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To construct a high-confidence and biologically diverse functional dataset, we first aggregated missense variant annotations from three primary sources of functional evidence: high-throughput mutagenesis studies from MaveDB1, manually curated data from the literature, and text-mined functional evidence extracted from ClinVar2 submissions using a fine-tuned BioBERT3 model.

[bookmark: _Toc198941676][bookmark: _Toc206169232]Text-mined functional annotations

ClinVar submissions may include interpretive comments referencing experimental studies from the literature that provide evidence of the functional impact of genetic variants. We developed a text-mined functional dataset by parsing 250,819 ClinVar submissions containing 45 predefined function-related keywords. A subset of 3,000 entries was manually annotated as supporting PS3, BS3, or unrelated functional evidence and used to train a BioBERT model. An additional 3,646 submissions were manually classified and used in 14 rounds of fine-tuning, achieving a classification accuracy of 97%. The resulting model identified 19,922 functionally annotated variants, of which 10,017 were missense.

[bookmark: _Toc198941677][bookmark: _Toc206169233]Manually curated functional data from literature

We manually curated functional annotations from the literature. PubMed titles and abstracts published between 2018 and 2023 were queried using the keywords “missense” and “function,” yielding 5,804 candidate publications. After screening for study design and data quality, 33 large-scale studies were selected. These studies spanned 26 genes and contributed functional annotations for 28,323 unique missense variants.

[bookmark: _Toc198941678][bookmark: _Toc206169234]Multiplexed assays of variant effect

Variant effect scores for 87 genes from 274 studies were obtained from MaveDB1. In order to enable reliable calibration downstream, we included only the studies where at least five benign or likely benign (B/LB) and five pathogenic or likely pathogenic (P/LP) missense variants from ClinVar (≥2-star review status) overlapped with the variants directly assayed in the study. 

MAVE scores, which quantify the functional impact of each variant (e.g., on protein activity or abundance), do not directly reflect clinical pathogenicity. Because MAVE studies vary widely in experimental design, data quality, and clinical relevance, an additional calibration step was necessary to translate these functional scores into meaningful clinical outcomes. For each study, we computed a receiver operating characteristic (ROC) curve using the overlapping ClinVar variants with a review status of 2 stars or above as ground truth and compared the resulting classification performance to that of a random classifier. Study-specific optimal thresholds were identified based on the point maximizing the Youden’s J statistic (sensitivity + specificity − 1), and used to assign damaging or neutral labels to all variants in the study. 

After applying a Bonferroni correction for multiple testing (p < 0.05 / 274), 26 studies across 11 genes met the statistical significance threshold for performance exceeding random classification. These calibrated studies achieved area under the curve (AUC) values ranging from 0.706 to 0.999 and contributed 36,006 unique missense variants to the pool of functionally labeled variants used in downstream dataset construction. Variants appearing in multiple studies were retained separately, as consistency across studies was evaluated and used as a criterion for variant selection during the functional dataset construction process.

[bookmark: _Toc198941679][bookmark: _Toc206169235]Proxy benign variants

To improve class balance in the functional dataset, particularly the relative scarcity of benign variants, we incorporated a set of proxy benign variants used exclusively for training. These variants were not derived from experimental or clinical annotations but were selected based on population allele frequency and coverage metrics as proxies for benignity. Importantly, proxy benign variants were excluded from all testing and benchmarking analyses to prevent bias or misrepresentation of classification performance.

Variants were obtained from gnomAD v4.1, restricted to those with sequencing coverage greater than 50% across eight genetic ancestries4,5. Singleton variants were excluded to avoid incorporating potentially deleterious variants. To ensure independence from labeled data, any variants that overlapped with those in the clinical or functional datasets were removed from the proxy benign set.

Each retained variant was labeled as benign for the purpose of training. However, to account for varying levels of confidence in their benignity, sample weights were assigned based on allele frequency and incorporated into the model’s training objective to modulate the contribution of each variant during learning, details of which are provided in the Model Development section.

[bookmark: _Toc198941680][bookmark: _Toc206169236]Variant selection and functional dataset construction

To construct a high-confidence, biologically diverse, and well-balanced functional dataset suitable for both model development and performance benchmarking, we applied a multi-step variant integration and filtering process. Variants from four described sources—text mining, MAVEs, manual literature curation, and proxy benign variants—were combined using source-specific consistency checks, exclusion rules, and per-gene balancing criteria.
To ensure that the functional dataset accurately reflects the impact of missense variation, we excluded variants predicted to disrupt splicing (SpliceAI > 0.2)6. We then retained all missense variants from the text-mined functional data (405 neutral, 9,612 damaging), which served as the foundation of our constructed dataset. This source captured a broad range of genes and offered relatively comprehensive coverage, making it a strong starting point for assembling a diverse and well-distributed variant set. However, the label distribution was highly imbalanced and required subsequent balancing steps to ensure more equitable representation of damaging and neutral variants for unbiased training.

Variants from MAVE studies were next incorporated, following additional preprocessing. Variants that appeared in more than one MAVE study were included only if their pathogenic vs. benign classification was consistent across all studies in which they were assayed. To prevent redundancy, any MAVE variants overlapping with text-mining entries were removed. We then performed per-gene label balancing by adding variants from MAVE studies with a ClinVar-calibrated AUC of 0.90 or higher. Studies with higher AUCs were prioritized, and variants were randomly selected to balance the number of damaging and neutral variants within each gene as closely as possible.

Variants manually curated from the literature were integrated in a similar manner. After removing overlaps with text-mining and MAVE variants, curated variants were used to further balance gene-level damaging and neutral variant counts, where earlier sources alone were insufficient. Unlike the MAVE step, no prioritization was applied among curated sources. The integration order of functional data sources reflects their relative contribution to FuncVEP performance, with text-mined data providing the broadest diversity and greatest predictive value, followed by high-confidence MAVE studies, and finally literature-curated variants.

We then addressed genes not yet represented in the constructed dataset. For each such gene, we attempted to add up to 100 damaging and 100 neutral variants from the available pool, following the same tiered priority for MAVE (higher AUCs first), followed by curated variants. This step ensured additional gene diversity while maintaining label balance. 
Despite these efforts, the overall dataset remained skewed toward pathogenic variants, with 9,357 labeled as damaging and only 2,558 labeled as neutral. To correct this imbalance, we incorporated additional benign variants from the proxy benign dataset. Rather than matching variant counts, we balanced the total sample weight of damaging and neutral entries within each gene. Variants from the proxy benign pool were added by prioritizing those with higher assigned weights, reflecting greater confidence in their benign status, until the cumulative neutral weight approximated the damaging total, where sufficient data were available. This strategy avoids the pitfall of numerical balance with weak-label data and helps prevent training bias due to underweighted neutral labels.

The resulting functional dataset consisted of 18,556 missense variants, including 9,357 labeled as damaging and 9,199 labeled as neutral. Of the neutral variants, 2,558 originated from functional sources while the remaining 6,641 were sourced from the proxy benign dataset. Proxy benign variants were used only during training and were excluded from all testing and benchmarking steps. The per-gene label balancing achieved through this process prevents type 2 (gene-level) circularity by ensuring models cannot associate specific genes with damaging or neutral labels. It also eliminates any advantage this form of circularity might confer during tool evaluation.

[bookmark: _Toc206169237]Clinical dataset

Variants reported in ClinVar as of January 20, 2025, aligned to the GRCh38 (hg38) reference genome, were downloaded from the ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/)2. Variants with a review status of 2 stars and above were retained, while excluding variants with potential splice outcome (SpliceAI > 0.2) and inconclusive annotations.

To construct a balanced clinical dataset from the remaining variants, we selected an equal number of pathogenic and benign variants per gene, with a maximum of 100 each. This per-gene label balancing prevents type 2 (gene-level) circularity by ensuring models cannot learn spurious associations between genes and pathogenicity. It also eliminates any performance advantage such circularity might confer during evaluation, leading to more accurate and generalizable benchmarking. 

After gene and label balancing, the final clinical dataset consisted of 11,718 missense variants, including 5,859 labeled as benign and 5,859 labeled as pathogenic. This dataset was used to train the ClinVEP models and evaluate the FuncVEP models.

[bookmark: _Toc198941682][bookmark: _Toc206169238]Features

A total of 587 features were collected and engineered to train and evaluate our models, encompassing diverse sources of biological, biochemical, and predictive information. These features span prediction tool outputs, residue-based metrics, and gene-level metrics, with a focus on maximizing biological diversity and generalizability. While not all models use all features, the complete set represents the union of inputs considered across all models described in this work, including the imputation models. These features fall into five main groups: variant effect predictor (VEP) outputs, residue-level metrics, mutation-level metrics, gene-level properties, and conservation scores. From the feature sets, we removed 14 VEPs due to unavailable training sets and 2 PrimateAI models due to licensing restrictions, resulting in a total of 571 features remaining. The feature subcategories and their counts are as follows:
1. Variant effect predictors (45)
· Clinical-trained single predictors: 5
· Clinical-trained meta predictors: 26
· Population-free: 7
· Population-tuned: 7
2. Mutation-Level Features (24)
· Protein language model–derived: 4
· Amino acid conversion matrices: 20
3. Residue-level features (24)
· Constraint scores (7)
· Structural (17)
4. Conservation scores (13)
5. Gene-Level Features (465)
· Gene constraint/essentiality: 7
· Gene knock-out studies: 389
· Gene expression: 68
· Structural: 1

[bookmark: _Toc206169239]VEP scores

A total of 61 VEPs were collected, and 45 were included as features. 47 of these tools were sourced from dbNSFP v5.0 (https://www.dbnsfp.org/)7, including widely used VEPs such as SIFT, PolyPhen-2, CADD, REVEL, AlphaMissense, and ClinPred8–38. The remaining tools were collected individually from their associated publications or dedicated online sources, including tools such as AlphScore, LoGoFunc, ESM-1v, and PHACT39–45. We also retrieved PrimateAI (from dbNSFP) and PrimateAI-3D (https://primateai3d.basespace.illumina.com/) for benchmarking purposes, although they were not used during model training due to licensing restrictions32,46.

[bookmark: _Toc198941684][bookmark: _Toc206169240]Mutation-level features

We included 24 mutation-level features that characterize substitution effects. This group includes:
· Scores from a total of 20 amino acid substitution matrices, capturing biochemical properties of residue changes. These included widely used matrices such as Grantham47, Atchley48, Kidera49, PFASUM6050, VTML51, and MIQS52, along with one novel substitution matrix developed in this study (see Novel Features). 
· 4 protein language model–derived metrics, developed specifically for this work using the ESM-2 architecture53. These are described in the Novel Features section.

[bookmark: _Toc206169241]Residue-level features

We included 24 residue-level features that capture local structural and evolutionary constraints on amino acid positions. This group includes: 
·  A total of 17 structure‑based features were included. Fifteen of these were derived using DSSP54: relative solvent accessibility (RSA), calculated by dividing the solvent‑accessible surface area obtained from DSSP by the maximum solvent‑accessible surface area for that residue type55; hydrogen bond counts, calculated as the total number of main‑chain hydrogen bonds with absolute energy greater than 0.5 kcal/mol; contact numbers, determined by counting Cα atoms within 6, 8, 10, and 12 Å of the residue’s Cα atom; and secondary structure states (for example, helix and strand) assigned according to DSSP. The remaining two features were obtained from the A3D Database (https://biocomp.chem.uw.edu.pl/A3D2/): A3D aggregation propensity scores and AlphaFold‑based stability scores56.
· 7 residue‑level constraint scores capturing evolutionary intolerance to variation at specific sites, including metrics such as MTR and Jarvis scores57–60.

[bookmark: _Toc198941685][bookmark: _Toc206169242]Gene-level features

A total of 465 features capture gene-level properties, with the goal of contextualizing variant impact based on gene expression, constraint, or essentiality:
· Gene expression data comprising 68 expression features were obtained from the GTEx database (https://gtexportal.org)61.
· 389 features were derived from large-scale gene knock-out studies covering diverse cell types and contexts62.
· Seven gene constraint and essentiality metrics were collected from the gnomAD database (https://gnomad.broadinstitute.org/data) or their corresponding publications, including the probability of loss-of-function intolerance (pLI), loss-of-function Z score, missense Z score, synonymous Z score, phi (a metric of selective constraint), Residual Variation Intolerance Score (RVIS), and s_het (selection coefficient against heterozygous loss-of-function variants)63–66. These gene constraint metrics are designed to reflect intolerance to functional variation across populations.
· Protein folding stability: Predicted Gibbs free energy (ΔG) values for wild‑type canonical protein structures were computed using FoldX67 applied to AlphaFold268 models; for proteins lacking AlphaFold2 output, ESMFold69 was used to predict the structures. These ΔG values provide a gene-level measure of intrinsic protein stability.

[bookmark: _Toc206169243]Conservation score–based features

Thirteen conservation-based features were included to capture evolutionary constraint and positional conservation across diverse phylogenetic depths. These scores quantify how intolerant a site or substitution is to evolutionary change and provide indirect evidence of functional importance. The features used were GERP++_NR, GERP++_RS, GERP_91_mammals, phyloP100way_vertebrate, phyloP470way_mammalian, phyloP17way_primate, phastCons100way_vertebrate, phastCons470way_mammalian, phastCons17way_primate, bStatistic, BLOSUM80, BLOSUM62, and BLOSUM7070–74.

[bookmark: _Toc198941686][bookmark: _Toc206169244]Novel features

In addition to collecting features from external sources, we developed two groups of novel features specifically for this work. 

The first, referred to as OddsRat, captures the substitution-specific tendency of amino acid changes to be associated with pathogenicity. Using ClinVar missense variants with a review status of one star or higher, we tallied the number of times each of the 400 possible amino acid substitutions (20 × 20 matrix) occurred in variants labeled as pathogenic or benign. For each substitution, we computed the ratio p / (p + b), where p and b represent the counts of pathogenic and benign classifications, respectively. This value reflects the relative pathogenicity tendency of a given amino acid change. The resulting matrix encodes substitution-specific bias toward functional disruption and was used as a residue-level feature in our models. Since this feature reflects aggregated substitution trends across ClinVar and is not trained on variant-level labels, it does not introduce circularity.

The second group consists of four features derived from ESM-2, a state-of-the-art protein language model pretrained on large-scale protein sequence data53. Wild-type protein sequences were retrieved from Ensembl BioMart (https://www.ensembl.org/biomart)75, and mutant protein sequences were generated in silico by identifying the affected codon based on hg38 genomic coordinates and substituting the resulting amino acid accordingly. To ensure computational efficiency, we extracted subsequences consisting of 127 amino acids flanking each side of the mutated residue, resulting in a local window of up to 255 residues centered on the mutation. Our empirical testing suggested that increasing the sequence length beyond this window did not meaningfully improve the predictive utility of the resulting metrics. For each variant, ESM-2 representations were computed separately for the wild-type and mutant protein sequences. From these, we extracted two probabilistic metrics, mean log-likelihood and perplexity, which estimate the sequence plausibility under the ESM-2 model. The differences in these metrics (mutant minus wild-type) were included as two features, capturing the change induced by the mutation. Additionally, we obtained high-dimensional embeddings from the final hidden layer of ESM-2 and computed two comparative metrics: cosine similarity, reflecting directional change in embedding space, and average absolute difference, representing the magnitude of embedding shift. Together, these features quantify the predicted impact of a mutation on protein sequence plausibility and structure, as learned from unsupervised protein modeling.

[bookmark: _Toc198941687][bookmark: _Toc206169245]Feature selection policy

To preserve interpretability and prevent redundancy with other ACMG criteria, we deliberately excluded circularity-prone features from all models. This included allele frequency data, splicing impact scores (e.g., SpliceAI), functional domain annotations, and any direct inclusion of experimental assay results such as MAVE scores. These features correspond to distinct ACMG evidence categories (e.g., BA1 for population frequency, PVS1 for splice disruption, PM1 for domain localization, PS3/BS3 for functional assays). Their inclusion could compromise the independence of the in silico criterion (PP3/BP4) and introduce circularity into the classification framework. Our goal was to ensure that model outputs remain compatible with ACMG-guided workflows without redundancy.

[bookmark: _Toc198941689][bookmark: _Toc206169246]VEP score omission and circularity elimination

To prevent performance inflation and overfitting due to circularity, we applied a multi-level omission strategy for both model training and benchmarking. For each prediction tool, we removed scores for all variants included in that tool's training set. This was applied recursively: if a tool incorporated other predictors as input (e.g., meta‑predictors such as REVEL), we also excluded scores for variants present in the training sets of those underlying tools and their components in turn. When the original training data for a tool or its components were unavailable, that tool was excluded entirely from model training and benchmarking to avoid indirect leakage. Such tools, however, were retained during feature imputation, which did not use pathogenicity labels and posed no risk of label leakage, serving solely to model relationships among predictor scores.

[bookmark: _Toc198941688][bookmark: _Toc206169247]Model development

We developed six binary classification models using the LightGBM framework76 to predict the pathogenicity of missense variants. Three FuncVEP models were trained on the functional dataset and three parallel ClinVEP models on the clinical dataset, with each set varying by feature inclusion:
1. CTI (Clinical‑Trained Tools Included): trained using all available features, including clinical‑trained VEPs.
2. CTE (Clinical‑Trained Tools Excluded): trained using all features except clinical‑trained VEPs.
3. SP (Single Predictor): trained using only non‑predictive features, excluding all VEP‑derived scores.

FuncVEP‑CTI, FuncVEP‑CTE, and FuncVEP‑SP were trained on the functional dataset, while ClinVEP‑CTI, ClinVEP‑CTE, and ClinVEP‑SP were trained on the clinical dataset with identical feature configurations.

All models were optimized with Optuna77, hyperparameter optimization set to 50 trials, and trained using a 90/10 split, with performance evaluated on the held‑out 10% by area under the ROC curve (AUC) as the primary metric.

[bookmark: _Toc198941690][bookmark: _Toc206169248]Feature imputation

Several tool-derived features exhibited non-random (informative) missingness patterns, often skewed toward pathogenic variants. This was particularly common in clinical-trained predictors, where a disproportionate number of pathogenic variants had missing scores. In many cases, this pattern emerged because we deliberately removed scores for variants included in a tool’s original training set, which tends to be enriched for known pathogenic variants. If left unaddressed, these patterns can lead the model to associate the mere absence of a score with pathogenicity, reflecting artifacts in data processing rather than meaningful biological signals. We observed that such biased missingness degraded performance on unseen data, suggesting poor generalization and reduced robustness in real-world applications. 

To address this, we performed imputation for 53 selected features with skewed missingness or more than 15% missingness in the functional and clinical datasets. Traditional imputation strategies (e.g., mean, median, constant) were inadequate and potentially harmful in this context. They tend to introduce artificial values that cluster around a central point, allowing the model to exploit these imputed values in place of the missingness pattern itself. In addition to introducing non-informative inputs, these methods can also degrade the quality of the surrounding data: for example, mean imputation not only adds meaningless values but also potentially reduces the discriminative power of real scores that are naturally close to the mean. Our SHAP-based analyses confirmed that models trained with such traditional imputation still associated these filler values with pathogenicity. 

Instead, we adopted a machine learning–based approach to imputation using LightGBM regressors. For each of the 53 selected features, we trained a regression model using all of the other 586 features as input. Each model was trained on a large, diverse set of 423,450 unlabeled missense variants, which included all unique missense variants collected from our functional data sources (text mining, manual literature curation, MaveDB), proxy benign variants, and ClinVar-reported variants, including those with 1-star review status. These variants did not have clinical or functional labels and were used solely for learning feature relationships.

The available scores for each target feature served as regression labels when training the imputation model for that feature. Each imputation model then predicted the missing values for its respective feature across the full variant set, including the clinical and functional datasets. Importantly, imputed values were not reused as input for training other imputation models, to prevent circular feedback and maintain signal independence across regressors. In addition, imputed values were not used in benchmarking and were applied solely for training the FuncVEP and ClinVEP models. 

[bookmark: _Toc198941691][bookmark: _Toc206169249]Sample weight assignment

Sample weights were introduced to modulate the contribution of weakly labeled training samples. All labeled damaging/pathogenic and neutral/benign variants from clinical and functional sources were assigned a weight of 1. For proxy benign variants (used only in functional training), weights ranged between 0 and 1 based on confidence in benignity. Specifically, the average allele frequency (AF) across eight gnomAD ancestry populations was calculated for each variant, log-transformed, and min-max normalized to assign weights. Higher AF translated into higher confidence and greater influence during model learning. These weights were incorporated using the sample_weight parameter in LightGBM’s fit function.

[bookmark: _Toc198941692][bookmark: _Toc206169250]Model training

Each model was trained using a 90/10 train-test split, with Optuna (50 trials) used to tune hyperparameters. The best-performing configuration was selected based on AUC evaluated on the test set. We used LightGBM for binary classification due to its efficiency, scalability, and robustness in handling high-dimensional feature spaces. With over 500 features included in the models, LightGBM provided both fast training and strong performance. It was selected over Random Forest due to significantly improved classification accuracy, and over XGBoost78 due to comparable accuracy with moderately faster training times.

FuncVEP models were trained using the functional dataset, while ClinVEP was trained using the clinical dataset. Each model used a consistent set of variants from its respective dataset, with feature dimensions adjusted according to the inclusion or exclusion of tool-derived features:
· FuncVEP-CTI and ClinVEP-CTI: Trained on 571 features.
· FuncVEP-CTE and ClinVEP-CTE: Trained on 540 features.
· FuncVEP-SP and ClinVEP-SP: Trained on 526 features.
Prediction scores were generated for all models across all possible ~79 million missense variants, except for any variants used in the training of the corresponding model. 

[bookmark: _Toc206169251]De novo datasets

Two independent datasets of de novo missense variants (DNMs) were assembled to evaluate model performance in developmental and neurodevelopmental disorders.

The Developmental Disorders (DD) dataset combined DNMs from Kaplanis et al.79 and the Deciphering Developmental Disorders study80. Variants were restricted to missense changes in genes previously identified as significantly enriched for pathogenic DNMs in these two studies. This filtering yielded 3,400 case variants. For controls, we included 113 missense DNMs drawn from gnomAD4 population de novo calls and denovo-db81 control datasets, restricted to the same set of genes to ensure comparable background variation.

The Neurodevelopmental Disorders (NDD) dataset was constructed by merging DNMs from Satterstrom et al.82 with DNMs from denovo-db81. Variants were restricted to PanelApp green genes listed under intellectual disability, autism, and syndromic epilepsy panels. After filtering for missense changes, the dataset contained 2,536 case variants. Controls consisted of 348 missense DNMs from gnomAD population de novo calls and denovo-db control datasets, filtered by the same gene list. All variants were annotated against the GRCh38 reference genome.

[bookmark: _Toc206169252]ACMG classification performance

To evaluate the performance of AlphaMissense, ESM1b, and FuncVEP models, we analyzed variants from the clinical dataset that had non‑missing scores for all five predictors and excluded any variants meeting the BA1 criterion. Scores for AlphaMissense, ESM1b, and the three FuncVEP models were calibrated following the probabilistic framework of Pejaver et al.83 to enable application of PP3/BP4 (computational evidence) criteria. Variants were additionally annotated with PM1 (mutational hotspot) and BS4 (lack of segregation) criteria using AAVC84. We then applied ACMG classification using the numeric scoring scheme described by Tavtigian et al.85, assigning values of 4 for strong criteria, 2 for moderate, and 1 for supporting; scores are positive for pathogenic criteria and negative for benign criteria. The summed scores were interpreted according to the following thresholds:
· scores less than −6 were classified as benign;
· scores from −6 up to (but not including) 0 as likely benign;
· scores from 0 up to 2 as VUS‑low;
· scores from 2 up to 4 as VUS‑mid;
· scores from 4 up to 6 as VUS‑high;
· scores from 6 up to 10 as likely pathogenic;
· and scores of 10 or higher as pathogenic. 

[bookmark: _Toc198941700]Classifications of benign, likely benign, or VUS‑low were considered concordant with benign clinical labels, while classifications of pathogenic, likely pathogenic, or VUS‑high were considered concordant with pathogenic clinical labels.

[bookmark: _Toc206169253]Threshold for reporting

To determine statistical significance for gene–phenotype associations, we adjusted the reporting threshold based on the number of independent hypotheses tested. While multiple thresholds could be considered based on combinations of genes, phenotypes, and allele frequency masks, we opted for a more conservative and interpretable approach. Because variant classifications and allele frequency masks are highly dependent, we did not include them in the Bonferroni correction. Additionally, many phenotypes in the dataset were not independent — for example, some share underlying causal factors (e.g., neutropenia and anemia in cancer), represent sequential events (e.g., hypertension and coronary artery disease), or describe overlapping clinical manifestations (e.g., headache and migraine).
To account for this dependency structure and avoid overcorrection, we limited the multiple-testing correction to the number of genes tested (n = 490), resulting in a Bonferroni-adjusted threshold of p < 1.02 × 10⁻⁴ for reporting associations.
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