

535 [55] Ulrich, T., Gabriel, A.-A., Ampuero, J.-P. & Xu, W. Dynamic viability of the 2016 Mw 7.8 Kaikōura
 536 earthquake cascade on weak crustal faults. *Nature Communications* **10** (2019).

537 [56] Suppe, J. Fluid overpressures and strength of the sedimentary upper crust. *Journal of Structural*
 538 *Geology* **69**, 481–492 (2014).

539 [57] Weng, H. & Yang, H. Constraining frictional properties on fault by dynamic rupture simulations
 540 and near-field observations. *Journal of Geophysical Research: Solid Earth* **123**, 6658–6670 (2018).

541 [58] Galis, M. *et al.* On the initiation of sustained Slip-Weakening ruptures by localized stresses.
 542 *Geophysical Journal International* **200**, 890–909 (2015).

543 [59] USGS. Origin information for the M 7.7 2025 Mandalay, Burma (Myanmar) earthquake (2025).
 544 URL <https://earthquake.usgs.gov/earthquakes/eventpage/us7000pn9s/origin/detail>. Last accessed:
 545 2025-07-08.

546 [60] Cocco, M. *et al.* Fracture energy and breakdown work during earthquakes. *Annual Review of Earth*
 547 *and Planetary Sciences* **51**, 217–252 (2023).

548 [61] Ide, S. & Aochi, H. Earthquakes as multiscale dynamic ruptures with heterogeneous fracture surface
 549 energy. *Journal of Geophysical Research: Solid Earth* **110** (2005).

550 [62] Gabriel, A.-A., Garagash, D. I., Palgunadi, K. H. & Mai, P. M. Fault size-dependent fracture energy
 551 explains multiscale seismicity and cascading earthquakes. *Science* **385**, eadj9587 (2024).

552 [63] Kaneko, Y., Fukuyama, E. & Hamling, I. J. Slip-Weakening distance and energy budget inferred from
 553 near-fault ground deformation during the 2016 Mw7.8 Kaikōura earthquake. *Geophysical Research
 554 Letters* **44**, 4765–4773 (2017).

555 [64] Gallovič, F. *et al.* Complex rupture dynamics on an immature fault during the 2020 Mw 6.8 Elazığ
 556 earthquake, Turkey. *Communications Earth & Environment* **1**, 1–8 (2020).

557 [65] Gallovič, F., Valentová, Ľ., Ampuero, J.-P. & Gabriel, A.-A. Bayesian Dynamic Finite-Fault Inver-
 558 sion: 2. Application to the 2016 Mw 6.2 Amatrice, Italy, Earthquake. *Journal of Geophysical
 559 Research: Solid Earth* **124**, 6970–6988 (2019).

560 [66] Kearse, J. & Kaneko, Y. Curved Fault slip captured by CCTV video during the 2025 Mw 7.7
 561 Myanmar Earthquake. *The Seismic Record* **5**, 281–288 (2025).

562 [67] Fukuyama, E. & Mikumo, T. Slip-Weakening distance estimated at near-fault stations. *Geophysical
 563 Research Letters* **34** (2007).

564 [68] Wong, J. W. C., Fan, W. & Gabriel, A.-A. A quantitative comparison and validation of Finite-
 565 Fault models: the 2011 Tohoku-Oki earthquake. *Journal of Geophysical Research: Solid Earth* **129**,
 566 e2024JB029212 (2024).

567 [69] USGS. Finite Fault model of the M 7.7 2025 Mandalay, Burma (Myanmar) earthquake (2025). URL
 568 <https://earthquake.usgs.gov/earthquakes/eventpage/us7000pn9s/executive>. Last accessed: 2025-07-
 569 08.

570 [70] Vallée, M., Charléty, J., Ferreira, A. M. G., Delouis, B. & Vergoz, J. SCARDEC: A new technique for
 571 the rapid determination of seismic moment magnitude, focal mechanism and source time functions for
 572 large earthquakes using body-wave deconvolution. *Geophysical Journal International* **184**, 338–358
 573 (2011).

574 [71] Melgar, D. *et al.* Supershear source model of the 2025 M7.8 Myanmar earthquake and paleo-
 575 seismology of the Sagaing fault: regions of significant overlap with past earthquakes. *Seismica* **4**
 576 (2025).

577 [72] Lai, S.-T. *et al.* Capacity building enables unique near-fault observations of the destructive 2025 M_w
 578 7.7 Myanmar earthquake. *Earth System Science Data Discussions* **2025**, 1–23 (2025).

579 [73] Latour, S. *et al.* Direct estimation of earthquake source properties from a single CCTV camera.
 580 Preprint at EarthArXiv (2025).

581 [74] Ishii, M., Shearer, P. M., Houston, H. & Vidale, J. E. Extent, duration and speed of the 2004
 582 Sumatra–Andaman earthquake imaged by the Hi-Net array. *Nature* **435**, 933–936 (2005).

583 [75] Tan, F., Ge, Z., Kao, H. & Nissen, E. Validation of the 3-D phase-weighted relative back projec-
 584 tion technique and its application to the 2016 Mw 7.8 Kaikōura earthquake. *Geophysical Journal
 585 International* **217**, 375–388 (2019). Publisher: Oxford Academic.

586 [76] Kennett, B. L. N. & Engdahl, E. R. Traveltimes for global earthquake location and phase
 587 identification. *Geophysical Journal International* **105**, 429–465 (1991).

588 [77] Kundu, B. & Gahalaut, V. Earthquake occurrence processes in the Indo-Burmese wedge and Sagaing
 589 Fault Region. *Tectonophysics* **524–525**, 135–146 (2012).

590 [78] Hirano, S., Doke, R. & Maeda, T. Supershear-Subshear-Supershear rupture sequence during the
 591 2025 Mandalay earthquake in Myanmar. Preprint at EarthArXiv (2025). URL <https://doi.org/10.26443/seismica.v4i2.1785>.