

Supplement file: Supplementary Note S2: Why two constants suffice across scales

September 4, 2025

1 Supplementary Note S2: Why two constants suffice across scales

1. Physical invariances

Two fundamental invariances reduce the structural description to only two constants.

(A) Mass/flux conservation. In the transition region ($x \approx r_0$), define the dimensionless coordinate $y = x/r_0$. The effective transition width is $\Delta y \sim 1/\alpha$, hence the physical width $\Delta x \sim r_0/\alpha$. The “contrast mass” or structural flux in this region,

$$\Delta M \sim \int_{r_0 - \Delta x/2}^{r_0 + \Delta x/2} 4\pi r^2 \rho(r) dr \approx 4\pi r_0^2 \rho_{\text{tr}} \Delta x,$$

remains in a stable domain under continuity constraints. Since $\Delta x \sim r_0/\alpha$, one finds

$$\Delta M \propto \frac{\rho_{\text{tr}}}{\alpha} r_0^3.$$

Meanwhile, the physical slope $S_{\text{phys}} \equiv \left| \frac{dU}{dx} \right|_{x \approx r_0} \propto \alpha/r_0$ is observed to remain stable across systems. Thus we conclude

$$\boxed{\alpha \propto r_0}$$

as the first universal relation.

(B) Action-phase invariance. The characteristic time is $\tau \sim r_0/c$, with energy scale E_0 . Requiring the action-phase jump $\Delta\phi$ across the transition to remain in the same equivalence class $O(1)$ gives

$$\Delta\phi \sim \frac{E_0 \tau}{\hbar} \sim \frac{E_0 r_0}{\hbar c} \approx O(1),$$

hence

$$\boxed{E_0 r_0 \approx \hbar c} \quad (b = 1).$$

2. Mathematical structure

Proposition 1 (Shape-family reduction). The canonical MEST solutions (MEST-2, MEST-2n, MEST-n2), under smoothness and finite-curvature boundary conditions, are homeomorphic to a universal class of smooth transition kernels (tanh/logistic/arctan). Thus any observable profile can be written as

$$U(x) = U_\infty \mathcal{F}\left(\frac{x - r_0}{r_0/\alpha}\right),$$

with a single dimensionless shape parameter α and one scale parameter r_0 .

Proposition 2 (Dual mapping). Relativistic correspondence maps $r_0 \mapsto \tau = r_0/c$ and E_0 , constrained by phase invariance. Hence

$$(\alpha, r_0) \longleftrightarrow (\alpha, E_0), \quad E_0 r_0 \approx \hbar c.$$

3. Statistical support

- **Model comparison:** Two-parameter fits already minimize AIC/BIC; adding parameters yields negligible or negative improvement.
- **Hierarchical Bayes:** Posteriors of α overlap strongly across systems, supporting universality.
- **Cross-validation:** Hold-out and LOO errors remain stable, showing robustness of the dual-constant law.

4. Falsifiability and predictivity

- Any systematic deviation from slope $b = 1$ in $\log E_0$ vs. $\log r_0$, or breakdown of α/r_0 stability, would falsify the law.
- Given either r_0 or E_0 , the other is directly predicted with no extra freedom.

5. Conclusion

Through conservation and action-phase invariances, MEST equations reduce structural fits across galaxies, lensing, CMB, and scattering data to two universal constants: the scaling law $\alpha \propto r_0$ and the power-law duality $E_0 r_0 \approx \hbar c$. These invariants persist across more than twenty orders of magnitude, demonstrating that two constants suffice to unify micro- and macro-scale phenomena.