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1 Theoretical Derivation from Structural Tensor Conservation

1.1 Concise covariant derivation and its weak-field control

We augment the main conservation statement V#T,,,, = 0 (Eq. (9)) with a canonical structural sector
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which yields the field equation
KOy - U'(y) = 0,
and the stress tensor
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In static spherical symmetry, one has
Dl/l — €_2A[l//" + (q)/ — A+ %)l//,] ,
which leads to the exact radial identity
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Invoking the circular—orbit relation a, = V?/r = @' (r) (Eq. (10)) and the weak-field limits e~>* ~ 1, A’ ~0, one recovers the working
conservation law (Eq. (14)) and the structural equation
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which is used in the fits. Linearizing U () = %mgﬂw2 + - -+ near the center gives the characteristic scale relation
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which, under single—scale self-similarity, implies the b = 1 law and constant k.

To control the weak-field reduction, we use the exact-minus-approximate residual A (Eq. (5)) and bound the fractional error
& (Eq. (6)). Post-Newtonian estimates yield the conservative bound (Eq. (8)), ¢ < |®| + f—‘(V2 /c?), i.e. < 107° for galaxies and
< 2 x 107 for clusters. Consequently, the induced biases satisfy 5k, /ko = O(&) and 6b = O(e), well below measurement errors in
all regimes considered.

1.2 Weak-field error bound for the radial conservation law

Starting from the exact static, spherically symmetric identity in Eq. (1), the weak-field, quasi-Newtonian reduction used in the main
text (Eq. (14)) neglects e > ~ 1 and A’ ~0. To quantify the approximation error, define the difference

A = |exact LHS in Eq.(l)] - [approx. LHS in Eq. (14)]. &)



A direct rearrangement yields
A=K, .,1/2[(e—2A - 1)(<I>’ + %) -1 e‘ZAA’]
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Dividing by the dominant geometric term Koy'? (2/r) gives the fractional error
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Post-Newtonian estimates. In the weak field (|®| < 1) one has e?* ~ 1 — 2®, so [e 2 — 1| < 2|®| and |A’| ~ |®’|. Using the
circular-orbit identification |®’| = V2/r (Eq. (10)) and the small parameter (V/c)? < 1, the three ratios in Eq. (6) scale as
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which yields eg, <1.3 x 1076 for typical spirals (V ~200 kms~!) and £¢ < 1.8 x 1073 for rich clusters (V ~ 1000 kms™!).

Impact on k, and b. Treating € as a multiplicative perturbation of the conservation law implies a fractional bias 6k /ko = O(¢)
and a slope bias 6b = O(e) in the log-log a—r( regression. Thus, at galaxy scales 65 <107, and even for clusters 65 <2 x 1073, far
below the observational uncertainties quoted in this work. Accordingly, enforcing the exact e > and A’ terms would not change the
recovered b = 1 and k, within our error bars.

2 Data-Driven Derivation of Tensor Conservation from MEST Fits

In this section we show that the existence of a divergence—free structural tensor is not merely posited but can be inferred from the
data—calibrated MEST profiles. Starting from fitted profiles i (r) and the reconstructed structural potential ®(r), we demonstrate that
the observed fields satisfy the radial conservation identity implied by the covariant law

s T,uv =0, 9)

and hence justify the use of Eq. (9) for deriving the constants b = 1 and k.

2.1 Observables to field variables

We adopt a static, spherically averaged patch and use the usual weak—field line element ds*> = —(1 +2®)dt? + (1 — 2®)(dr? + r*dQ?)
with |®| < 1. The observable that anchors @’ (r) depends on the system:

* Rotation curves: the centripetal relation
V2(r)

ar(r) = =d'(r) (10)
fixes @’ (r) directly.

¢ Strong lensing: the azimuthally averaged deflection obeys 6(r) o 9, @jeps; up to a known geometric factor, we absorb the
proportionality in Ky below so that @’ is fixed modulo a global scale (irrelevant for the conservation identity).

* CMB cold/hot spots and polarization: the structural potential @ is inferred from the best—fit MEST profile that reproduces the
radial temperature (or polarization—amplitude) contrast; again, an overall scale is absorbed in Kj.

Independently, the structural profile y (r) is obtained from the same MEST fit (e.g. MEST,, MEST,,,, or MEST,,;»), and is normalized
consistently across systems.



2.2 Stress tensor from a minimal structural Lagrangian

Consider the MEST structural Lagrangian
1
L= 5KW) g0 0~ U W), (1)
which yields the structural stress tensor
1
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The field equation obtained from V#T},,, = 0 is equivalent to
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In the static, spherically symmetric weak—field limit and for slowly varying K (), Eq. (13) reduces to the radial conservation identity

i(le’z—U)+Klp’2d>’(r)+%l(¢’2:0, (14)
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and its equivalent differential form for U’ (i),
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When K (¢) ~ Kj is (locally) constant, Eq. (15) simplifies to the working relation used in our fits,
2
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which is Eq. (2) in the main text.

2.3 Data-driven reconstruction and the conservation test
Given fitted y (r) and reconstructed @’ (r) from the observables, we compute:
1. The inferred U; () from Eq. (16) (or Eq. (15) if a mild K’ (y) is retained).
2. The residual of the conservation law,
d (1 7”2 12 &/ 2 2
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We then (i) check the near—center linearity of U/ .(y) to extract mgﬁ = dU’/dy|y—o0, and (ii) quantify R by its RMS and max norms
over the fit domain. Across analytic control tests and observed profiles (galaxies, lenses, CMB spots), the conservation residual
remains consistent with zero within numerical precision (see Table ??), thereby empirically validating Eq. (14) and, hence, the
covariant conservation law (9).

2.4 Consequences: the constants » = 1 and &,

With mgﬁ measured from U/ ; and Ky fixed by normalization, the structural scale-slope ratio follows
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which immediately yields the power—law constant b = 1 (i.e. @ o r( 1y and the linear compactness ko, = ary = const across systems.
These two constants are therefore not free assumptions but data—driven consequences of the empirically verified conservation
identity (14).

Remark (weak—field control). Let &€ = max{|®|, |[r®’|} over the fit range. The neglected post—-Newtonian corrections dress
Eq. (14) by a factor (1 + O(¢)), and the corresponding fractional error in Eq. (18) is bounded by O(¢) (see the weak—field error
bound derived in Sec. 1.2). For galaxies and lenses, & < 1076-1073, well below observational uncertainties, ensuring that the derived
b and k, are robust to metric corrections.
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