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Figure S1: Compilation of komatiite and LIP emplacement ages (with 2o uncertainties) across major
Archean cratons. Each point represents an individual age measurement, color-coded by craton, with red
squares marking LIP ages. Data span from the late Hadean to late Archaean, showing clustering of
komatiite ages and multiple pulses of LIP magmatism through the Archaean. The data used to compile this
figure are available in table S1 and S2 below.

S1. Isotope record of the Early Earth

The eHf values derived from detrital zircons consistently fall below the depleted mantle
(DM) evolution line, with many also plotting below the chondritic uniform reservoir (CHUR),
indicating that these zircons crystallised from melts derived from enriched, reworked sources
rather than primordial mantle. Similarly, the whole-rock eNd data from the same mafic units
predominantly lie below the DM curve, with numerous samples exhibiting negative eNd values—
signatures characteristic of crustal sources that evolved with low Sm/Nd ratios over extended

timescales (indicating a reworked crustal source rather than primordial mantle).
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Figure S2: Isotopic data compiled from Archaean terrains. (4) Zircon Hf isotope data for magmatic rocks,
where each point represents the mean zircon €Hf value for a single metaigneous rock calculated at the
magmatic crystallization age, itself derived from pooled zircon U-Pb data and (B) the whole-rock isotope
record for Nd expressed in the epsilon format, calculated for mafic rocks at the time of assumed magmatic
crystallization. Abbreviations: CHUR, chondritic uniform reservoir; DM, depleted mantle. All data are
sourced from the global database compiled by Puetz et al. (2024).
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Figure 83: Effect of increasing radiogenic heat in the proto-LLVP layer on mantle parameters (4) Basal
heat flux, (B) spatially averaged mantle temperature, and (C) root mean square (RMS) velocity.
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Figure S4: Effect of increasing core-mantle boundary temperature (Tcup) in experiments with and without
proto-LLVP on mantle parameters (A) Basal heat flux, (B) spatially averaged mantle temperature, and (C)
root mean square (RMS) velocity.
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Figure S5: Effect of increasing mantle potential temperature (Tp) in experiments with and without proto-
LLVP on mantle parameters (A) Basal heat flux, (B) spatially averaged mantle temperature, and (C) root
mean square (RMS) velocity.
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Figure $6: Temporal evolution of the average mantle temperature at 300 km depth for models with and
without a proto-LLVP. Solid lines indicate simulations including a proto-LLVP, while dashed lines show
cases without it. Different colors correspond to varying initial mantle potential temperatures (Tp) and

core—mantle boundary temperatures (Tcus).
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Supplementary Tables

Table S1: Komatiite emplacement ages in Archean Cratons

Craton Location of Komatiite Units Age or Age Method References
Constraint
(Ma)
Kaapvaal | Dwalile Greenstone Belt 352123 and | U-Pb Kroéner and Tegtmeyer
3436+ 5 [1994]
Kaapvaal | Barberton Mountain Land: 3472 + 5 and U-Pb Armstrong et al.
Songimvelo and Steynsdorp 3458 £2 [1990]
Blocks, Lower Onverwacht
Kaapvaal | Warrawoona Group, Salgash 3462 + 2 and U-Pb McNaughton et al.
Subgroup 3431 +4 [1993]
Kaapvaal | Nondweni Greenstone Belt 3406 +3 U-Pb Wilson and Versfeld
[1994]
Kaapvaal | Barberton Mountain Land: 3352+6 U-Pb Kamo and Davis
Songimvelo and Steynsdorp [1994]
Blocks, Upper Komatii and
Hooggenoeg Formations
Kaapvaal | Commondale Greenstone Belt 3334+ 18 Sm-Nd | Wilson and Carlson
[1989]
Kaapvaal | Barberton Mountain Land: 3298+ 6 U-Pb Byerly et al. [1996]
Ulundiha Block, Upper
Onverwacht, Mendon Formation
Kaapvaal | Barberton Mountain Land: Kaap 3286 £29 Sm-Nd | Lahaye et al. [1995]
Valley Block, Upper Onverwacht,
Weltevreden Formation
Pilbara Regal Supersequence, Roeburn Belt | 3112 + 6 and U-Pb Krapez [1993]
2990 £ 7
Aldan Olondo Greenstone Belt 3070 £55 Sm-Nd | Velikoslavinsky et al.
[1993]
Superior | North Spirit Lake Greenstone Belt, | 3023 + 2 and U-Pb Corfu and Wood
Sachigo Subprovince (lower 2986 + 3 [1986]
supracrustal sequence)
Superior | Lumby Lake Greenstone Belt 29994 +2.9 U-Pb Davis and Jackson
and 2906 £+ 3 [1988]
Superior Red Lake Greenstone Belt, Uchi 2997.5 £1.45 U-Pb Corfu and Wallace
Subprovince and 2893.7 + [1986]
1.2
Yilgarn Lake Johnston Greenstone Belt 2921 +£4 and U-Pb Wang et al. [1996]
2903 £5
Baltica Kostomuksha Greenstone Belt 2843 +39 Sm-Nd | Puchtel et al. [1997b]
Superior | Vizen Greenstone Belt, Minto 2784 +£ 57 Sm-Nd | Shukol and Percival
Block [1996]
Sao Rio das Velhas Greenstone Belt, 2782.5+£16.5 U-Pb Machado et al. [1992]
Francisco | Nova Lima and 2776.5 £
6.5
Pilbara Fortescue Group, Pyradie 2756 £ 8 and U-Pb Arndt et al. [1991]

Formation

2715+ 6
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Superior | Michipicoten Greenstone Belt, 2749 £2 and U-Pb Turek et al. [1982]
Wawa Subprovince (lower 2744 £ 10
supracrustal sequence)

Superior Abitibi Greenstone Belt, 2747 =2 and U-Pb Mortensen [1993] and
Wabewawa Group 2720 £2 Corfu and Noble

[1992]

Kaapvaal | Barberton Mountain Land: 3778 £2 and Ar-Ar Lopez Martinez et al
Songimvelo and Steynsdorp 3777+£2 1984
Blocks, Upper Komatii and
Hooggenoeg Formations

Table S2: Large Igneous Provinces (LIP) emplacement ages in Archean Cratons

Large Igneous Age | Uncertain
Province, Location (Ma) ty Reference
Innersuartuut greenstone, | 3848.
SW Greenland 0 5.0 | Jenner et al., 2013 Geology 41: 327-330
Nuvvuagittuq greenstone =~ 3821. O'Neil et al., 2012 Precambrian Research
belt, Quebec 0 5.0 | doi:10.1016/j.precamres.2012.07.009
Isua greenstone, SW 3778.
Greenland 0 4.0 | Furnes et al., 2009 Lithos 113: 115-132
Coonterunah Group, Smithies, 2005 Earth Planetary Science Letters 238:
Pilbara, Western 3520. 284-297; Smithies et al., 2007 Geological Survey
Australia 0 4.0 | Western Australia Report 104
Tarssartoq-Ameralik 3512. Nutman et al., 2004 Journal of the Geological
dykes 1, SW Greenland 0 7.0 | Society of London 161: 421-430
Hooggenoeg complex, Furnes et al., 2012 Gondwana Research
Barberton greenstone, 3470. doi:10.1016/j.gr.2012.05.007; Furnes et al., 2012
South Africa 0 3.0 | South African Journal of Geology 115: 225-264
Mt Ada basalts Low-Ti Smithies, 2005 Earth Planetary Science Letters 238:
group, Pilbara, Western 3470. 284-297; Smithies et al., 2007 Geological Survey
Australia 0 3.0 | Western Australia Report 104
Kromberg complex, Furnes et al., 2012 Gondwana Research
Barberton greenstone, 3455. doi:10.1016/j.gr.2012.05.007; Furnes et al., 2012
South Africa 0 2.0 | South African Journal of Geology 115: 225-264
Brandl and de Wit, 1997, in de Wit and Ashwal
Pietersburg greenstone, 3455. (editors), Greenstone Belts, Clarendon Press,
South Africa 0 5.0 | Oxford, Chapt 5.8
Warrawoona Group,
Pilbara, Western 3452.
Australia 0 2.0 | Green et al., 2000 Tectonophysics 322: 69-88
Onverwacht Group,
Barberton greenstone, 3452. Campbell, 2003 American Journal of Science 303:
South Africa 0 3.0 | 319-351
Furnes et al., 2012 Gondwana Research
Mendon Formation, 3330. doi:10.1016/j.gr.2012.05.007; Furnes et al., 2012
Ncakini section, 0 4.0 | South African Journal of Geology 115: 225-264




Barberton greenstone,
South Africa
Nondweni greenstone,
South Africa
Verkhovtsevo
greenstone, Ukrainian
shield
Tarssartoq-Ameralik
dykes 2, SW Greenland

Tungurcha greenstone,
Aldan shield

Regal Formation
(Cleaverville), Pilbara,
Western Australia
Sulfur Springs
succession, Pilbara,
Western Australia
Ivisaartoq greenstone,
SW Greenland

Subgan greenstone,
Aldan shield

Southern Cross
greenstone, Yilgarn,
Western Australia
Koolyanobbing
greenstone, Yilgarn, W
Australia

Olondo greenstone,
Aldan shield
Kaapvaal GDS, South
Africa

North Caribou
greenstone, Canada

Balmer Assemblage, Red

Lake, Canada

Lumby Lake greenstone,
Canada

Badplaas dyke swarm,
South Africa

Heaven Lake greenstone,

Wabigoon belt, Canada
Steep Rock Lake
greenstone, Ontario
D'Alton Lake-Toronto
Lake belt, Canada
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2977.
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0 2.0
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0 4.0
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0 2.0
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Hofmann and Wilson, 2007, Earths Oldest Rocks,
Elsevier, p. 571-605

Kushev and Kornilov, 1997, in de Wit and Ashwal
(editors), Greenstone Belts, Clarendon Press,
Oxford, Chapt 5.17

Nutman et al., 2004 Journal of the Geological
Society of London 161: 421-430

Dobretsov et al., 1997, in de Wit and Ashwal
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Oxford, Chapt 5.16

Ohata et al., 1996 Lithos 37: 199-221; Hickman,
2004 Precambrian Research 131: 153-172

Smithies, 2005 Earth Planetary Science Letters 238:
284-297; Smithies et al., 2007 Geological Survey
Western Australia Report 104

Ordonez-Calderon et al., 2009 Lithos 113: 133-157;
Polat et al., 2008 Lithos 100: 293-321

Dobretsov et al., 1997, in de Wit and Ashwal
(editors), Greenstone Belts, Clarendon Press,
Oxford, Chapt 5.16, p. 716

Angerer et al., 2013 Precambrian Research 224:
110-128

Angerer et al., 2013 Precambrian Research 224:
110-128

Puchtel, 2004 Developments in Precambrian
Geology, Vol. 13, Elsevier, p. 405-423; Dobretsov
et al., 1992 Precambrian Research 58: 427-446
Gumsley et al., 2014 Geological Society of
America, Abstract 291-7, Vancouver meeting
Hollings and Kerrich, 1999 Precambrian Research
93:257-279; Biczok et al., 2012 Precambrian
Research 192-195:209-230

Hollings et al., 1999 Lithos 46: 137-161
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Vedlozero-Segozero
Karelia
Yuzhno-Vygozero-Shilos
basalts/komatiites,
Karelia

Urik greenstone, Siberia
Rice Lake greenstone
(Garner assemblage), SE
Manitoba

Vodla greenstone,
Karelia, Russia
Sumozero-Kenozero
greenstone, Baltica
Hlagothi complex and
dyke swarm, Kaapvaal
craton

Pickle-Crow assemblage,
Superior Province
Northern Superior
province greenstones,
Quebec

Belingwe lower
greenstones, Zimbabwe
Kostomuksha
greenstone, Russia
Tipasjarvi greenstone,
Finland

Kuhmo greenstone,
Finland

Tikshozero greenstone,
Karelia

Derdepoort Flood
Basalts, South Africa

Black Range dykes,
Pilbara craton
Fortescue-Kylena dyke
swarm, Pilbara craton

Fortescue dykes Package
2, Pilbara craton
Singhbhum dyke swarm,
India

Wawa-White River
greenstone, Canada
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Vermillion Lake
greenstone, Superior
province

Sylvania Inlier dykes, N
Pilbara

Slave Province-Swarm 1,
NW Canada

Ahmeyim Great Dyke,
Mauritania

Uaua swarm 2, Sao
Francisco craton
Stoughton-Roquemaure,
Abitibi

Ventersdorp flood
basalts, South Africa
Abitibi greenstone 2,
Quebec

Kilimafedha greenstone,
NE Tanzania

Stillwater Complex and
dykes, Montana

Mashaba-Chibi dykes,
Zimbabwe

Taishan greenstone belt,
NE China

Lower basalts,
Kalgoorlie, Yilgarn,
Western Australia
Norseman 1, Western
Australia

Forrestania greenstone,
Western Australia
Cowarna rocks dyke
swarm, Western
Australia

Abitibi greenstone 1,
Quebec

Morro de Ferro
greenstone belt, Brazil
Wawa greenstone, THB
basalts, Canada

Central Hearne province,
Canada

Belingwe upper
greenstones, Zimbabwe
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Slave Province dyke
swarm, NW Canada
Sultanpura greenstone,
India

Yellowknife mafic
dykes, Canada

Uaua swarm 1, Sao
Francisco craton
Yandinilling dyke
swarm, Yilgarn craton
Stockford dykes,
Limpopo orogen
Caraiba GDS, San
Fancisco craton

Great Dyke Zimbabwe
Qingyuan Greenstone
Belt, North China craton
Kanjamalai mafic
complex, Dharwar craton
Kangamuit older dykes,
W Greenland

Harris greenstone,
Gawler craton, Australia
Mistassini dyke swarm,
SE Quebec

Shandong GDS, N China
craton

Crystal Springs event,
Zimbabwe

Irsuaq swarm, N Quebec
Ptarmigan mafic dykes,
Canada

Kilarsaarfik vent, N
Atlantic craton
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