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Supplementary Fig. S1. Performance comparison of all trained models at 25% of training data. Classification metrics (Accuracy, F1-Macro, AUROC, AUPRC) for Ci-SSGAN versus baseline models under limited data conditions, evaluated at Note-Level (blue) and MRN-Level (red). MRN= Medical Record Number. 
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Supplementary Fig. S2. Performance comparison of all trained models at 100% of training data. Classification metrics (Accuracy, F1-Macro, AUROC, AUPRC) for Ci-SSGAN versus baseline models under limited data conditions, evaluated at Note-Level (blue) and MRN-Level (red). MRN= Medical Record Number.
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Supplementary Fig. S3. Performance comparison of Ci-SSGAN, SSGAN, Base BERT, and Bio BERT models across a Racial groups, b Gender groups, and c Age groups using 100% of the labeled data. Left panels show accuracy (solid bars) and F1-score (hatched bars) for each subgroup and overall performance. Right panels present corresponding parity violation scores, indicating fairness across demographic subgroups. Ci-SSGAN consistently achieves higher accuracy and F1-scores with lower parity violations compared to other models. The results are presented on five CV folds. Acc= Accuracy, F1= F1- macro.
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Supplementary Fig. S4. Class-wise performance for all trained models. The highest AUC-PR was achieved for Ci-SSGAN with 0.893. The most severely underrepresented class receiving 5 boost factor during training on all four trained models. The results are presented on five CV folds.  The dashed line is showing the random classifier. All models were trained using 100% of the labeled data. 
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Supplementary Fig. S5. Class probability distributions and predictive uncertainty analysis. a Ci-SSGAN radial probability map on the best cv fold. Each vertex represents a class at P=1, with concentric rings denoting probability levels from the center at uniform probability (P=1/6=0.167) to the outer ring at P=1. Point colors correspond to the ground-truth class, and dashed black lines indicate decision boundaries. b SSGAN radial probability map using the same visualization scheme. c Violin plots of predictive uncertainty (Tsallis entropy). Ci-SSGAN produces lower-entropy, more confident predictions, while SSGAN shows higher-entropy, less certain outputs. High entropy values indicate greater predictive uncertainty, and low values indicate more confident predictions. In the violon plots, the horizontal line indicates the median and the error bars represent the minimum and maximum values observed for each group. 
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Supplementary Fig. S6. Per class gradient-weighted token attribution analysis across four trained models for glaucoma classification averaged across 5-fold cross-validation. a Non-GL, b OAG/S, c ACG/S, d XFG/S,  e PDG/S, f SGL. To have a fair comparison, scores are normalized to sum to 1.0 for each model. 
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Supplementary Fig. S7. Comparison of Ci-SSGAN and ICD code–based labeling across glaucoma subtypes and non-glaucoma cases in terms of a Accuracy, b F1 Score, c AUC-ROC, and d AUC-PR. Each bar represents performance for a specific class, with the “Overall” category summarizing all classes. Ci-SSGAN uses both labeled and unlabeled data with clinical context, whereas ICD code labels rely solely on diagnosis codes from medical records. Improvements were most pronounced in challenging subtypes such as primary angle-closure glaucoma (ACG/S), open-angle glaucoma (OAG/S), and Non-GL cases. 




Supplementary Table S1. Performance comparison of the Ci-SSGAN at 25% and 100% of the labeled dataset. The values are calculated based on the test data set. 
	Metric
	Difference (10025)%
	Relative Change (%)

	Accuracy
	0.036
	4.60

	F1 score
	0.039
	5.10

	AUROC
	0.007
	0.78

	AUCPR
	0.026
	3.17
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Supplementary Fig. S8. Data distribution of the MEE clinical dataset. Top left: Patient population distribution by race/ethnicity showing predominance of White patients (79.3%) among ~1.67M patients. Top right: Top 5 clinical note types by volume, with Progress Notes being the most common (9,702 notes). Bottom left: Comparison of encounter volumes between top 5 overall departments and top 5 ophthalmology specialties, highlighting the specialization in ophthalmology-related encounters. Bottom right: Distribution of note length (in characters) versus patient age (30-90 years) stratified by race/ethnicity, demonstrating consistent documentation patterns across demographic groups with note lengths typically ranging from 0-80000 characters. we have identified 27 distinct note types from 5658 different departments including 224 department specialties with 22.3% of total notes from Internal Medicine. Ophthalmology departments including Ophthalmology, Glaucoma Ophthalmology, Neuro-Ophthalmology, Oculoplastic Ophthalmology, Cornea Ophthalmology, Surgical Ophthalmology, Ophthalmology Imaging, Trauma Ophthalmology, Retinal Degeneration Ophthalmology.
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Supplementary Fig. S9. Ground truth generation pipeline. The notes were reviewed and graded by 6 independent experts. The labels Non-GL, OAG/S, ACG/S, PDG/S, XFG/S, SGL, and Others are non-glaucomatous open angle glaucoma or suspect, angle closure glaucoma or suspect, pigmentary dispersion glaucoma or syndrome, exfoliation glaucoma or syndrome, secondary glaucoma, and other glaucoma, respectively. 
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Supplementary Fig. S10. Illustration of similar, dissimilar, and independent token pairs used in the generator's diversity loss. The angles (θ) represent cosine similarity between token embeddings, with θ  45° indicating high similarity, θ 135° indicating dissimilarity, and θ  90° indicating orthogonal/independent relationships. Example shown for input text 'Pseudoexfoliation glaucoma of right eye' with tokens: ['pseudo', '##ex', '##folia', '##tion', 'g', '##lau', '##com', '##a', 'of', 'right', 'eye']. This diversity loss ensures the generator maintains meaningful semantic relationships between tokens while preventing mode collapse.
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Supplementary Fig. S11. Learning curves for: a Generator, and b Discriminator. The learning curves demonstrate that the Ci-SSGAN training is stable throughout, with neither the generator nor discriminator losses exhibiting signs of collapse or divergence—hallmarks of successful GAN convergence. The discriminator loss gradually decreases while the generator loss stabilizes over epochs, indicating a healthy adversarial balance. Compared to the baseline BERT model, the SGAN shows improved regularization behavior, as evidenced by smoother loss curves and reduced overfitting. This suggests that the Ci-SSGAN architecture not only maintains training equilibrium but also better generalizes across diverse clinical notes, offering a more robust framework for semi-supervised learning in healthcare NLP tasks.

Supplementary Table S2. The list of loss functions used in the discriminator and generator.  represents class weights,  is the focusing parameter, and  is the predicted probability for the true class. The real and fake losses use binary cross-entropy. The generator loss (incorporates adversarial (), feature matching (), clinical consistency (), and diversity () components.  denotes the discriminator feature extraction layers,  is the random noise,  represents demographic features, and  are unlabeled clinical text embeddings. The feature matching 1,2 loss encourages the generator to match the statistical moments of intermediate feature representations learned by the discriminator. In contrast, the clinical consistency loss ​operates directly on the generator's output to preserve clinical semantic properties, while diversity loss prevents mode collapse by encouraging dissimilarity between generated samples. diversity loss  is also known as cosine similarity loss =    which measures similarity between generated embeddings  and , B is the batch size, and  is the  fake text embeddings.
	Loss Component
	Definition
	Purpose

	Discriminator loss
	
	Combines supervised classification with adversarial training

	Supervised loss
	
	Addresses class imbalance, focusing on hard-to-classify examples

	Generator loss
	
	Multi-component loss integrating adversarial, feature matching, clinical consistency, and diversity terms

	Adversarial loss
	
	Encourages generator to fool discriminator

	Feature matching loss
	
	Aligns generated features with real data to stabilize training

	Clinical consistency loss
	
	reserves medical semantics in generated embeddings

	Diversity loss
	
	Encourages generated samples to be distinct, preventing mode collapse




Supplementary Table S3. Ci-SSGAN complete architecture. The components including the text encoder (12-layer BioClinical BERT), the enhanced generator with clinical context input (871D), and the dual-head discriminator. Parameter counts are shown for each component, with a total of ~112.7M trainable parameters when using full BERT.
	Component
	Layer
	Input Dim
	Output Dim
	Parameters

	




Text Encoder
	Token Embeddings
	28,996 vocab 
	768D
	22,268,928

	
	Position Embeddings
	512 positions
	768D
	393,216

	
	Token Type Embeddings
	2 types 
	768D
	1,536

	
	Per Transformer Layers

	
	Self-Attention
	768
	768
	2,362,368

	
	Feed-Forward
	768
	768
	4,722,432

	
	Layer Norms
	768
	768
	3,072

	
	12 layers=
	
	
	85,054,464

	
	Pooler
	768
	768
	590,592

	
	Attention Pool Layer 1
	768
	768
	590,592

	
	Attention Pool Layer 2
	768
	1
	769

	
	Total Text Encoder=
	
	
	109,900,097

	

Generator
	FCN 1
	871
	1024
	893,952 

	
	BatchNorm1d
	1024
	1024
	2,048

	
	FCN 2
	1024
	768
	787,200

	
	BatchNorm1d
	768
	768
	1,536

	
	FCN 3
	768
	768
	590,592

	
	Total Generator=
	
	
	2,275,328

	

Discriminator
	FCN 1
	771
	512
	395,264

	
	FCN 2
	512
	256
	131,328

	
	Classifier Head
	256
	6 
	1,542

	
	Source Head
	256
	1
	257

	
	Total Discriminator=
	
	
	528,391

	Total Ci-SSGAN
	
	
	
	112,703,816

































Supplementary 


Supplementary Table S4. Hyperparameters and model configurations used for model training. LR denotes learning rate. Early stopping indicates the patience parameter (number of epochs without improvement before stopping). The noise dimension (100D) refers to the random noise input to the generator, and token size (512) represents the maximum sequence length for text embeddings.
	Hyperparameters
	Value

	Epochs                         
	250

	Early stopping 
	11

	Batch size
	16

	Generator LR                   
	

	Discriminator LR                      
	

	Text Encoder LR                
	

	Noise Dimension                
	100D

	Token size
	512
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