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Text S1. Space Geodetic Data Processing

We use Synthetic Aperture Radar (SAR) data acquired by Sentinel-1A satellite in TOPS mode (ascending
tracks 70 and 143; descending tracks 33 and 106) and ALOS-2 satellite in ScanSAR mode (ascending track
152; descending tracks 41 and 42). The respective acquisition dates are listed in Table S1. All data are
processed using GMTSAR! and the Shuttle Radar Topography Mission (SRTM) digital elevation model
with 30 m postings?. For the Sentinel-1A data, we estimate azimuth offsets using pixel-tracking. We
cross-correlate the Single Look Complex (SLC) images with a sampling interval of 8 pixels in azimuth and
range. To improve the signal to noise ratio, we only select pixels for which the calculated azimuth offset
is less than 10 meters. We then use the fault trace projected in the radar (range-Doppler) coordinates
to split the scene into two parts. For each part, we fit a low-order 2-D spline to a scattered set of pixels
using a surface modeling tool gridfit®. We then remove pixels with offsets that deviate more than 2 m
from the best-fit spline. The remaining set of pixels is filtered using a Gaussian filter with wavelength of
0.5 km. The two parts of the image are recombined and projected from radar to geographic coordinates.
Separate processing of the 2 parts is meant to avoid filtering of averaging of discontinuous data along
the fault trace. The resulting offsets are shown in Fig. S2. We do not use interferometric phase from
Sentinel-1A measurements because it is highly decorrelated, especially in the near field (5-10 km) of the
earthquake rupture.

For the ALOS-2 data, we process 3 ScanSAR frames from each track spanning the earthquake rupture.
Each frame consists of 5 sub-swathes that are co-registered, filtered, and merged into a full frame. The
merged frames are unwrapped using the branch-cut algorithm®. This allows to confidently unwrap the
radar phase in frames that cover the rupture tips. For the central frames that are completely crossed by
the ~500 km long earthquake rupture, we use data from the overlap areas between the adjacent frames to
solve for the 27 ambiguity, and manually bridge the phase across the fault trace. Finally, we merge the 3
frames by minimizing phase difference in the overlap areas. Fig. S3a shows an example of interferometric
phase from 3 merged frames from the descending track 41. The phase data are dominated by a long-
wavelength ramp, most likely due to ionospheric variability. Noting that coseismic displacements are
expected to vanish at distances of the order of 50-100 km away from the fault trace, we take advantage of
the wide-swath capability of ALOS-2 to remove the long-wavelength contribution due to ionosphere. We
resample the merged unwrapped interferogram to grid spacing of 1 km, mask out data within ~100 km
from the fault trace, and fit a tension spline to the remaining set of pixels. The best-fit spline surface is
then upsampled and subtracted from the original data at full resolution. Fig. S3b shows the interferometric
phase upon the respective correction. The coseismic signal is clearly visible, along with some fringes that
likely represent uncorrected tropospheric and ionospheric artifacts. The phase remains coherent all the
way to the rupture trace, due to a larger wavelength of the ALOS-2 radar (0.23 m, compared to 0.06
m for Sentinel-1A satellite). Line of sight (LOS) displacements obtained from the merged, unwrapped,
and de-trended ALOS-2 interferograms are shown in Fig. S4 While the predominantly strike-slip sense
of motion on a North-South trending earthquake rupture implies that only a small fraction of strike-slip
motion can be observed along the satellite LOS, interferometric data nevertheless represent a valuable
constraint because they have a high sensitivity to the dip-slip component, and therefore reduce possible
trade-offs between the strike- and dip-slip. Also, because of the large magnitude of strike-slip, a LOS
projection as small as several percents still has a signal to noise ratio that is larger than that in pixel
offsets (Figs. S2, S4).

The azimuth offset and LOS displacement data (Figs. S2, S4) are sub-sampled using a quad-tree
algorithm®7 to reduce the computational cost and achieve a better model resolution. The unit-look
vectors are computed by averaging the original values in the same groups of pixels as used for sub-sampling
the phase and pixel offset data.

In addition to the LOS and azimuth displacements derived from the SAR images, we also mea-
sure the horizontal surface displacement field of the Mandalay earthquake by cross-correlating optical
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images collected by Sentinel-2 satellite. The Sentinel-2 images have a pixel size of about 10 m. Twelve
pairs of pre-earthquake (2025/03/25-27) and post-earthquake (2025/03/30 and 2025/04/01) images are
needed to cover the 500 km long rupture area (Table S1). As the Sentinel-2 images are provided already
orthorectified, no geometrical correction is applied prior the correlation. We use the phase correlator of
the software package COSI-Corr®'° with a multiscale sliding correlation window of 128 to 64 pixels and
a measurement step of 6 pixels. We discard from the resulting 60 m East-West (EW) and North-South
(NS) displacement fields any data point having a signal-to-noise ratio lower than 0.95 and a displacement
amplitude higher than 10 m. Finally, we smooth the EW and NS displacement fields using a median filter
with a 5x5 pixels window.

Text S2. Measurement of Surface Fault Offsets

Fault-parallel offsets are obtained from the Sentinel-2 horizontal displacement field using a series of
uniformly distributed, fault-perpendicular stacked profiles. Each profile spans 70 km long and is laterally
averaged over a width of 2 km to enhance the signal-to-noise ratio. Displacement offsets are measured by
performing linear regression fits to the displacement data on either side of the fault trace and computing
the offset as the difference between the extrapolated values of the regressions at the fault. Associated
uncertainties are estimated by calculating the root mean square (RMS) of the 1-sigma standard deviations
of the regression fits on both sides of the fault. In total, we measured 258 profiles. Fault zone width is also
quantified by measuring the distance between the inflection points in the displacement profile on either
side of the fault.

Text S3. Retrieval of 3 Orthogonal Components of Surface Displacements from
SAR Data

The azimuth offsets and LOS displacements from 7 different satellite tracks (Figs. S2, S4) are used to
retrieve the three orthogonal components of the coseismic displacement field 312, The respective geocoded
data sets are first resampled onto a common grid. To reduce speckle, the azimuth offsets are filtered
using a 1 km Gaussian filter. For each pixel of a common grid we form a system of linear equations by
adding the respective unit look vectors as rows to the design matrix and the observed quantity to the
data vector. The resulting system is solved using least squares for the three orthogonal components of
the displacement vector if the following two conditions are met: (i) more than two observations from
different data sets are available for a given pixel and (ii) a condition number of the design matrix is less
than some threshold (100 in our calculations). The first condition ensures that the system is not under-
determined; the second condition ensures that there is sufficient diversity in the look angles (that is, the
solution is not highly unstable with respect to the data errors). The resulting horizontal component of
the displacement field is shown in Fig. 1b in the main text.

Text S4. A 1-D model of S-wave Velocity and Shear Modulus for the Sagaing
Fault

We construct a depth-dependent S-wave velocity model using depth-averaged, binned shear wave velocity
data from stations within approximately 50 km of the Sagaing Fault 1. The bin boundaries are determined
by identifying depths where the cumulative absolute change in velocity exhibits local maxima. The shear
modulus corresponding to each depth layer (bin) is calculated based on the empirical relationship between
seismic wave velocity and density'4. The resulting 1-D S-wave velocity and shear modulus distributions
as a function of depth are shown in Fig. S5.
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Text S5. Estimation of Subsurface Fault Geometry from Geodetic Data

To constrain the three-dimensional geometry of the Sagaing Fault, we first digitize the surface trace of
the 2025 earthquake rupture using azimuth offsets derived from Sentinel-1 data, and the NS component
of horizontal displacements derived from Sentinel-2 data. We then partition the rupture trace into seven
linear segments (Fig S6a). Except for the relatively short segment 1 which represents a small kink near
the northern end of the earthquake rupture, the rest of the segments (segments 2-7) are nearly equal
in length, about 80 km each. Segments 2-7 are modeled as planar faults sub-divided into rectangular
dislocations. For every segment, we extract 60 km wide swathes of data centered on, and perpendicular to
the segment, and invert them for the best-fit slip distribution using SlipSolve algorithm '®. The algorithm
calculates Green’s functions assuming a layered elastic half-space ', using a 1-D rigidity model shown in
Fig. S5b. For each segment, we perform several inversions for different assumed dip angles. Resulting data
misfits are shown in Fig. S6. Dip angles that yield a minimum misfit value are taken to be representative
of the respective segments. We do not perform a separate grid search for segment 1, as it is too short
for a 2-D approximation. Instead, we constrain the dip of segment 1 to be equal to that of segment 2.
We then project each planar sub-fault using its inferred dip angle to a depth of 25 km. Finally, we fit a
smooth continuous 3-D surface to a set of points spanning the fault trace and (on average) the individual
sub-faults 1-7'7. The resulting surface has a helical geometry with a dip angle varying smoothly along
strike, as illustrated in Fig. 2a in the main text.

Text S6. Inversion of Geodetic Data for Static Slip Model

Inversions of coseismic displacements for the subsurface slip distribution typically approximate faults as
a superposition of dislocations®®%!®. The most popular choice is a rectangular dislocation in a homo-
geneous ¥ or layered !¢ elastic half-space. Triangular Dislocation Elements (TDE) are generally better
suited for approximating complex non-planar surfaces'72%2!, However, finite dislocations give rise to an
unphysical piece-wise constant (”staircase”) approximation of coseismic slip. Here, we use a novel method
for inverting surface displacements using piece-wise linear triangular boundary elements in a layered elas-
tic half-space that ensures a continuous slip distribution. As a first step, we tessellate the 3-D curved
fault surface (Fig. 2a) to produce a ”watertight” mesh of triangular elements. The element size gradually
increases from ~1 km at the Earth’s surface to ~5 km at the bottom of the fault model (20-25 km), to
keep the model resolution matrix close to diagonal??. Each triangular element is given by a superposi-
tion of equally spaced point sources!”. The Green’s functions for point sources are computed assuming a
1-D rigidity structure shown in Fig. Sbb, except for elements at the free surface, for which we use regular
TDEs?! to avoid singularities in the near field of the fault trace. We then calculate Green’s functions for
the vertices of the triangular elements, imposing a slip of unity at the given vertex, and a linear decrease
of slip to zero to the other vertices of all adjacent triangular elements. This is similar to a treatment of
triangular elements with linear basis functions in the Finite Element Method?3. Finally, we solve for slip
u at the nodes (vertices of interconnected triangular elements) of the mesh by forming a linear system
of equations Gu = d, where G is the Green’s function matrix, and d is the data vector consisting of sub-
sampled Sentinel-1 azimuth offsets and ALOS-2 LOS displacements. Vector u consists of strike-slip and
dip-slip components for each node. The matrix G accounts for the projection of the 3-component surface
displacement field onto the respective lines of sight or flight directions. We seek the slip distribution
that minimizes a functional

F(u,\) = [|Gu — d||2 + \||VZu] 2, (1)
where ||.]|2 is the Euclidean (Ly) norm, V? is the Laplacian operator that penalizes curvature in the slip
distribution and serves as a regularization operator to avoid ill-posedness?*, and A is the smoothness
parameter. The latter is chosen to optimize the trade-off between the model smoothness and fit to the
data (Fig. S7). We implement a discrete Laplacian operator on a triangular mesh using an edge-level
hybrid scheme: for triangular elements having acute angles, we use a cotangent formula, and mean-value
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weights otherwise?®. Assume two nodes i and j share the same edge, ij (Fig. S8); 0:x;, 0i1; are the vertex
angles opposite to the edge ij; k and [ are the vertices of triangles at 8;x;, 0, and p;, p; are the 3-D
position vectors of nodes ¢ and j,

%(COt Hikj —+ cot 91‘1]‘), if 9ikj7 eilj S (0, g) (both acute),
Wig =\ tan(0ri;/2) + tan(0hi;/2) + tan(0rji/2) + tan(0yi/2) L (2)
Ipi — Pyl ’ ’

where 0y;; is an angle between triangle sides k7 and ¢j. The discrete Laplacian operator at a node 7 is
given by 2

N
1
Vi = = > wig(uy —ui), 3)
i =

where S; is the mixed-Voronoi area?%:27 for node i to provide relative scaling across variable triangle sizes
(Fig S8), and N is the total number of nodes immediately adjacent to node 4. For each triangle T' (vertices
i, 7 and k, with coordinate vectors p;, p; and py, and area Ay) that forms the cell area surrounding
node i, the area of the respective Voronoi cell is calculated as

1
g(cot Oijk |Pi — PrlI> + cot O [|Ips — p;[|*) . if T is non-obtuse,
T 1
Si( ) = 3 Ar, if Ori; > 5 (obtuse at i), (4)
1
1 Arp, if T is obtuse at j or k.

S; is a union of all Voronoi cells Si(T) around the node 7 (Fig. S8).

The design matrix of an inverse problem consists of G and a symmetric, sparse regularization matrix
that independently constrains strike- and dip-slip components of u. TDEs at the top of the slip model are
constrained to have the same slip as the top nodes of the linear triangular elements immediately below.
In addition, we impose “soft” zero-slip conditions at the lateral and bottom boundaries of the mesh?2.
The inversions are performed using SlipSolve package'®. The best-fit slip model of the 2025 Mandalay
earthquake is shown in Fig. S9.

The uncertainties are estimated using a bootstrap method. We perform several inversions using the
same parameters, but excluding one of the datasets. Azimuth offsets from Sentinel-1A track D106 are
kept in all runs, since this track is well centered on the earthquake rupture. At each node, we take the
difference between the maximum and minimum slip values in all of the inversions as uncertainty in the
respective component of slip (Fig. S10).

To validate the resolving power of our inverse models, we execute a set of inversions using synthetic
data. Using the same fault geometry and the same mesh, we replace each triangular element with analytic
TDEs?!. We then apply a slip distribution that tapers elliptically from the maximum slip of 5 m in the
middle of the fault trace to zero at the depth of 17 km, and toward the side (”North” and ”South”) edges
of the mesh. The dip-slip component is zero. We compute surface displacements and project them onto
the lines of sight and flight directions corresponding to the Sentinel-1A and ALOS-2 datasets (Figs. S11-
S17). To simulate realistic noise, we use residuals (Figs. S11¢-S17¢) in which we mask out pixels within
3 km from the fault trace and replace them with residuals from the far-field (> 20 km from the fault
trace). The respective noise is added to synthetic data, which are then sub-sampled and inverted for the
best-fit slip distribution using the same procedure as described above, except the Green’s functions are
calculated for a homogeneous elastic half-space. The recovered slip distribution closely reproduces the
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input model in the top 15 km (Fig. S18). Below 15 km, the inverse model somewhat over-predicts the
synthetic model due to loss of model resolution.

Text S7. Dynamic rupture modeling approach, fault friction and initial shear
stresses

To generate ensembles of 3D dynamic rupture simulations??, we use the open-source software SeisSolC.
SeisSol solves the coupled problem of spontaneous dynamic rupture and seismic wave propagation with
high-order accuracy in space and time>'. It implements the Arbitrary high-order accurate DERivative
Discontinuous Galerkin method (ADER-DG?®?) and incorporates end-to-end optimization for mod-
ern high-performance computing architectures3*37. SeisSol has been extensively verified through a
broad suite of community benchmark problems designed by the SCEC/USGS Dynamic Rupture Code
Verification project 3849,

We adopt a linear slip-weakening friction law 142, The dynamic friction coefficient is assumed constant
at pq = 0.15. The critical slip weakening distance d. and static friction coefficient ps vary across the fault
(Fig. S24b, Table S2).

We constrain the geometry and initial shear stresses of all 3D dynamic rupture models using the fault
geometry and slip distribution from the geodetic slip model. Kinematic (time-dependent) finite fault mod-
els have been previously employed to determine initial parameters for dynamic rupture simulations*348.
We use a pseudo-static simulation, hereafter referred to as ‘dynamic relaxation simulation’ using the same
computational mesh and the same fault geometry as the subsequent dynamic rupture simulations*%°°.
We impose the time-independent geodetic slip distribution across the entire fault using a 3 s rise-time
Gaussian slip-rate function, applied through an internal boundary condition to determine the correspond-
ing stress-change distribution. This time-dependent fault slip is enforced as a displacement discontinuity
along the prescribed fault interface of the tetrahedral mesh. This dynamic relaxation simulation is run
for 99 seconds, allowing all seismic waves to exit the computational domain.

Text S8. Structural model, adaptive meshing and resolution

We construct a structural model that incorporates GEBCO-derived topography and bathymetry at 900 m
resolution. This free surface is intersected by a smoothed curved fault geometry, derived from the geometry
of the geodetic slip model. The fault is embedded within the same 1D velocity model as used in the
geodetic inversion. The computational domain spans 630 x 900 x 200 km?3.

For the ensemble rupture models, we employ a non-uniform unstructured tetrahedral mesh comprising
approximately 4 million elements. Along the Sagaing Fault, this mesh resolves fault geometry with 700 m
element size, while surface topography and bathymetry are represented at 2 km resolution. A refined
mesh region measuring 80 x 500 x 40 km?, centered on the fault, uses element sizes of 2 km. Outside
this region, the mesh is progressively coarsened up to a maximum element size of 15 km. We use high-
order polynomials of degree p = 4, enabling sub-element resolution in space and high-order accuracy in
time. Simulating 130 s of rupture dynamics and seismic wave propagation requires 350 CPU hours on the
Skylake-based SuperMUC-NG Phase 2 supercomputer at the Leibniz Supercomputing Center, Garching,
Germany. The total computational cost of the 180 model ensemble is therefore only ~60k CPUh.

The on-fault resolution is chosen to resolve the process zone width®!, the region behind the rupture
front where shear stress drops, controlled by fault friction and stress parameters (52, Table S2). In our
preferred dynamic rupture model, the median process zone width is ~ 1960 m, with 95% of ruptured
fault elements exceeding 625 m in size. SeisSol simulations with p = 4 require at least 2-3 elements
across the median process zone for adequate resolution®®. With a fault element size of h =700 m and
25 quadrature points per cell, our simulations meet this requirement, ensuring accurate resolution of the
dynamic rupture process.
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Text S9. Dynamic rupture model frictional strength, stress drop and nucle-
ation

We prescribe a constant dynamic friction coefficient, enforce a minimum friction drop of ps — pq > 0.2,
and introduce spatial variations in static friction ug, thereby adopting heterogeneous initial shear stress
(Tgsm) while maintaining a constant relative prestress ratio R in regions where pg > 0.35.

R is a key dynamic rupture parameter (e.g.%*), and is critical in determining rupture style and speed
(e.g.,%%) and relates the potential maximum stress drop 79 — 74, with 7o the initial shear stress and 74
the dynamic shear stress, to the frictional strength drop 74 — 74, with 74 the static shear stress, as

R = (10— 7a)/(7s — 7a), (5)
with 75 the static fault strength defined as

Ts = fsOy (6)
and 74 is the dynamic fault strength defined as
Td = paoy, , (7)

with ol the effective normal stress.

We assume an effective normal stress that increases linearly from 1 MPa at the surface to 16 MPa
at 1.5 km depth, and remains constant below this depth. Such low effective normal stress is motivated
by the modest stress changes implied by the inferred slip distribution and are consistent with pore-
fluid overpressure observations at interplate boundaries, following the lithostatic gradient below a critical
depth®%:

ol = min(—1 x 10%, max(—16 x 10°,0.4pgz2)) . (8)

Here, o] is negative in compression. The sharp near-surface gradient of |0/ | is required to allow
sufficient potential stress drop at shallow depth and to capture the large shallow slip observed near the
surface.

Assuming simple friction parameter distributions in conjunction with a heterogeneous initial stress
derived from the geodetic slip distribution provides a simple and parsimonious way of setting up initial
conditions for dynamic rupture models. However, this strategy is often inefficient in practice: the stress
field inferred from the slip distribution is typically too heterogeneous, and regions of low slip then tend to
remain insufficiently critically stressed *”. Therefore, many previous studies constraining dynamic rupture
models from slip distributions 2?4757 introduce small-scale spatial variations in static or dynamic friction,
reflecting the heterogeneous shear stress (here Ty ), thereby effectively enforcing a constant R across
the entire fault. However, there is no clear physical basis for prescribing static and dynamic friction
coefficients as functions of a heterogeneous initial shear stress distribution.

Here, we enforce a constant R = Rparam 0 region of sufficient large intial stress (resulting in p15 > 0.35),
while enforcing a relatively large minimum friction drop (us — pg > 0.2) so that low-intial-stress regions
are not unrealistically close to failure. This strategy leads to a heterogeneous relative prestress ratio R
distribution, with R < Rparam in low initial-stress regions and R = Rparam €lsewhere (Figure S24e.).

Figs. 525 and S24 illustrate how spatial variations in initial stress and friction parameters affect shear
stress and fault strength, shown for three representative depth profiles and for their distribution in the
preferred dynamic rupture model.

In all models, we prescribe the same nucleation patch that grows smoothly in time and across a
minimal-sized perturbation area®®, adapted to the respective friction and stress parameters. The center
of this patch is placed at the USGS inferred hypocenter location (22.011°N 95.936°W, 7.6 km depth) Y.
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Text S10. Dynamic rupture ensemble parameter space

To generate an ensemble of 180 dynamic rupture simulations systematically exploring unconstrained
dynamic parameters, we vary only three fault-wide defined quantities: (i) C, scaling the critical slip-
weakening distance d.. in the linear slip-weakening friction law, (ii) B, modulating the potential maximum
stress drop proportionally to the shear stress changes derived from the geodetic slip model, and (iii)
Rparam, the prescribed relative prestress ratio (Equation 5) in region where pg > 0.35. We explore
all combinations of (B, C, Rparam) With B in [0.9,0.95,1.0], C in [0.05,0.1,0.15,0.2,0.25,0.3], and R in
[0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95], leading to 3 x6 x 10 = 180 models.

The critical slip-weakening distance d. is defined proportional to the slip distribution of the geodetic
slip model ugm (Fig. S24a) as

de = Cmax(0.15 max(Ugsm ), ugsm) . (9)

This proportionality is tapered to 15% of the maximum slip, limiting computational cost and prevents
unrealistically low fracture energy and dynamic rupture propagation far into low-slip regions.

A slip-scaled d. assumption??®” produces scale-dependent fracture energy®%6° with fault slip, as
proposed by %1:52). This promotes dynamic rupture propagation in regions of low slip while using larger d..
in where slip is high, which is consistent with near-source seismic observation during large earthquakes®?
and Bayesian dynamic rupture inversion 5465,

The initial fault traction vector 7 is set as

To = BTgsm + T4, (10)

where Tgom is the shear stress change vector from the geodetic slip model, and 74 is the dynamic
strength vector defined as:

Td = udaﬁlulso, (11)
with w180 a unit vector pointing in the rake 180° direction, and o/, the effective normal stress.

This formulation ensures that the potential stress drop 79 — 7q equals Tge. This allows the dynamic
rupture models to accurately and spontaneously reproduce the geodetic slip distribution (see Fig. S23).

Our back-projection analysis (Figure 4 in the main text) indicates that the fault region north of
the hypocenter ruptured at subshear velocity, which can only be reproduced with sufficiently high local
fracture energy. We therefore modify the parameterization north of the hypocenter by reducing the
relative prestress ratio to Rporth = min(0.6, Rparam) and increasing the fracture energy coefficient to
Chorth = max(0.25, C'). We find a single fault-wide parametrization cannot simultaneously capture both
the subshear rupture to the north and the supershear rupture rapidly accelerating toward P-wave velocity
in the south.

The preferred dynamic rupture model is obtained with B = 0.95, C = 0.15, and R = 0.95 (see
Table S2). B = 0.95 corresponds to a slightly reduced prestress level relative to that directly inferred
from the geodetic slip model. With C' = 0.15, the resulting d. ranges from 0.12 m to 0.82 m, lower than
estimates of 1.2 m from on-fault inferences at the CCTV site®® and 2.4 m from analysis of parallel velocity
pulses in strong-motion records at the near-fault NPW station®® using the method of Fukuyama and
Mikumo (2007)57. Finally, Rparam = 0.95 corresponds to a near-critical fault stress state. The preferred
dynamic rupture model is characterized by a very low fracture energy G, = 8 x 10° J/ mz), compared to
estimates from previous 3D earthquake rupture scenarios (Table S1 in®?). Figure S24 illustrates the spatial
distribution of fault friction, slip-weakening distance, shear and normal stress, and relative prestress ratio
R of the preferred dynamic rupture model.
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Text S11. Goodness of fit and preferred dynamic rupture model validation

We identify a preferred model from the ensemble of dynamic rupture scenarios by ranking all 180
simulations according to a weighted, combined goodness-of-fit metric, denoted as GOF compined. This met-
ric integrates multiple individual goodness-of-fit (GOF) measures, each reflecting a distinct evaluation
criterion.

The combined score is defined as

GOFcombined = Z leOFZ 3 (12)

2

where GOF; is the GOF value for criterion i and w; is the corresponding weight.

Specifically, we combine constraints from (i) the slip distribution of the geodetic model, (ii) the
NS displacement component at near-fault seismic static NPW, (iii) slip-rate inferred from the CCTV
observations, (iv) surface fault-offsets, (v) the moment-rate function of the USGS finite-fault model,
and (vi) fits to teleseismic surface and body waveforms. A short description of each component and its
associated weight is given in Table S3.

To emphasize the most diagnostic constraints on rupture dynamics, we assign higher weights to the
near-fault NPW and CCTV record, the geodetic slip distribution and fault offsets, compared to teleseismic
inferences (e.g.,%%). The preferred model has a GOF of 0.71, and the ensemble shows a large spread in
GoF (Fig. 526).

Validation of the preferred dynamic rupture model is illustrated in Figure 4 of the main text. Modeled
fault-parallel surface offsets are consistent with Sentinel-2 optical image cross-correlation. The moment-
rate function of the preferred model shows an early high-amplitude peak associated with the bilateral
phase, followed by a prolonged tail from unilateral supershear propagation, and compares well with the
USGS kinematic model %, the SCARDEC source time function”, and an alternative kinematic model 7!.
Ground displacement at near-fault station NPW 72 matches the modeled displacement, with the observed
series derived by double integration and detrending of accelerations and subject to an estimated £0.8 s
timing uncertainty. Along-strike slip-rate inferred from CCTV footage”, recorded 124 km south of the
epicenter, is also reproduced in both shape and peak amplitude, with absolute timing aligned based on
onset time using a slip-rate threshold of 0.15 m/s. Back-projection results from seismic arrays in Australia,
Europe, and Alaska (Figs. 4e,f and S34) are consistent with the modeled rupture front, with marker size
representing normalized beam energy and color denoting rupture time. Finally, rupture speeds inferred
from back projection align with those of the preferred model, with the model’s median rupture onset time
and depth-dependent spread reproducing the observed along-strike evolution.

Text S12. Variability within the dynamic rupture model ensemble

We analyze the ensemble of 180 dynamic rupture simulations, synthesized in Figures S27, S28, and S29.
Each figure illustrates model variability with varying critical slip weakening distance (via C') and relative
prestress ratio (Rparam), While keeping B fixed. Most models rupture the full fault extent as defined by
the geodetic slip model, producing a moment magnitude near M, 7.8. Rupture duration, however, varies
widely, ranging from 81 s to 148 s. The fastest models nucleate early and propagate nearly continuously
at supershear rupture speeds approaching the local P-wave velocity, whereas slower models alternate
between sub-shear and supershear propagation (Fig. S30). The unique near-fault observations of the
Myanmar earthquake clearly distinguish between these variable rupture speeds.

The surface-averaged fracture energy G. (Figure S27¢) helps explain this variability. It is calculated as

1
Ge = 5 (ns — pp) min(u, de)oy, 1
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where u is the accumulated fault slip and u¢ is the local friction coefficient at the end of the simulation.
G decreases with smaller C' and larger R. Models with similar G, tend to produce comparable rupture
durations and moment magnitudes, although variability in moment magnitude is generally smaller.

Figure S31 shows the variation of individual goodness-of-fit (GOF, Text S11, Table S3) components
with C' and R at fixed B = 0.95, which yields the highest combined GOF. Distinct trade-offs emerge,
highlighting the challenge of finding a dynamic rupture model compatible with all observables: models that
best reproduce the NS displacement waveform at NPW favor short durations (82-83 s), low C' (0.05), and
moderate closeness to failure R (0.75). In contrast, the CCTV-inferred slip-rate ™ favors larger C' = 0.2
and higher relative prestress (R > 0.75). However, in the regime where the fault slip distribution is well
reproduced (GOF > 0.90), the CCTV slip-rate GOF is nearly insensitive to the prestress ratio R. This
indicates that C, and thus the slip weakening distance d.., primarily controls the shape of the on-fault slip-
rate pulse. Models that optimize fit to the teleseismic body waveforms require even larger C' (0.3). Fitting
the geodetic slip distribution, the USGS moment rate function, and teleseismic surface waves (Figures
S31c,f,g) excludes longer-duration models (>110 s) dominated by subshear rupture phases. However,
these observables do not strongly discriminate among shorter-duration models. This is consistent with
Figure S27e, where we show that several short-duration models reproduce the inferred USGS moment rate
function. The GOF distributions of teleseismic body and surface waveforms (Fig. S31d,g) are complex
and contradictory, providing limited guidance for identifying favorable models. We therefore assign these
observables a lower weight in our combined GOF definition.

Text S13. Back-projection

Teleseismic back projection ™ is widely used to image the rupture process of large earthquakes and to esti-
mate rupture speed. Here, we apply a time-domain, phase-weighted, relative back-projection technique
to track the rupture of the 2025 Mandalay earthquake. This variation of back-projection has been shown
to enhance correlated signals.

We use data from three regional arrays in Alaska, Australia, and Europe, and perform back projection
for each array independently (Fig. S34). Stations with epicentral distances between 40° and 90° are
considered, followed by several preprocessing steps. All waveforms are band-pass filtered between 0.4 and
2 Hz using a fourth-order Butterworth filter. One station with a high signal-to-noise ratio (SNR) is chosen
as the reference for each array. SNR is calculated as the ratio of the mean-squared amplitude within a
1-s window containing the beginning of the P wave to that of the 10-s window immediately preceding
the P-wave onset. Station AK.BARN (SNR = 2.2) is selected for Alaska, 20.BTL02 (SNR = 2.6) for
Australia, and BW.FFB1 (SNR = 2.3) for Europe. For each region, we extract a 10-s window that begins
4 s before the P arrival at the reference station. We slide this window along every other station’s trace
near the expected P-wave onset, compute the cross-correlation at each lag, and keep the lag that yields
the maximum coefficient. Stations whose peak coefficient exceeds an empirically determined threshold
(Alaska > 0.7; Australia > 0.85; Europe > 0.8) are retained, and each accepted trace is shifted by the lag
of its peak to align the P-wave onsets. These thresholds were chosen empirically to account for regional
differences in data quality. To maintain uniform station spacing, any station within 0.5° of a selected
station is discarded. The final arrays comprise 81 stations in Alaska, 62 in Australia, and 31 in Europe.

Given the fault’s simple, subvertical geometry, we restrict candidate rupture nodes to be beneath the
mapped surface trace. This method has been applied in previous studies?®. The surface trace, derived
from Sentinel-2 optical offsets, is resampled onto a grid with 1 km spacing. We assume the hypocenter
to be 22.012153°N, 95.982254°E and 7.6 km deep, which is the closest fault trace node from the USGS
epicenter®. Travel times from each grid node to every station are computed with the global IASP91
one-dimensional velocity model ", Waveforms are then stacked in a 10-s moving window with 1-s incre-
ments. At each step we identify the grid node with the highest stacked energy as the preliminary subevent,

10
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continuing this procedure until 110 s after the origin time. Only subevents whose energy exceeds 2% of
the overall maximum are retained in the final rupture model.

Supplementary Animation

We provide an animation illustrating the preferred dynamic models at https://syncandshare.lrz.de/
getlink /fi6jJWvERN2pajq6kaxqHk/.

Animation S1 (Preferred_dynamic_rupture_model Myanmar.mp4): Rupture evolution in
the preferred dynamic model, shown as absolute slip rate (m/s).
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Satellite Track Orbit Acquisition dates B, (m)
ALOS-2 152 ascending | 2025/02/11 — 2025/04/08 179
ALOS-2 41 descending | 2025/01/09 — 2025,/03,/30 305
ALOS-2 42 descending 2025/02/21 — 2025/05/02 6
Sentinel-1A 33 descending 2025/03/19 — 2025/03/31 103
Sentinel-1A 106 descending 2025/03/24 — 2025/04/05 160
Sentinel-1A 70 ascending 2025/03/22 — 2025/04/03 18
Sentinel-1A 143 ascending 2025/03/24 — 2025/04/05 23

Table S1: SAR data used in this study. B, is a perpendicular baseline
between the respective repeat orbits.

Parameter Symbol Range Preferred Value
Static friction coefficient s 0.35-0.65
Dynamic friction coefficient d 0.15
Critical slip weakening distance de proportional to slip (xC)
Cohesion [¢ 0.25-1.25 MPa

Effective normal stress log ] 1-16 MPa

Heterogeneity strength scaling B 09-1.0 0.95
Fracture energy scaling C 0.05- 0.3 0.15
Relative prestress ratio R 0.5 -0.95 0.95

Table S2: Dynamic rupture model ensemble parameters assumed con-
stant or varied within a certain range.

12



GOF component ‘Weight Description

Slip distribution 1.5 GOF to the geodetic slip model (interpolated onto the same
grid, and computed as 1 — exp(RMS))

Slip rate at CCTV 2.5 GOF to the inferred slip rate at the CCTV location (computed
as 1 — exp(RMS)), aligned using cross-correlation

Displacement waveform at NPW 2.0 GOF, computed as 1 — exp(RMS), to the NS component dis-
placement waveform at station NPW, obtained by double
integration

Fault offsets 1.5 GOF with Sentinel-2—derived fault offsets, computed as 1 —
exp(RMS)

Moment rate function 1.0 GOF from cross-correlation with the moment rate fuction of
the USGS finite-fault model

Teleseismic body waveforms 1.0 GOF from cross-correlation (max shift = 2.5% of travel time)
of observed and synthetic P and SH displacements, using a
170 s window (starting 20 s before arrival) and band-pass
filtered to 20-150 s

Teleseismic surface waveforms 1.0 GOF from cross-correlation (max shift = 100 s) of observed

and synthetic 3-component displacements, using a 3000 s win-
dow (from event onset) and band-pass filtered to 100-500 s

Table S3: Goodness-of-fit (GOF) components and associated weights used to select a preferred
dynamic rupture model.

13
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Fig. S1: Map of the study area. Colors represent topography. The solid black line marks the rupture

trace of the 2025 Mandalay earthquake. Red dots show aftershock epicenters, black triangles mark strong-
motion seismometer locations, and stars indicate epicenters of significant historical earthquakes””.
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15



24°

22° 4

20° 4.

Fig. S3: (a) ALOS-2 interferogram from descending track 41. The interferogram is merged from 3 stan-
dard frames (3150, 3200, 3250) that were processed separately. (b) Same interferogram, after correcting
for the long-wavelength trend. Each color fringe is equivalent to a displacement of 0.12 m in the satellite
line of sight. Background shading denotes topography.
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Fig. S5: Panel a: the 1-D shear wave velocity profile from the stations located within ~ 50 km from the
Sagaing fault. The dashed lines indicate the bin boundaries. Panel b: the shear modulus calculated based
on the depth-averaged shear wave velocity within each bin.
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Fig. S6: Left panel: the segmented fault trace for the local dip angle estimation, plotted on UTM
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the dip angle vs RMS misfit test results for the determination of the preferred dip angle. The numbers
on top represent the corresponding fault segment. The dip angle corresponding to Segment 1 is assumed
to be the same as Segment 2.
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Fig. S7: The trade-off curve for selecting the preferred smoothness for the geodetic linear inversion. Red
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Fig. S8: Illustration of Laplacian weighting schemes for acute (panel a) and obtuse (panel b) triangles.

S; denotes the Voronoi cell area in the case when none of the triangles are obtuse. The dark-shaded area

SZ-(T) represents the Voronoi cell of an individual triangle ijk, part of the total Voronoi cell S; of node i.
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Fig. S9: The preferred static slip model from geodetic inversion assuming a curved rupture geometry

with variable dip. Panel a: strike-slip; Panel b: dip-slip. Right-lateral strike slip and west-side-up dip slip
are deemed positive.
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Fig. S11: (a) Sub-sampled data.
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Fig. S12: (a) Sub-sampled data. (b) Best-fit model. (¢) Residuals (difference between (a) and (b),

evaluated at full resolution). The dashed line denotes the rupture trace.
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Sentinel-1 Descending Track 106 Azimuth Offset
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Fig. S14: (a) Sub-sampled data. (b) Best-fit model. (c) Residuals (difference between (a) and (b),
evaluated at full resolution). The dashed line denotes the rupture trace.
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Fig. S15: (a) Sub-sampled data. (b) Best-fit model. (c) Residuals (difference between (a) and (b),
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ALOS-2 Descending Track 41 LOS Displacement om
100 ooz —— 100 g s2e7 —— 100 —— 30
a b e
50 - o — .| 80}
oss . 20
0» oo L 4 O,
-50 . . . 1-50
10
E-100¢ . . . 100!
g !
2-150 c oo 2 - 1-150¢ 0
-g ° . L4 i : ¢
S -200+ : © 1-200
z ° ° . . * .
-250 : . 1250 10
3001 ., . - B - . 1-300
L] L] _20
_350 e o ° Fe © ° . : . "‘350’
-400f Cort e - .* 1-400 30
-100 -100 0 100 -100 0 100

Easting (km)
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Sentinel-2 Optical Offset
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Fig. S19: (a) North-South component of pixel offsets from cross-correlation of Sentinel-2 optical imagery
(not used in the inversion for the static slip model). (b) Prediction of the preferred slip model (Fig. S9).
(c) Residuals. The dashed line denotes the rupture trace.
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line: preferred model; blue line: a smoother model (see Fig S7 for the respective smoothness parameters).
Both models fit the data equally well.
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Fig. S21: Static slip distribution for a model assuming a vertical fault. Panel a: strike-slip; Panel b: dip-
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Fig. S22: A comparison between azimuth offset residuals for models with helical and vertical fault
geometry. Shown are Sentinel-1A tracks with the largest residuals. The residuals are zoomed in on parts
of the rupture where the difference is most notable.
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Fig. S23: Comparison of fault slip distributions in the geodetic model (a) and the preferred dynamic
rupture model (b).
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Fig. S24: Distribution of fault friction parameters and prestress in the preferred dynamic rupture model.
(a) Slip-weakening distance d., scaled proportionally to fault slip. (b) Static friction coefficient pus, set to
0.35 and increased in regions of high shear stress, up to a maximum of 0.65. (¢) Depth-dependent effective
normal stress, increasing linearly from 1 MPa at the surface to 16 MPa at 1.5km depth, constant below.
(d) Initial fault shear stress 7p, derived from the stress change in the finite-fault model and the dynamic
strength. (e) Relative prestress ratio R (e.g.,”?), relating the potential stress drop 79 — 74 to the frictional
strength drop 75 — 74, and quantifying fault criticality.
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Fig. S25: Depth-dependent profiles of shear stress and fault strengths along the fault for three relative
prestress ratio Rparam: Rparam = 0.5, 0.75 and 0.95 (preferred model), evaluated at depths of 4 km, 7 km,
and 9 km, assuming B=0.95 (preferred model). Each subplot shows shear stress (orange), static strength
(green), and dynamic strength (blue) as functions of the y (north-south) coordinate along the fault. The
profiles illustrate how pg is locally increased above its background value 0.35 to enforce the prescribed
R, and also highlight the effect of the background pug value on fault criticality.
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Fig. S26: Histogram of the combined goodness-of-fit values across the dynamic rupture ensemble con-
sisting of 180 models.
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Fig. S27: Dynamic rupture simulation ensemble. Ensemble results across 60 dynamic rupture simulations
with varying slip weakening distance (C) and relative prestress ratio (R), while keeping B = 0.95 fixed.
(a) Rupture duration. (b) Moment magnitude. (c¢) Fracture energy (in MJ/m?). (d) Combined goodness
of fit (GOF) score. (e¢) Moment rate functions (MRFs): All 180 simulated MRF's are plotted. The 5 best-
fitting models based on combined GOF are highlighted in color and indexed in the legend. The blue
curve represents the preferred model. The remaining 175 models are shown in grey. For comparison, the
SCARDEC source time function” and source time functions from two kinematic models®”" are also
shown.
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Fig. S28: Dynamic rupture simulation ensemble for B = 0.9. Ensemble results across 60 dynamic rupture
simulations with varying slip weakening distance (C) and prestress ratio (R), while keeping B = 0.9 fixed.
(a) Rupture duration. (b) Moment magnitude. (¢) Fracture energy (in MJ/m?2). (d) Combined goodness
of fit (GOF) score.
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Fig. S29: Dynamic rupture simulation ensemble for B = 1.0. Ensemble results across 60 dynamic rupture
simulations with varying slip weakening distance (C) and prestress ratio (R), while keeping B = 1.0 fixed.
(a) Rupture duration. (b) Moment magnitude. (¢) Fracture energy (in MJ/m?2). (d) Combined goodness
of fit (GOF) score.
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Fig. S30: Rupture speed in selected models from the dynamic rupture simulation ensemble, showing
wide variability from fully subshear, through piecewise supershear, to fully supershear rupture.
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Fig. S31: Goodness-of-fit (GOF) variations for selected observational constraints at fixed B = 0.95. Each
panel shows ensemble results from 60 dynamic rupture simulations with varying slip weakening distance
(C) and prestress ratio (R). Metrics shown: (a) fit to fault offsets; (b) fit to slip-rate at CCTV™; (c)
fit to fault-slip distribution; (d) fit to teleseismic body waveforms at six stations; (e) fit to north-south
displacement at station NPW; (f) fit to the moment-rate function; (g) fit to teleseismic surface waveforms
at six stations. The green ‘x’ marker in each panel indicates the parameter combination used in the
preferred model.
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Fig. S32: Modeled ground motion at the CCTV site. Top: Fault slip and east—west ground velocity.
Middle: East—west acceleration, showing an eastward pulse preceding local slip, consistent with the gate
motion seen in footage and attributed to subshear rupture (supershear would reverse the polarity)®.
Bottom: Component-wise acceleration amplitudes, with P- and S-wave arrivals preceding the rupture
front. The strong shaking in footage 2 s before slip onset has been attributed to S-waves %78, supporting
locally subshear rupture.
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Fig. S33: Distribution of fracture energy in the preferred dynamic rupture model.
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Fig. S34: Teleseismic back projection analysis of the earthquake rupture process. (a) Back projection
results from arrays around Australia (red diamonds), Europe (blue squares), and Alaska (green triangles).
The color scale represents the rupture time. The size of the markers represents normalized array beam
energy. Stars show the epicenter location of the mainshock. (b). Rupture speed from back projection and
the preferred dynamic rupture model. Markers are the same as in (a). The black dot represents the location
of the NPW station. The solid blue curve represents the median rupture onset time of the preferred
dynamic rupture model along the respective along-strike distance. The dotted blue curves indicate the
5% and 95% percentiles of the rupture onset time. The 5% percentile corresponds to the earlier arrival
of the rupture front at depth, while the spread between the 5% and 95% percentiles reflects the local
curvature of the rupture front. Grey dashed lines show different constant rupture speeds for reference.

The inset shows stations and epicenter locations.
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