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1 Theoretical Derivation from Structural Tensor Conservation

1.1 Concise covariant derivation and its weak-field control
We augment the main conservation statement ∇𝜇𝑇𝜇𝜈 = 0 (Eq. (9)) with a canonical structural sector

LMEST =
𝐾0
2

∇𝜇𝜓 ∇𝜇𝜓 − 𝑈 (𝜓),

which yields the field equation
𝐾0 □𝜓 − 𝑈′ (𝜓) = 0,

and the stress tensor

𝑇
(𝜓)
𝜇𝜈 = 𝐾0 ∇𝜇𝜓 ∇𝜈𝜓 − 𝑔𝜇𝜈

(
𝐾0
2

∇𝛼𝜓 ∇𝛼𝜓 −𝑈 (𝜓)
)
.

In static spherical symmetry, one has
□𝜓 = 𝑒−2Λ [𝜓′′ +

(
Φ′ − Λ′ + 2

𝑟

)
𝜓′] ,

which leads to the exact radial identity

𝑑

𝑑𝑟

(
1
2𝐾0 𝑒

−2Λ 𝜓′2 − 𝑈

)
+ 𝐾0 𝑒

−2Λ 𝜓′2
(
Φ′ + 2

𝑟

)
− 1

2𝐾0 𝑒
−2Λ 𝜓′2 Λ′ = 0. (1)

Invoking the circular–orbit relation 𝑎𝑟 = 𝑉2/𝑟 = Φ′ (𝑟) (Eq. (10)) and the weak-field limits 𝑒−2Λ≃1, Λ′≃0, one recovers the working
conservation law (Eq. (14)) and the structural equation

𝑈′ (𝜓) = 𝐾0

[
𝜓′′ +

(
Φ′ + 2

𝑟

)
𝜓′
]
, (2)

which is used in the fits. Linearizing𝑈 (𝜓) = 1
2𝑚

2
eff𝜓

2 + · · · near the center gives the characteristic scale relation

𝛼

𝑟0
=

√︄
𝑚2

eff
2𝐾0

, (3)

which, under single–scale self-similarity, implies the 𝑏 = 1 law and constant 𝑘𝛼.
To control the weak-field reduction, we use the exact-minus-approximate residual Δ (Eq. (5)) and bound the fractional error

𝜀 (Eq. (6)). Post-Newtonian estimates yield the conservative bound (Eq. (8)), 𝜀 ≲ |Φ| + 3
4 (𝑉

2/𝑐2), i.e. ≲ 10−6 for galaxies and
≲ 2 × 10−5 for clusters. Consequently, the induced biases satisfy 𝛿𝑘𝛼/𝑘𝛼 = O(𝜀) and 𝛿𝑏 = O(𝜀), well below measurement errors in
all regimes considered.

1.2 Weak-field error bound for the radial conservation law
Starting from the exact static, spherically symmetric identity in Eq. (1), the weak-field, quasi-Newtonian reduction used in the main
text (Eq. (14)) neglects 𝑒−2Λ≃1 and Λ′≃0. To quantify the approximation error, define the difference

Δ ≡
[
exact LHS in Eq. (1)

]
−

[
approx. LHS in Eq. (14)

]
. (4)
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A direct rearrangement yields

Δ = 𝐾0 𝜓
′2
[
(𝑒−2Λ − 1)

(
Φ′ + 2

𝑟

)
− 1

2 𝑒
−2ΛΛ′

]
+ 1

2 𝐾0 𝜓
′2 𝑑

𝑑𝑟

(
𝑒−2Λ − 1

)
. (5)

Dividing by the dominant geometric term 𝐾0𝜓
′2 (2/𝑟) gives the fractional error

𝜀 ≡ |Δ|
𝐾0𝜓′2 (2/𝑟)

≤ 1
2 |𝑒−2Λ − 1|

(
1 + |Φ′ |

2/𝑟

)
+ 1

4 𝑒
−2Λ |Λ′ |

1/𝑟 + 1
4

�� 𝑑
𝑑𝑟

(𝑒−2Λ − 1)
��

1/𝑟 . (6)

Post-Newtonian estimates. In the weak field (|Φ| ≪1) one has 𝑒2Λ ≃ 1 − 2Φ, so |𝑒−2Λ − 1| ≲ 2|Φ| and |Λ′ | ≃ |Φ′ |. Using the
circular-orbit identification |Φ′ | = 𝑉2/𝑟 (Eq. (10)) and the small parameter (𝑉/𝑐)2 ≪1, the three ratios in Eq. (6) scale as

|Φ′ |
2/𝑟 =

𝑉2

2𝑐2 ,
|Λ′ |
1/𝑟 =

𝑉2

𝑐2 ,

�� 𝑑
𝑑𝑟

(𝑒−2Λ − 1)
��

1/𝑟 ≲ 2
𝑉2

𝑐2 . (7)

Hence the conservative bound

𝜀 ≲ |Φ | + 3
4
𝑉2

𝑐2 , (8)

which yields 𝜀gal≲1.3 × 10−6 for typical spirals (𝑉 ∼200 km s−1) and 𝜀cl≲1.8 × 10−5 for rich clusters (𝑉 ∼1000 km s−1).

Impact on 𝑘𝛼 and 𝑏. Treating 𝜀 as a multiplicative perturbation of the conservation law implies a fractional bias 𝛿𝑘𝛼/𝑘𝛼 = O(𝜀)
and a slope bias 𝛿𝑏 = O(𝜀) in the log–log 𝛼–𝑟0 regression. Thus, at galaxy scales 𝛿𝑏≲10−6, and even for clusters 𝛿𝑏≲2 × 10−5, far
below the observational uncertainties quoted in this work. Accordingly, enforcing the exact 𝑒−2Λ and Λ′ terms would not change the
recovered 𝑏 = 1 and 𝑘𝛼 within our error bars.

2 Data–Driven Derivation of Tensor Conservation from MEST Fits
In this section we show that the existence of a divergence–free structural tensor is not merely posited but can be inferred from the
data–calibrated MEST profiles. Starting from fitted profiles 𝜓(𝑟) and the reconstructed structural potential Φ(𝑟), we demonstrate that
the observed fields satisfy the radial conservation identity implied by the covariant law

∇𝜇𝑇𝜇𝜈 = 0, (9)

and hence justify the use of Eq. (9) for deriving the constants 𝑏 = 1 and 𝑘𝛼.

2.1 Observables to field variables
We adopt a static, spherically averaged patch and use the usual weak–field line element 𝑑𝑠2 = −(1 + 2Φ)𝑑𝑡2 + (1− 2Φ) (𝑑𝑟2 + 𝑟2𝑑Ω2)
with |Φ| ≪ 1. The observable that anchors Φ′ (𝑟) depends on the system:

• Rotation curves: the centripetal relation

𝑎𝑟 (𝑟) =
𝑉2 (𝑟)
𝑟

= Φ′ (𝑟) (10)

fixes Φ′ (𝑟) directly.

• Strong lensing: the azimuthally averaged deflection obeys 𝜃 (𝑟) ∝ 𝜕𝑟Φlens; up to a known geometric factor, we absorb the
proportionality in 𝐾0 below so that Φ′ is fixed modulo a global scale (irrelevant for the conservation identity).

• CMB cold/hot spots and polarization: the structural potential Φ is inferred from the best–fit MEST profile that reproduces the
radial temperature (or polarization–amplitude) contrast; again, an overall scale is absorbed in 𝐾0.

Independently, the structural profile 𝜓(𝑟) is obtained from the same MEST fit (e.g. MEST2, MEST2𝑛, or MEST𝑛2), and is normalized
consistently across systems.
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2.2 Stress tensor from a minimal structural Lagrangian
Consider the MEST structural Lagrangian

L =
1
2
𝐾 (𝜓) 𝑔𝜇𝜈𝜕𝜇𝜓 𝜕𝜈𝜓 −𝑈 (𝜓), (11)

which yields the structural stress tensor

𝑇𝜇𝜈 = 𝐾 (𝜓) 𝜕𝜇𝜓 𝜕𝜈𝜓 − 1
2
𝑔𝜇𝜈

[
𝐾 (𝜓) (∇𝜓)2 − 2𝑈 (𝜓)

]
. (12)

The field equation obtained from ∇𝜇𝑇𝜇𝜈 = 0 is equivalent to

∇𝜇

(
𝐾 𝜕𝜇𝜓

)
− 1

2
𝐾 ′ (𝜓) (∇𝜓)2 +𝑈′ (𝜓) = 0. (13)

In the static, spherically symmetric weak–field limit and for slowly varying 𝐾 (𝜓), Eq. (13) reduces to the radial conservation identity

𝑑

𝑑𝑟

(
1
2
𝐾 𝜓′2 −𝑈

)
+ 𝐾 𝜓′2 Φ′ (𝑟) + 2

𝑟
𝐾 𝜓′2 = 0, (14)

and its equivalent differential form for𝑈′ (𝜓),

𝑈′ (𝜓) = 𝐾 (𝜓)
[
𝜓′′ +

(
Φ′ (𝑟) + 2

𝑟

)
𝜓′
]
− 1

2
𝐾 ′ (𝜓) 𝜓′2. (15)

When 𝐾 (𝜓) ≈ 𝐾0 is (locally) constant, Eq. (15) simplifies to the working relation used in our fits,

𝑈′ (𝜓) = 𝐾0

[
𝜓′′ +

(
Φ′ (𝑟) + 2

𝑟

)
𝜓′
]
, (16)

which is Eq. (2) in the main text.

2.3 Data–driven reconstruction and the conservation test
Given fitted 𝜓(𝑟) and reconstructed Φ′ (𝑟) from the observables, we compute:

1. The inferred𝑈′
inf (𝜓) from Eq. (16) (or Eq. (15) if a mild 𝐾 ′ (𝜓) is retained).

2. The residual of the conservation law,

R(𝑟) ≡ 𝑑

𝑑𝑟

(
1
2
𝐾 𝜓′2 −𝑈

)
+ 𝐾 𝜓′2 Φ′ (𝑟) + 2

𝑟
𝐾 𝜓′2. (17)

We then (i) check the near–center linearity of𝑈′
inf (𝜓) to extract 𝑚2

eff ≡ 𝑑𝑈′/𝑑𝜓 |𝜓→0, and (ii) quantify R by its RMS and max norms
over the fit domain. Across analytic control tests and observed profiles (galaxies, lenses, CMB spots), the conservation residual
remains consistent with zero within numerical precision (see Table ??), thereby empirically validating Eq. (14) and, hence, the
covariant conservation law (9).

2.4 Consequences: the constants 𝑏 = 1 and 𝑘𝛼
With 𝑚2

eff measured from𝑈′
inf and 𝐾0 fixed by normalization, the structural scale–slope ratio follows

𝛼

𝑟0
=

√︄
𝑚2

eff
2𝐾0

, (18)

which immediately yields the power–law constant 𝑏 = 1 (i.e. 𝛼 ∝ 𝑟−1
0 ) and the linear compactness 𝑘𝛼 ≡ 𝛼𝑟0 = const across systems.

These two constants are therefore not free assumptions but data–driven consequences of the empirically verified conservation
identity (14).

Remark (weak–field control). Let 𝜀 ≡ max{|Φ|, |𝑟Φ′ |} over the fit range. The neglected post–Newtonian corrections dress
Eq. (14) by a factor (1 + O(𝜀)), and the corresponding fractional error in Eq. (18) is bounded by O(𝜀) (see the weak–field error
bound derived in Sec. 1.2). For galaxies and lenses, 𝜀 ≲ 10−6–10−5, well below observational uncertainties, ensuring that the derived
𝑏 and 𝑘𝛼 are robust to metric corrections.
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