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Supplementary Note

1 The model reflecting the performance of homozygotes and heterozygote of one locus simulated

according to Hill equation

The typical physiologihiscal theory had pointed that most of the mutants of genes encoding enzymes
are dominant"2, which has been preliminarily verified in yeast and human?®. Recent study also noticed that
enzyme unsaturation caused by insufficient substrate may be the direct cause of dominance*. However, it
is still not clear whether insufficient substrate background is the general mechanism of dominant or even
overdominance, and the relationship between the sufficiency of background and the occurrence of
dominant or overdominance is still not clearly elucidated in literature. In this study, we systematically
simulated occurrence of additive, dominant to over-dominant inheritance of target receptor genes under
different level of ligand background supply.

It is generally recognized that a ligand X binds to a receptor Y and reacts to produce a product is a
common mechanism in biology. Dynamically, the number of molecule product of Y produced per unit
time is a function of the concentration of ligand X on its active form X*:

Production rate of Y = f(X*) (1-1)

Typically, the input function of f(X) is a monotonic, S-shaped function. It is an increase function
when X is an activator and a decrease one when X is a repressor®. The Hill input function for an activator
is a curve that rises from zero and approaches a maximal saturated level:

S
K +X*

Hill function for activator (1-2)

f(X*) =

The Hill function has three parameters, K, 8 and n.

Parameter K is termed as the activation coefficient, and has units of concentration. It defines the
concentration of active X needed to significantly activate production. From the equation, we can see that
half-maximal production is reached when X = K. The value of K related to the chemical affinity between
ligand X and its receptor, as well as additional factors.

Parameter B3 is the maximal production level of Y. Maximal production is reached at high activator
concentration, X>> K. Because at high concentration, X binds the receptor with high probability to

generate more products per unit time.
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Parameter n is known as Hill coefficient. It governs the steepness of the curve between two
inflection points of the input function. Usually, it is moderately steep, with n = 1 — 4. The larger is n, the
more step-like is the input function. Particularly, When n =1, hill function is equal to Michaelis Menten
equation. As many functions in biology, the Hill function approaches a limiting value at high level of X,
rather than increase indefinitely.

For a repressor, the Hill function is a decreasing S-shaped curve, whose shape depends on three
similar parameters:

B Hill input function for repressor (1-3)
1+(X*jn

K

The production of Y is balanced by two process, degradation (destruction by specific proteins in the

f(x) =

cell) and dilution (the reduction in concentration due to the increase of cell volume during growth). The
degradation rate is age,, and the dilution rate is agii, giving a total degradation plus dilution rate (in units of
1/time) of
0= Odeg T Olail (1-4)
The change in the concentration of Y due to the difference between its production and degradation
plus dilution, as described by a dynamic equation:
dY/dt = f(X*) - aY (1-5)
At stead state, Y reaches a constant concentration Y, The steady-state concentration can be found
by solving for dY/dt = 0. The steady-state concentration is:
Yo = f(X*)/a (1-6)
If reached its maximal level, we can also write as:
Y = plo (1-7)
This makes sense: The higher is the production rate P, the higher will reach the steady-state
concentration Y. The higher is the degradation/dilution rate o, the lower is Y.
Now let us consider one single locus with allele A and a, which are or code some kind of receptor
and can be regulated by ligand X. The product of allele A is Y| at steady-state under concentration [X;;*]
of active X (X11*), and that of a is Y, under concentration [X2,*]. The production function of two alleles
is expressed respectively as:

A: dY/dt = f([X1*]) - oY, (1-8a)
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a: dYo/dt = f([X22*]) - 02Y2 (1-8b)
Where a; > 0 and a, > 0 are the relative degradation rate.

Then, the product of two alleles at steady-state is respectively:

ALY = £(X¥) = B X (1-9a)
081 K|1"]+[X”*]nl
™2
a: Y= f(Xo*) /o = B X7 (1-9b)

o K"+ [)(zz*]n2

With W= E, then Equations 1-9a and 1-9c are transformed into:

Q;
Ay=p X (1-102
Ko +[X 0]
a: Yo p—i (1-10b)
K" +[X22*] 2

Regarding the relationship between products of homozygotes (AA and aa) and heterozygote (Aa) of
the locus, we consider three scenarios. The general assumption for three scenarios is that: (1) the ligand
background concentration keeps constant among two homozygotes (representing the parents) and
heterozygote (representing the Fi hybrid); so if two alleles share the same kind of ligand background, the
ligand background concentration in homozygotes and heterozygote will be [X;1*] or [X2:*], with [X*] =
[X22*]; if two alleles have their respective ligand backgrounds, two homozygotes and the heterozygote
will maintain the same concentration of both ligands, [X;;*] and [X2*]; (2) the ligand background can be
equally and randomly allocated to two alleles in the homozygote, and the reaction of two alleles in
heterozygote is independent® and the ligand background will be allocated to two different alleles under
the rule as defined in different scenarios; (3) there is a basal product m in two homozygotes and
heterozygote when there is no ligand.

Firstly, we consider the three scenarios under the situation that the ligand works as an activator.

Scenario 1: null allele vs one functional allele of one polymorphic site under one ligand background
(Supplementary Fig 32 and Supplementary Fig 33a-b). The ligand background concentration in two
homozygotes and heterozygote will be 2[X;1*] = 2[X*] = 2[X*]. The product of AA, aa and Aa at

steady state will be:

(X", " [X*]" (1-11a)
KT MR e

AA: Y i=mtu
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aa: Y-=m+ 0 (1-11b)

Aa:Ye.=m+ pl—(z[X*])nl (I-1l¢)
K+ 2IXA)"

Scenario 2: two alleles of one polymorphic site under two independent backgrounds, that is, two

alleles of one polymorphic site of the receptor can be bound by two respective and independent ligands as

the backgrounds of the receptor (Supplementary Fig 34 and Supplementary Fig 36). The ligand

background concentration in two homozygotes and heterozygote will be 2[X;;*] and 2[X»*], but X;*

can only be allocated to allele A and X»* to allele a. The product of AA, aa and Aa at steady state will be:

*1" *1M
AA:Yu=m+ [X.] + LW X, 7] (1-12a)
K]ln] +[Xll*]nl K11"1+[X]1*]"1
Lk K™
aa: Yo=m+ L [X"] + X"] (1-12b)

Ke" X" K™ +[Xa*]"

QXep™ . QXD (1-12¢)

Aa:Ye.=m+ L L
K" +(2[><11*])"1 K" +(2[X22*])n2

Scenario 3: two alleles of one polymorphic site with shared background, that is, two alleles of one
polymorphic site of the receptor can be bound by the same ligand as the background of the receptor
(Supplementary Fig 38). The ligand background concentration in two homozygotes and heterozygote
will be 2[X11*] = 2[X*] = 2[X*]. If the ligand background X* was equally allocated to each of the two
alleles in heterozygote as the simulation previously reported®’, the product of AA, aa and Aa at steady

state will be:

*™ (0
AA:Y':=m+ L [X ] +},l1 [X ] (1-10a)
KX K H X
H]"2 H"2
aa: Y»=m+ OB [X ] + L [X ] (1-10b)
Ko +[X*]? T Ko™ +[X*]"
Aa:Yo=m+ [X*]" n [X*]” (Equal allocation) (1-10c)

K XA K XA

As our simulation indicated, the locus will always appear to be additive under the situation of equal
allocation (X* = (X11* + X»2*)/2). We need consider the situations that the background X* was allocated
to two alleles in an asymmetric way due to different affinities of two alleles with the ligand background.
If the ligand background X* was allocated to each of the two alleles in heterozygote in proportion to their

respective affinities, the product of Aa at steady state will be:
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Q[X*K/(Kii+Kz))™ N 2[X*IKi/(Kit+Kz))™ (Asymmetric allocation)

Aa: Yo=m+ o8 - — T - -
K l‘1‘(2D(*]I(zz/(1<11'|'I<22)) ' K" +(2[X*]K11/(K11+K22)) ?

(1-10d)

We also proposed an optimal strategy to maximize the output of the heterozygote. Let S;+S, = 2[X*],
Si and S, represent the ligand concentration allocated to allele A and a in heterozygote, respectively, when
the product of heterozygote Y, is maximized at the ligand concentration 2[X*] (Supplementary Fig 39-

40). The product of Aa at steady state will be:

Aa: Vo +max| w5 (Maximized allocation) (1-10e)
Kllnl +Sln] KZZ"Z +S2n2

Secondly, we consider the three scenarios under the situation that the ligand works as a repressor.
Regarding Scenario 1, null allele vs one functional allele of one polymorphic site under one ligand
background (Supplementary Fig 33c-d). The product of AA, aa and Aa at steady state for negative

regulation will be:

! 1-11
AA: Y. =m - L 1—K— - L ]_K— ( a)
K"I+[X*]n| Kn1+[X*]nl
aa: Y»=m-0 (1-11b)
! 1-11
Aa:Yo=m-1 I-K— ( ©)
K" +Q2[X*])"

Regarding Scenario 2, two alleles of one polymorphic site under two independent backgrounds

(Supplementary Fig 37). The product of AA, aa and Aa at steady state for negative regulation will be:

Kl]“l K”"l -
AA:Yu=m- L l-f -l 1_—n - (1-12a)
K ]+[X11*] ' K ]-l-[X”*] 1
aa: Yo=m - o 1% (1-12b)
K" +[X22*]“2 K" +[X22*]“2
Aa: Yo=m- 1, I-L T 1-& (1-12¢)
K™ +2[X*])™ Ka" +(2[X*])"

Regarding Scenario 3, two alleles of one polymorphic site with shared background

(Supplementary Fig 41-42). The product of AA, aa and Aa at steady state for negative regulation will be:

AA:Yu=m - LU 1-% -l 1_# (1-13a)
Koer ) M e

I(zznz I(zzn2 _
aa: Yeo=m- | -————— || - —————— (1-13b)
K. 2"‘[)(*] ? K" —|—[X*]‘2
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Aa: Ye=m - I- |K““1 || 1- nKﬂ“Z : (Equal allocation) (1-13c)
I(llll +[X*] ! Kzz 2 +[X*] 2

Or,

I(ll“I K22“2
Aa: Yo=m - | I-— — |-po| I-—— -
Kll ! +(2 [X*]KZZ/(K11+K22)) ! KZZ : +(2 [X*]Kll/(Kll+K22)) :

(Asymmetric allocation) (1-13d)
Or,
Aa: Yoe m-max| 1o K (Maximized allocation)  (1-13¢)
K““I _*—LSvl"l :[(22"2 +S2n2

Where S;+S, = 2[X*].
According the simulated values of Y11,Y12 and Y2, we calculated the degree of dominance (d/a) for

the locus as:

d/a=(Yu—(Y1 1+Y22)/2|Y22-Y1 l|) (1 - 14)

2 The model reflecting the performance of homozygotes and heterozygote of one locus simulated

according to trimer ABA assembly

The balance between genes involved in a biological complex is one important hypothesis about
heterosis. The typical example for gene balance was reported by Balazs and coleagues®. Their studies
indicated that mutation of the subunit in a trimer ABA complex can result in imbalance and thus is
harmful, which might impact gene imbalance on dominance. However, these studies did not consider the
effects from the counterpart background. Thus, we simulated the effects of complex background on
dominance of one single polymorphic locus that codes A or B.

In the system of trimer ABA complex, A and B are monomers, AB is the bridge dimer without active
function, the trimer ABA is the functional entity. The reaction among monomers, dimer and trimer could
be illustrated by the following chemical formula:

A+B<=>AB 2-1)
AB + A <=>ABA (2-2)

For simplicity, we consider a pseudo equilibrium state, that is: A and B were input once in an

enclosed environment and no degradation was considered; after a period of time, a chemical equilibrium

state will be achieved. Set Sa and Sg as the initial input concentration of A and B, kag as the association
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rate from left to right in formula (2-1), mag as the dissociation rate from right to left of formula (2-1),
kapa and maga as the association rate from left to right and the dissociation rate from right to left in
formula (2-2). And let [A], [B], [AB] and [ABA] represent the concentration of A, B, AB and ABA at
equilibrium state. So we have:
Sa=[A] +[AB] +2[ABA]
Sg = [B] + [AB] + [ABA]
kapx[A][B] = mapx[AB]
[AB] = kap/mapx[A][B]
kapax[AB][A] = mapax[ABA]
[ABA] = kapa/ mapax[AB][A]
[ABA] = kapa/ mapaxkap/mas[A][B][A]
We define association coefficient by the ratio of association to dissociation for two steps as:
Ki =kas/mas
K» = kapa/mapa
then, we derived that
[AB] =K *[A][B]
[ABA]=K;xK,x[A][B][A]
According to the formula of stoichiometry balance, we can have:
Sa=[A] + Kix[A][B] + 2K xK,x[A][B][A]
Sg = [B] + Kix[A][B] + KixKox[A][B][A]
Through the above equation, we get
[B] = Sp/(1+ K  x[A]+ K xK,x[A])
Then we introduced [B] into Sa, we get,
Sa = [A] + SpxKix[A]/( 1+ Kix[A]+ K xKyx[A])+
2 Spx K xKox[A]/(1+ K x[A]+ K xKox[A]?)
We set a target function f([A]),
f([A]) = (Sa — ([A] + SexKx[A]/( 1+ K x[A]+ K xKyx [A]P)+
2 SpxK xKox[A]/(1+ K x[A]+ K xKyx[A]?))?
Among of the function of f([A]), only [A] is the unknown parameters, Sa, Sg, K; and K, were all the

predefined data, thus the value of [A] that minimizes f([A]) is the solution of the concentration of A at
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equilibrium state. Once the concentration of A at equilibrium state is obtained, the concentration of B, AB,
and ABA at equilibrium state could be easily calculated according to the above equations.

For given Sa, Sg, K; and K, we solve the equation by using the optimize function in R and get the
concentration of A, B, AB and ABA at the equilibrium state, the solutions of parent and F; was follow the
same equations described above (Supplementary Fig 63).

We simulated two scenarios as following:

Scenariol, keep the input concentration of B fixed and constant among two homozygotes and the
heterozygote of A, and A was coded by one polymorphic locus (Supplementary Fig 63b-c): Sa ranges
from 0 to 20 nmol/L, with Sg = 2.5 nmol/L, K; =1 K;= 100. The simulated data for the genotype of AA,
aa and Aa as follow:

AA: Sama) =0 - 20 nmol/L, Sgaa) = 2.5 nmol/L

aa: Saqa)= 0 - 20 nmol/L, Spa) = 2.5 nmol/L

Aa: Sacaa) = (Saaa)t Sa@a)/2, Seaa) = 2.5 nmol/L

Scenario2, keep the input concentration of A fixed and constant among two homozygotes and the
heterozygote of B, and B was coded by one polymorphic locus (Supplementary Fig 63d-e): Sg ranges
from 0 to 20 nmol/L, with Sa = 5 nmol/L, K; =1 K,= 100. The simulated data for the genotype of AA, aa
and Aa as follow:

BB: Sams) = 5 nmol/L, Sgis) =0 - 20 nmol/L

bb: Sawb)y= 5 nmol/L, Sgps) = 0 - 20 nmol/L

Bb: Sa@b) =5 nmol/L, Sg@b) = (Sa@s)+ Sawb))/2

Same as the above simulation according to Hill function, according the simulated values of Y11,Y12

and Y2, we calculated the degree of dominance (d/a) for the locus as:

d/a= (Y1, — (Y11 + Y52)/2) /Y22 — Y14
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Supplementary Figures

Supplementary Figure 1 Geographical distribution of 267 rice varieties. The red dots represent Indica

varieties, the blue dots represent Japonica varieties.
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256 Supplementary Figure 2 The experimental design and analysis procedure used in this study.

257
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Supplementary Figure 3 Genetic structure of the 267 rice accessions. (a) The neighbor-joining tree of
267 rice accessions constructed from simple matching distance of 1.3 million SNPs. There were 8 and 9
subpopulations were identified in Indica and Japonica subspecies respectively. Indica sub-population
including: IMP-I, Improved Indica; SEA-I, South east Asian /ndica; Scatter, landraces which contains the
admixed fragment and several inter Indica-Japonica type materials; Aus, the aus sub population; YunGui,
Yunnan and Guizhou high altitude Indica from China; SA-I, South asian Indica; SC-I, South China
Indica; CC-1, Center China Indica. Japonica sub-population including: IMP2-MIX, improved Japonica
with admixed genomic fragment; Afr-Tr, Africa tropical Japonica. Ocean-Tr, Oceanica tropical Japonica.
Euro-tmp, European temperate Japonica; SEA1-jap, Yunnan and Guizhou high altitude Japonica lines
that subjected to Southeast Asian subtropical Japonica; GL-tmp, Yunnan and Guizhou high altitude
Glutinous Japonica; IMP1-tmp, improved temperate Japonica lines; NC-tmp, north china temperate
Japonica; EA-tmp from China, east asian temperate Japonica. (b) The average number of SNPs that

different between pairwise individual of intra and inter sub-population in Japonica and Indica.
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273 Supplementary Figure 4 Genome-wide heterozygosity for different kinds of combinations. (a) The
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local heterozygosity was calculated in each 200 kb window across the entire rice genome for each
combination. The color legend from blue to red denote the level of heterozygosity from low to high. (b)
Eeach line represents the average heterozygosity in the whole genome for each combination. Nip,
Nipponbare; JxNip, combination of Japonica and Nipponbare; IxNip, combination of Indica and

Nipponbare, and the others are similar.
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Supplementary Figure 5 Distribution of Japonica specific alleles in 9311 and Indica specific alleles
in Nipponbare. The total number of Japonica specific alleles that introgressed into 9311 (blue bar), and
that of Indica specific alleles that introgressed into Nipponbare (red bar). >0.6, >0.7, >0.8 and >0.9 mean
that the allele frequency in one subspecies are higher than 0.6, 0.7, 0.8 and 0.9 but equal and less than 0.4,
0.3, 0.2 and 0.1 in the other subspecies.
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Supplementary Figure 6 The phenotype distribution of parent and F: for different yield traits in

Changsha and Sanya. Nip, Nipponbare; JxNip, combination of Japonica and Nipponbare; [xNip,

combination of Indica and Nipponbare, and the others are similar.
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291 Supplementary Figure 7 Phenotypic contribution of parental inbred genetic basis (P) and middle
292  parent heterosis (Hmp) to hybrids. PBP, primary branch number per panicle; SBP, secondary branch
293  number per panicle; SPP, spikelet number per panicle; KGW, 1000-grain weigth; PNP, panicle number
294  per plant; GWP, grain weight per plant; all means all combinations for Japonica, Indica, Nipponbare and
295 9311 in both environments.

296
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Supplementary Figure 8 Supplementary Figure 8 Residual and environmental variance of yield
traits in inbred parents and hybrids. (a) The proportion of residual variance of each yield trait
estimated in inbred parents and hybrid in rice. (b) Proportion of environmental variance in total variance
for yield related traits in panels of inbred parents and hybrids in maize (data were collected from Flint-
Garcia., Buckler. et al. 2009). (c) The proportion of residual variance of each yield trait estimated in
parents and hybrid in maize. DTT, Days to anthesis; PLTHT, Plant height; UPLFANG, Upper leaf angle;
LFWDT, Leaf width; LFLEN, leaf length; 10Kwt, 10 kernel weight; CobDia, cob diameter; KnHgt,
kernel height; EarLength, Ear length; CobWt, Cob Weight; TolKnWt, Total Kernel Weight.
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Supplementary Figure 9 The distribution of combinations showing POD, RBP and NOD phenotype
for different yield traits and different kinds of combinations under two environments. (a-d) The
distribution in Changsha. (e-f) The distribution in Sanya. (i) The temperature and light duration during the
growth season in Changsha. (j) The temperature and light duration during the growth season in Sanya.
POD, F, showing phenotype over the higher parent, referred as positive over-dominant (POD); RBP, F;
showing phenotype ranging between parents referred as RBP; NOD, F; showing phenotype below the
lower parent, referred as negative over-dominant (NOD). The grey boxes indicated the stage from

reproductive initiation to grain filling. HT, high temperature; LT, low temperature; LD, light duration.
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Supplementary Figure 10 Genome-wide association study of primary branch number per panicle
(PBP) in Japonica parents and their combinations using compressed MLM. (a) Manhattan plots
for JxNip F; phenotype in Changsha. (b) Manhattan plots for JxNip mid-parent heterosis value
in Changsha. (c) Manhattan plots for phenotype of parents in Changsha. (d) Manhattan plots for
Jx9311 F; phenotype in Changsha. (¢) Manhattan plots for Jx9311 mid-parent heterosis value in
Changsha. (f) Manhattan plots for JxNip F; phenotype in Sanya. (g) Manhattan plots for JxNip
mid-parent heterosis value in Sanya. (h) Manhattan plots for phenotype of parents in Sanya. (i)
Manhattan plots for Jx9311 F; in Sanya. (j) Manhattan plots for Jx9311 mid-parent heterosis in
Sanya. Green dots represent the significant SNPs in identified QTLs, red dots represent the
SNPs in cloned genes with 2 kb promoter.
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Supplementary Figure 11 Genome-wide association study of primary branch number per panicle
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(PBP) in Indica parents and their combinations using compressed MLM. (a) Manhattan plots for
IxNip F; phenotype in Changsha. (b) Manhattan plots for [xNip mid-parent heterosis value in
Changsha. (c) Manhattan plots for phenotype of parents in Changsha. (d) Manhattan plots for
Ix9311 F; phenotype in Changsha. (e) Manhattan plots for [x9311 mid-parent heterosis value in
Changsha. (f) Manhattan plots for [xNip F; phenotype in Sanya. (g) Manhattan plots for [xNip
mid-parent heterosis value in Sanya. (h) Manhattan plots for phenotype of parents in Sanya. (i)
Manbhattan plots for [x9311 F; in Sanya. (j) Manhattan plots for [x9311 mid-parent heterosis in
Sanya. Green dots represent the significant SNPs in identified QTLs, red dots represent the
SNPs in cloned genes with 2 kb promoter.
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Supplementary Figure 12 Genome-wide association study of secondary branch number per panicle
(SBP) in Japonica parents and their combinations using compressed MLM. (a) Manhattan plots for
JxNip F; phenotype in Changsha. (b) Manhattan plots for JxNip mid-parent heterosis value in Changsha.
(c) Manhattan plots for phenotype of parents in Changsha. (d) Manhattan plots for Jx9311 F; phenotype
in Changsha. (¢) Manhattan plots for Jx9311 mid-parent heterosis value in Changsha. (f) Manhattan plots
for JxNip F; phenotype in Sanya. (g) Manhattan plots for JxNip mid-parent heterosis value in Sanya. (h)
Manhattan plots for phenotype of parents in Sanya. (i) Manhattan plots for Jx9311 F; in Sanya. (j)
Manhattan plots for Jx9311 mid-parent heterosis in Sanya. Green dots represent the significant SNPs in

identified QTLs, red dots represent the SNPs in cloned genes with 2 kb promoter.
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Supplementary Figure 13 Genome-wide association study of secondary branch number per panicle
(SBP) in Indica parents and their combinations using compressed MLM. (a) Manhattan plots for
IxNip F; phenotype in Changsha. (b) Manhattan plots for [xNip mid-parent heterosis value in
Changsha. (c) Manhattan plots for phenotype of parents in Changsha. (d) Manhattan plots for
Ix9311 F; phenotype in Changsha. (e) Manhattan plots for [x9311 mid-parent heterosis value in

Changsha. (f) Manhattan plots for IxNip F; phenotype in Sanya. (g) Manhattan plots for [xNip

mid-parent heterosis value in Sanya. (h) Manhattan plots for phenotype of parents in Sanya. (i)
Manhattan plots for [x9311 F; in Sanya. (j) Manhattan plots for Ix9311 mid-parent heterosis in
Sanya. Green dots represent the significant SNPs in identified QTLs, red dots represent the
SNPs in cloned genes with 2 kb promoter.
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Supplementary Figure 14 Genome-wide association study of spikelet number per panicle (SPP) in
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Japonica parents and their combinations using compressed MLM. (a) Manhattan plots for JxNip F,
phenotype in Changsha. (b) Manhattan plots for JxNip mid-parent heterosis value in Changsha. (c)
Manhattan plots for phenotype of parents in Changsha. (d) Manhattan plots for Jx9311 F; phenotype in
Changsha. (e) Manhattan plots for Jx9311 mid-parent heterosis value in Changsha. (f) Manhattan plots
for JxNip F; phenotype in Sanya. (g) Manhattan plots for JxNip mid-parent heterosis value in Sanya. (h)
Manhattan plots for phenotype of parents in Sanya. (i) Manhattan plots for Jx9311 F; in Sanya. (j)
Manhattan plots for Jx9311 mid-parent heterosis in Sanya. Green dots represent the significant SNPs in

identified QTLs, red dots represent the SNPs in cloned genes with 2 kb promoter.
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Supplementary Figure 15 Genome-wide association studies of spikelet number per panicle (SPP) in
Indica parents and their combinations using compressed MLM. (2) Manhattan plots for [XNip F;
phenotype in Changsha. (b) Manhattan plots for IxNip mid-parent heterosis value in Changsha.
(c) Manbhattan plots for phenotype of parents in Changsha. (d) Manhattan plots for [x9311 F;
phenotype in Changsha. (¢) Manhattan plots for [x9311 mid-parent heterosis value in Changsha.
(f) Manhattan plots for [xNip F; phenotype in Sanya. (g) Manhattan plots for [XNip mid-parent
heterosis value in Sanya. (h) Manhattan plots for phenotype of parents in Sanya. (i) Manhattan
plots for 1x9311 F; in Sanya. (j) Manhattan plots for 1x9311 mid-parent heterosis in Sanya.
Green dots represent the significant SNPs in identified QTLs, red dots represent the SNPs in
cloned genes with 2 kb promoter.
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Supplementary Figure 16 Genome-wide association study of 1000-grain weight (KGW) in Japonica
parents and their combinations using compressed MLM. (a) Manhattan plots for JxNip F; phenotype
in Changsha. (b) Manhattan plots for JxNip mid-parent heterosis value in Changsha. (c) Manhattan plots
for phenotype of parents in Changsha. (d) Manhattan plots for Jx9311 F; phenotype in Changsha. (e)
Manhattan plots for Jx9311 mid-parent heterosis value in Changsha. (f) Manhattan plots for JxNip F,
phenotype in Sanya. (g) Manhattan plots for JxNip mid-parent heterosis value in Sanya. (h) Manhattan
plots for phenotype of parents in Sanya. (i) Manhattan plots for Jx9311 F; in Sanya. (j) Manhattan plots
for Jx9311 mid-parent heterosis in Sanya. Green dots represent the significant SNPs in identified QTLs,

red dots represent the SNPs in cloned genes with 2 kb promoter.
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Supplementary Figure 17 Genome-wide association study of 1000-grain weight (KGW) in Indica
parents and their combinations using compressed MLM. (a) Manhattan plots for [xNip F;
phenotype in Changsha. (b) Manhattan plots for IxNip mid-parent heterosis value in Changsha.
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(c) Manbhattan plots for phenotype of parents in Changsha. (d) Manhattan plots for [x9311 F;
phenotype in Changsha. (¢) Manhattan plots for [x9311 mid-parent heterosis value in Changsha.
(f) Manbhattan plots for [xNip F; phenotype in Sanya. (g) Manhattan plots for [XNip mid-parent
heterosis value in Sanya. (h) Manhattan plots for phenotype of parents in Sanya. (i) Manhattan
plots for 1x9311 F; in Sanya. (j) Manhattan plots for 1x9311 mid-parent heterosis in Sanya.
Green dots represent the significant SNPs in identified QTLs, red dots represent the SNPs in
cloned genes with 2 kb promoter.
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Supplementary Figure 18 Genome-wide association study of panicle number per plant (PNP) in
Japonica parents and their combinations using compressed MLM. (a) Manhattan plots for JxNip F,
phenotype in Changsha. (b) Manhattan plots for JxNip mid-parent heterosis value in Changsha. (c)
Manhattan plots for phenotype of parents in Changsha. (d) Manhattan plots for Jx9311 F; phenotype in
Changsha. (e) Manhattan plots for Jx9311 mid-parent heterosis value in Changsha. (f) Manhattan plots
for JxNip F; phenotype in Sanya. (g) Manhattan plots for JxNip mid-parent heterosis value in Sanya. (h)
Manhattan plots for phenotype of parents in Sanya. (i) Manhattan plots for Jx9311 F; in Sanya. (j)
Manhattan plots for Jx9311 mid-parent heterosis in Sanya. Green dots represent the significant SNPs in

identified QTLs, red dots represent the SNPs in cloned genes with 2 kb promoter.
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Supplementary Figure 19 Genome-wide association study of panicle number per plant (PNP) in
Indica parents and their combinations using compressed MLM. (a) Manhattan plots for [xNip F;
phenotype in Changsha. (b) Manhattan plots for IxNip mid-parent heterosis value in Changsha. (c)
Manbhattan plots for phenotype of parents in Changsha. (d) Manhattan plots for 19311 F; phenotype in
Changsha. (e) Manhattan plots for 1x9311 mid-parent heterosis value in Changsha. (f) Manhattan plots
for [xNip F; phenotype in Sanya. (g) Manhattan plots for IXNip mid-parent heterosis value in Sanya. (h)
Manhattan plots for phenotype of parents in Sanya. (i) Manhattan plots for 1x9311 F; in Sanya. (j)
Manhattan plots for 1x9311 mid-parent heterosis in Sanya. Green dots represent the significant SNPs in

identified QTLs, red dots represent the SNPs in cloned genes with 2 kb promoter.
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Supplementary Figure 20 Genome-wide association study of grain weight per plant (GWP) in
Japonica parents and their combinations using compressed MLM. (a) Manhattan plots for JxNip F,

phenotype in Changsha. (b) Manhattan plots for JxNip mid-parent heterosis value in Changsha. (c)
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Manhattan plots for phenotype of parents in Changsha. (d) Manhattan plots for Jx9311 F; phenotype in
Changsha. (e) Manhattan plots for Jx9311 mid-parent heterosis value in Changsha. (f) Manhattan plots
for JxNip F; phenotype in Sanya. (g) Manhattan plots for JxNip mid-parent heterosis value in Sanya. (h)
Manhattan plots for phenotype of parents in Sanya. (i) Manhattan plots for Jx9311 F; in Sanya. (j)
Manhattan plots for Jx9311 mid-parent heterosis in Sanya. Green dots represent the significant SNPs in

identified QTLs, red dots represent the SNPs in cloned genes with 2 kb promoter.
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Supplementary Figure 21 Genome-wide association study of grain weight per plant (GWP) in
Indica parents and their combinations using compressed MLM. (a) Manhattan plots for [xNip F,
phenotype in Changsha. (b) Manhattan plots for IxNip mid-parent heterosis value in Changsha. (c)
Manhattan plots for phenotype of parents in Changsha. (d) Manhattan plots for [x9311 F; phenotype in
Changsha. (¢) Manhattan plots for 1x9311 mid-parent heterosis value in Changsha. (f) Manhattan plots for
IxNip F; phenotype in Sanya. (g) Manhattan plots for IxNip mid-parent heterosis value in Sanya. (h)
Manhattan plots for phenotype of parents in Sanya. (i) Manhattan plots for 1x9311 F; in Sanya. (j)
Manhattan plots for 1x9311 mid-parent heterosis in Sanya. Green dots represent the significant SNPs in

identified QTLs, red dots represent the SNPs in cloned genes with 2 kb promoter.
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Supplementary Figure 22 The colocalized QTL between two environments for yield and its sub-
component traits. (a) The proportion of colocalized QTL between Changsha and Sanya for P_QTL. (b)
The proportion of colocalized QTL between Changsha and Sanya for F; _QTL. (¢) The proportion of
colocalized QTL between Changsha and Sanya for Hmp QTL.
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Supplementary Figure 23 The colocalized QTL between F1_QTL, Hmp QTL and _QTL for grain
yield and its sub-component traits. (a) The proportion of colocalized QTL between F;_ QTL, Hmp QTL
and P_QTL for the trait of PBP, SBP, SPP, KGW, PNP and GWP in Changsha. (b) The proportion of
colocalized QTLs between F;_ QTL, Hmp QTL and P_QTL for the trait of PBP, SBP, SPP, KGW, PNP

and GWP in Sanya.
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463 Supplementary Figure 24 The percentage of detected QTLs with additive, dominant and over-
464  dominant effects for each yield trait using the phenotype of parents (P), the phenotype of F1 (F1)
465 and the middle parent heterosis value (Hmp) in different combinations under two environments
466  respectively. A, additive (in blue); D, dominant (in orange); OD, over-dominant (in red).
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468  Supplementary Figure 25 The proportion of colocalized QTLs between two environments with

469 additive, dominant and over-dominant effects. Stable, means the colocalized QTLs between two

470 environments; Specific, means the QTLs can only be detected in one environment.
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Supplementary Figure 26 Comparison between the observed Hmp of GWP and the theoretical
Hmp of GWP estimated according to the multiplicative from additive effect of three main yield
components (SPP, KGW and PNP). (a) The violin plot for the observed Hmp of GWP and the
theoretical Hmp of GWP. (b-¢) The scatter plot for the observed Hmp of GWP and the theoretical Hmp of

GWP for different combinations in two environments.
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Supplementary Figure 27 The repulsive degree in dominant and over-dominant QTLs. (a-c) The
proportion of QTLs with different repulsive degrees; here, the sky blue represents that there is no
significant SNP with repulsive additive effects within the QTL, and the light green, orange and red
represent the repulsive degree within the range of (0-0.2], (0.2-0.4] and >0.4 within each QTL. (e-f) The
average proportion of combinations with repulsive effect alleles per QTL that contains repulsive effect

alleles.
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Supplementary Figure 28 Genome-wide association study of yield traits in 1086 three-line system
hybrids using compressed MLM. (a) Manhattan plot for SPP in Hangzhou (HZ). (b) Manhattan plot for
SPP in HZ by dominance coded genotype. (¢) Manhattan plot for KGW in Sanya (SY). (d) Manhattan
plot for KGW in SY by dominance coded genotype. (¢) Manhattan plot for PNP in HZ. (f) Manhattan plot
for PNP in HZ by dominance coded genotype. (g) Manhattan plot for GWP in SY. (h) Manhattan plot for
GWP in SY by dominance coded genotype. The red dots are the significant SNPs located within the
defined QTL. The data were collected from the published paper (Huang, X.H. et al. Genomic analysis of
hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nature
Communications 6(2015).).
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495  Supplementary Figure 29 The repulsive degree in additive (A), dominant (D) and over-dominant
496  (OD) QTLs identified in 1086 three-line hybrids. The sky blue represents that there is no significant
497 SNP with repulsive additive effects within the QTL, and the light green, orange and red represent the
498  repulsive degree within the range of (0-0.2], (0.2-0.4] and >0.4 within each QTL.
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501 Supplementary Figure 30 The colocalization proportion for over-dominant QTLs with different
502 repulsive degrees (0, 0-0.2, 0.2-0.4 and >0.4) for the trait of PBP (a), SBP (b), SPP (c¢), KGW (d)

503  and PNP (e).
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Supplementary Figure 31 The average determinant coefficient between genes with different
expression patterns and their transcription factors in three A. thaliana combinations. The
determination coefficient was estimated by six pairs of transcription levels in the first leaf between the
gene and its transcription factor across three 4. thaliana combinations (including Col-0xPer-1, Col-0%Aa,
Col-0xAk) and their parents. Here, Col-0xAK& Col-0xPer-1 refers to those genes that show the same
expression pattern in both combinations Col-0XxAK and Col-0xPer-1. And the others are similar. We
estimated the significant difference of NOD, ND, PD and POD with MP by paired t-test; and “**”
marked the significant level at 0.01. The raw data were collected from the published paper (Yang, M. et al.

Genomic architecture of biomass heterosis. Proc Natl Acad Sci USA6 (2017)).
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Supplementary Figure 32 The schematic diagram of regulation model for molecular mechanism of
additive and dominant effect produced by single site with null allele (C) and one functional allele (T)
under one positive regulator background. The grey thick lines show two chromosomes, the red bars on
which are two homologous alleles of the regulator that are uniform among P;, P, and F;. The break and
solid pies together represent the required regulator function that can maximize the function of T/T
homozygote of the target site, and the solid pies represent different regulator functions and thus provide
different backgrounds to the target site. The arrow represents the function process, and the break arrow
represents the break function process. The break and solid curves together represent the maximum
function of the T/T homozygote in parents or one T allele in F;, and the solid curves represent the real
function. A + Null shows the action mode for each allele and between two alleles (T vs C) that they are
independent with T being additive and C being null; and PD+Null and D+Null are similar. A, pD and D

mean additive, partial dominant, and dominant effect, respectively.
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Supplementary Figure 33 The simulated diagram of regulation model for molecular mechanism of
additive and dominant effect produced by single site with null allele and one functional allele under
one regulator background. (a) The performance of the target site in two parents, F; and the middle
parent (MP) under the activator background with different sufficiencies (X/K). It was simulated according
to Hill function with y; = 3 and n = 2. ; means the maximum function at steady state for one functional
allele. n is the Hill coefficient. Left arrow represents a relatively insufficient activator background, and
the right arrow represents the relatively sufficient activator background. (b) The performance of the target
site in two parents, F; and the middle parent (MP) under the repressor background with different
sufficiencies (X/K). It was simulated according to Hill function with p; = 3 and n = 2. y; means the

maximum function at steady state for one functional allele. n is the Hill coefficient. (¢) The dominant
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Supplementary Figure 34 The schematic diagram of regulation model for molecular mechanism of
additive, dominant and over-dominant effect produced by the cumulated functions of two alleles of
one polymorphic site under two independent positive regulators as the upstream backgrounds. The
grey thick lines show two chromosomes, the red and green bars on which represent the homologous
alleles of the regulators of T and C alleles at target site, respectively; and the function of these regulators
keep constant and among P;, P, and F;. The break and solid pies together represent the required regulator
function that can maximize the function of the homozygote of the corresponding target allele, and the
solid pies represent different regulator functions and thus provide different backgrounds to the target
allele. The arrow represents the function process. The break and solid curves together represent the
maximum function of the homozygote in parents or one allele in F;, and the solid curves represent the real
function; those curves with red or green dots represent the function of allele T or C respectively. A+A
shows the action mode for each allele and between two alleles (T vs C) that they are independent and
cumulative with T and C both being additive; and PD+D and D+D are similar. A, D and OD mean

additive, dominant, and over-dominant effect, respectively.
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Supplementary Figure 35 The schematic diagram of regulation model for molecular mechanism of
additive, dominant and over-dominant effect produced by the cumulated functions of two alleles of
one polymorphic site under two independent positive regulators or responsors as the downstream
backgrounds. The grey thick lines show two chromosomes, the red and green bars on which represent
the homologous alleles of the regulators or responsors of T and C alleles at target site, respectively; and
the function of these regulators or resposors keep constant among Py, P, and F;. Different numbers of red
and green pies represent the maximum products of the homozygotes of allele T and C of target site,
respectively. The doted cylinder or the same size of solid cylinder represent the required regulator or
responsor function that can transform the full maximum function of the products of the homozygote of
the corresponding target allele, with red corresponding to allele T and green to allele C; and the solid
cylinders in doted cylinder represent different regulator or response functions and thus provide different
backgrounds to the target allele. The arrow represents the function process. The break and solid curves
together represent the transformed maximum function of the homozygote in parents or one allele in F,
and the solid curves represent the real transformed function; those curves with red or green dots represent
the transformed function of allele T or C respectively. A+A shows the action mode for each allele and
between two alleles (T vs C) that they are independent and cumulative with T and C both being additive;
and PD+D and D+D are similar. A, D and OD mean additive, dominant, and over-dominant effect,

respectively.
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Supplementary Figure 36 The simulated distribution of dominance to additive effect ratio (d/a)
with same backgrounds, but the two alleles in F1 are regulated by different factors in the
background for positive regulation. (a) The diagram of the performance of two parent, F; and middle
parent (MP) under the condition of p; =3, w =1 and K; = K, for positive regulation. left arrow means
background is relative insufficient and right arrow means background is relative sufficient. (b-c) The
simulated distribution of d/a with same homologous backgrounds, but the two alleles in F; are regulated
by different factors in the background. d/a means degree of dominance effect/additive effect, it can be in
both positive and negative direction. i/p> means the ratio of maximum function of P; genotype to
maximum function of P, genotype when their respective background afford to the complete expression of

the corresponding homologous genotype; d/a means the degree of dominance to additive effect ratio.
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Supplementary Figure 37 The simulated diagram of regulation model for molecular mechanism of
additive, dominant and over-dominant effect produced by the cumulated functions of two alleles of
one polymorphic site under two independent negative regulators or responsors as the backgrounds.
(a) The performance of the target site in two parents, F; and the middle parent (MP) under the repressor
background with different sufficiencies (X/K). It was simulated according to Hill function with p; =3,
=1, K; =Ksand n = 2. y; and p» means the maximum function at steady state for allele with higher
function and lower function, respectively. n is the Hill coefficient. Left arrow represents a relatively
insufficient repressor background, and the right arrow represents the relatively sufficient repressor
background. (b) The dominant degree of the target site under the repressor background with different
sufficiencies (X/K) for two alleles of the target site with /g2 = 2. (¢) The dominant degree of the target
site under the repressor background with different sufficiencies (X/K) for two alleles of the target site
with /g2 = 3. (d) The dominant degree of the target site under the repressor background with different

sufficiencies (X/K) for two alleles of the target site with 11/, = 4.
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Supplementary Figure 38 The regulation or response model for molecular mechanism of dominant
and over-dominant effect produced by single locus with the same background. Here, the hollow
circle means the background level that satisfy the full potential of the target. The filled red circle means
the background level that homozygous parent actually supplied. The orange line indicates the background
allocation. When the background is insufficient and the affinity of the two genes is different, the two
allele of A and a will be in a competitive use of limited background, the more competitive gene is likely
to get relative more backgrounds in hybrid than that in the original homozygous parents. The parameter of

, K and n are described in the Supplementary Note.
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Supplementary Figure 39 The simulated diagram of regulation model for molecular mechanism of
additive, dominant and over-dominant effect produced by the cumulated functions of two alleles of
one polymorphic site under the same positive regulators or responsors as the background when
allele 1 showing higher maximum function and higher affinity (1 > 1 and Ki < K3). (a) The
performance of the target site in two parents, F; and the middle parent (MP) under the activator
background with different sufficiencies (X/K). It was simulated according to Hill function with L = 3, L2
=1,K;=1,K;=5and n=2. y; and |, means the maximum function at steady state for allele with higher
function and lower function, respectively. n is the Hill coefficient. Left arrow represents a relatively
insufficient activator background, and the right arrow represents the relatively sufficient activator
background. (b) The dominant degree of the target site under the activator background with different
sufficiencies for allele with higher function (X/K;) of the target site and with different i/, when Ki/K;
= 2/5. (¢) The dominant degree of the target site under the activator background with different
sufficiencies for allele with higher function (X/K;) of the target site and with different i/, when Ki/K;
= 3/5. (d) The dominant degree of the target site under the activator background with different
sufficiencies for allele with higher function (X/K;) of the target site and with different i/, when Ki/K;
=4/5.



625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640

= b Ki/K; =5/2

— Py Py ---- MP F,
m+2p - insufficient  «—— sufficient
m+(Uy+iz) A
,M+2y; - /,/
m
0 2 4 6 8
€ Ki/K, =5/3 d Ky/K, =5/4 "
1e16
5
15
0.5
)
° 0
-05
-15
-5
-1e13

Supplementary Figure 40 The simulated diagram of regulation model for molecular mechanism of
additive, dominant and over-dominant effect produced by the cumulated functions of two alleles of
one polymorphic site under the same positive regulators or responsors as the background when
allele 1 showing higher maximum function but lower affinity (u1 > 1 and Ki > K3). (a) The
performance of the target site in two parents, F; and the middle parent (MP) under the activator
background with different sufficiencies (X/K). It was simulated according to Hill function with p; =3, w,
=1,K;=5,K,=1and n=2. y; and p, means the maximum function at steady state for allele with higher
function and lower function, respectively. n is the Hill coefficient. Left arrow represents a relatively
insufficient activator background, and the right arrow represents the relatively sufficient activator
background. (b) The dominant degree of the target site under the activator background with different
sufficiencies for allele with higher function (X/K;) of the target site and with different p;/p, when K,/K; =
5/2. (c) The dominant degree of the target site under the activator background with different sufficiencies
for allele with higher function (X/K,) of the target site and with different p,/p, when K/K; = 5/3. (d) The
dominant degree of the target site under the activator background with different sufficiencies for allele
with higher function (X/K;) of the target site and with different p;/p, when K,/K, = 5/4.
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Supplementary Figure 41 The simulated diagram of regulation model for molecular mechanism of
additive, dominant and over-dominant effect produced by the cumulated functions of two alleles of
one polymorphic site under the same negative regulators or responsors as the background when
allele 1 showing higher maximum function and higher affinity (i > p1 and Ki < K3). (a) The
performance of the target site in two parents, F; and the middle parent (MP) under the repressor
background with different sufficiencies (X/K). It was simulated according to Hill function with p; =2, y,
=1,K;=1,K,=5and n=2. y; and p, means the maximum function at steady state for allele with higher
function and lower function, respectively. n is the Hill coefficient. Left arrow represents a relatively
insufficient repressor background, and the right arrow represents the relatively sufficient repressor
background. (b) The dominant degree of the target site under the repressor background with different
sufficiencies for allele with higher function (X/K;) of the target site and with different p;/p, when K,/K, =
1/5. (c) The dominant degree of the target site under the repressor background with different sufficiencies
for allele with higher function (X/K,) of the target site and with different p,/p, when K;/K; = 2/5. (d) The
dominant degree of the target site under the repressor background with different sufficiencies for allele
with higher function (X/K,) of the target site and with different p;/p> when Ki/K; = 3/5. (¢) The dominant
degree of the target site under the repressor background with different sufficiencies for allele with higher
function (X/K,) of the target site and with different i/, when K/K, = 4/5.
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Supplementary Figure 42 The simulated diagram of regulation model for molecular mechanism of
additive, dominant and over-dominant effect produced by the cumulated functions of two alleles of
one polymorphic site under the same negative regulators or responsors as the background when
allele 1 showing higher maximum function but lower affinity (ui > p1 and Ki > K3). (a) The
performance of the target site in two parents, F; and the middle parent (MP) under the repressor
background with different sufficiencies (X/K). It was simulated according to Hill function with p; =2, y,
=1,K;=5,K,=1and n=2. y; and p, means the maximum function at steady state for allele with higher
function and lower function, respectively. n is the Hill coefficient. Left arrow represents a relatively
insufficient repressor background, and the right arrow represents the relatively sufficient repressor
background. (b) The dominant degree of the target site under the repressor background with different
sufficiencies for allele with higher function (X/K;) of the target site and with different p;/p, when K,/K, =
5/1. (c) The dominant degree of the target site under the repressor background with different sufficiencies
for allele with higher function (X/K,) of the target site and with different p,/p, when K/K; = 5/2. (d) The
dominant degree of the target site under the repressor background with different sufficiencies for allele
with higher function (X/K,) of the target site and with different p;/p, when Ki/K; = 5/3. (¢) The dominant

degree of the target site under the repressor background with different sufficiencies for allele with higher
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Supplementary Figure 43 The expression level of genes with different expression patterns in 1 mm

and 2 mm young panicles of two parents. Here, A, PD and POD mean the expression patterns

appearing additive, positive dominant and over-dominant, respectively; the star means significant

difference from the genes with additive expression pattern.
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Supplementary Figure 44 The spikelet number per plant (SPP) of parents with non-tester genotype
(P1) and parents with tester genotype (P2) of the SPP QTLs showing different genetic effect types.
Here, A, PD and POD mean the additive, positive dominant and positive over-dominant QTLs,
respectively. P; > P, means that P; contains the genotype with higher effect of the QTL, and on the
contrary P; < P, means that P, contains the genotype with higher effect of the QTL. The star means
significant difference from the addtive QTLs.
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Supplementary Figure 44 (continued)
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Supplementary Figure 45 The 1000-grain weight (KGW) of parents with non-tester genotype (P1)
and parents with tester genotype (P2) of the KGW QTLs showing different genetic effect types. Here,
A, PD and POD mean the additive, positive dominant and positive over-dominant QTLs, respectively. P; >
P, means that P; contains the genotype with higher effect of the QTL, and on the contrary P; < P, means
that P, contains the genotype with higher effect of the QTL. The star means significant difference from
the addtive QTLs.
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Supplementary Figure 46 The panicle number per plant (PNP) of parents with non-tester genotype
(P1) and parents with tester genotype (P2) of the PNP QTLs showing different genetic effect types.
Here, A, PD and POD mean the additive, positive dominant and positive over-dominant QTLs,
respectively. P; > P, means that P; contains the genotype with higher effect of the QTL, and on the
contrary P; < P, means that P, contains the genotype with higher effect of the QTL. The star means
significant difference from the addtive QTLs.
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Supplementary Figure 47 The yield traits of lines with Zhenshan97 (P1) genotype and Minghui63
(P2) genotype of those QTLs with different genetic effect types in IMF2 population in 1998 and 1999.
Here, A, PD and POD mean the additive, positive dominant and positive over-dominant QTLs,
respectively. P; > P, means that P; contains the genotype with higher effect of the QTL, and on the
contrary P; < P, means that P, contains the genotype with higher effect of the QTL. The star means
significant difference from the addtive QTLs. The QTLs were identified according to the published data

(Zhou, G. et al. Genetic composition of yield heterosis in an elite rice hybrid. Proceedings of the National



Academy of Sciences of the United States of America 109, 15847-15852 (2012)).
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Supplementary Figure 48 The relationship between the middle-parent heterosis (Hmp) and the

phenotypes of their parents for primary branch number per panicle (a), secondary branch number

per panicle (b), 1000-grain weight (c) and panicle number per plant (d). The results were calculated

according to the phenotype of 418 combinations of MCC in Changsha and Sanya.
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Supplementary Figure 49 The variance of expression levels among different tissues (1 mm, 2 mm

and 3mm young panicles) for genes with additive, dominant and over-dominant expression patterns

in Imm, 2mm or 3mm young panicles of hybrids. Triple-star means significant difference with p <

0.001; ns means no significance. The variance was estimated from 48 dataset collected from ricexpro

(http://ricexpro.dna.affrc.go.jp/)
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Accumulation of variation coefficient

identified QTL for different type genetic component in IMF: population. (a) The comparisons of
additive, dominance and overdominance for the accumulation of average variation coefficient estimated
in each identified QTL at 1998. (b) The comparisons of additive, dominance and overdominance for the

accumulation of average variation coefficient estimated in each identified QTL at 1999.
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The accumulated variation coefficient of 6 yield related trait in Sanya.
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Supplementary Figure 53 Experimental validation of HolIB model Saccharomyces cerevisiae. (a)
Primer design principles and requirements. SSU1_Ck-F and SSU1_Ck-R are located on both side of the
transcription factor FZF'1 recognition motif in the SSUI gene promoter. SSU1-LM-Ck-R and SSU1-RM-
Ck-F are located in inserted marker (marker can be Leu or His); HRR-SSU1-F and HRR-SSU1-R had
38bp homologous sequences on both sides of the FZFI recognition motif in SSUI promoter, and the outer
21bp sequence was the upstream and downstream primers for screening markers genes on the amplified
plasmid (pfa6a-leulmx or pFA6a-His3MX6). (b) 1 was genomic fragment containing the FZFI
recognition motif in the wild type (BY4743), 2 and 3 were the genomic fragment (2.1kb and 1kb
respectively) of heterozygous mutant that one copy of FZF'I recognition motif was substituted by Leu and
the other was remain unchanged; 4 and 5 were the genomic fragment (1.8kb and 1kb respectively) of
heterozygous mutant that one copy of FZF1 binding motif was substituted by His and the other was
remain unchanged; Leu-LM was the primer used to amplify the left DNA fragment of Leu substitution
genotype, Leu-RM was the primer used to amplify the right DNA fragment of Leu substitution genotype,
His-LM was the primer used to amplify the left DNA fragment of His substitution genotype, Leu-RM was
the primer used to amplify the right DNA fragment of Leu substitution genotype. (¢) 1 was genomic
fragment containing the FZFI recognition motif in the wild type (BY4743), 2 and 3 were the genomic
fragment (2.1kb and 1kb respectively) of diploid mutant that one copy of FZFI recognition motif was
substituted by Leu and the other was substituted by His; (d) The relative expression of gene SSU/! in
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different SSU! genotypes under different expression levels of its transcription factor (FZFI) in
Saccharomyces cerevisiae BY4743; here, AA, aa and Aa represent the homologous genotype of wild type,
the homologous genotype of mutant, and their heterozygous genotype, respectively; OE(0-5) means the
strain with upregulated FZF1 by 0-5 folds, and similar for OE(5-10) and OE(>10), and Empty means the
strain with empty vector free of FZFI. (¢) The dramatically decreased dominance degree of SSU! along
with the increase of upregulation levels of its transcription factor FZFI in Saccharomyces cerevisiae
BY4743.
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Supplementary Figure 54 The association of previously identified genes related to rice spikelet
number per panicle (SPP). (a) The associated QTL and LD heat map within the QTL for SPP gene
OSH1. The orange dots are the SNPs within gene OSHI. (b) The structure and the peak association signal
of gene OSHI. The SNP A/G on promoter significantly associates with the spikelet number per panicle in
F, of JXNip. (¢) Violin plots of OSHI genotypes for SPP in parents and hybrids. (d) The associated QTL
and LD heat map within the QTL for SPP gene d35. The orange dots are the SNPs within gene d335. (e)
The structure and the peak association signal of gene d35. The SNP C/T on the last exon significantly
associates with the spikelet number per panicle in F; of JxNip. (f) Violion plots of d35 genotypes for SPP
in parents and hybrids. (g) The genotype frequency of the SNP C/T in d35 in the three-line and two-line



787 hybrids of indica subspecies, and the expected genotype frequency in combinations of indica varieties.

788

789
790  Supplementary Figure 55 The times of associated genes that can be repeatedly identified in the

791 dominance and over-dominance QTLs across four kinds of combinations and two environments.
792  Each line represents one associated gene. From the inner to outer layer, the height of lines represents 2-4
793  (for GWP), 3-6 (for PNP), 3-8 (for KGW), 3-6 (for SPP), 3-7 (for SBP) and 3-8 (for PBP) times,
794  respectively.
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Supplementary figure 57 The GO enrichment of repeated identified genes with non-additive

performance in non-lethal deletion yeast strains grown in five media. Only the term of molecular

function was showed in the figure.
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Supplementary figure S8 The distribution of rate-limiting enzymes coded by candidate genes within
additive, dominant and over-dominant QTLs related to five yield component trait including PBP,
SBP, SPP, KGW and PNP. The rate-limiting enzymes were identified in species yeast, mouse, and
Human. (a) the number of genes per enzyme for additive, dominance and over-dominance candidate
genes. (b) the number of genes per rate limiting enzyme for additive, dominance and over-dominance

candidate genes. The P value at the top of bar means significant difference from the additive.
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Supplementary Figure 59 The schematic diagram of regulation model for molecular mechanism of
additive, dominant and over-dominant effect produced by the parallel complementation of two
alleles of one polymorphic site under two independent regulators as the upstream backgrounds. The
grey thick lines show two chromosomes, the red and green bars on which represent the homologous
alleles of the regulators of T and C alleles at target site, respectively; and the function of these regulators
keep constant among P;, P, and F,;. The break and solid pies together represent the required regulator
function that can maximize the output of the homozygote of the corresponding target allele, and the solid
pies represent different regulator functions and thus provide different backgrounds to the target allele. The
colored and black break curves together represent the maximum output of the homozygote in parents or
one allele in F;. The output of T without C or output of C without T does not take effect, and thus
represented by the red or green break curves respectively for allele T or C; and the combined outputs of T
and C can only take effect, as indicated by the cross solid curves. HA:HA means the complementation of
the hidden additive effect of allele T and the hidden additive effect of allele C, in that the output of allele
T is additive but non-functional itself and that of allele C does too; and HpD:HD and HD:HD are similar.

HpD means hiden partial dominant.
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Supplementary Figure 60 The schematic diagram of regulation model for molecular mechanism of
additive, dominant and over-dominant effect produced by the sequential complementation of two
alleles of one polymorphic site under two independent regulators as the upstream backgrounds. The
grey thick lines show two chromosomes, the red and green bars on which represent the homologous
alleles of the regulators of T and C alleles at target site, respectively; and the function of these regulators
keep constant among P;, P, and F;. The break and solid pies together represent the required regulator
function that can maximize the output of the homozygote of the corresponding target allele, and the solid
pies represent different regulator functions and thus provide different backgrounds to the target allele. The
colored and black break curves together represent the maximum output of the homozygote in parents or
one allele in F;. The output of T without C or output of C without T does not take effect, and thus
represented by the red or green break curves respectively for allele T or C; and the output of T following
that of C or the output of C following that of T can only take effect, as indicated by the solid curves.
HA:HA means the complementation of the hidden additive effect of allele T and the hidden additive
effect of allele C, in that the output of allele T is additive but non-functional itself and that of allele C
does too; and HpD:HD and HD:HD are similar. HpD means hidden partial dominant.
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Supplementary Figure 61 The schematic diagram of regulation model for molecular mechanism of
additive, dominant and over-dominant effect produced by the parallel complementation of two
alleles of one polymorphic site under two independent regulators or responsors as the downstream
backgrounds. The grey thick lines show two chromosomes, the red and green bars on which represent
the homologous alleles of the regulators or responsors of T and C alleles at target site, respectively; and
the function of these regulators or resposors keep constant among P, P, and F,. Different numbers of red
and green pies represent the maximum outputs of the homozygotes of allele T and C of target site,
respectively. The doted cylinder or the same size of solid cylinder represent the required regulator or
responsor function that can transform the full maximum output of the homozygote of the corresponding
target allele, with red corresponding to allele T and green to allele C; and the solid cylinders in doted
cylinder represent different regulator or response functions and thus provide different backgrounds to the
target allele. The arrow represents the function process. The transformed output of T without that of C or
the transformed output of C without that of T does not take effect, and thus represented by the red or
green break curves respectively for allele T or C; and the combined transformed outputs of T and C can
only take effect, as indicated by the cross solid curves. HA:HA means the complementation of the hidden
additive effect of allele T and the hidden additive effect of allele C, in that the output of allele T is
additive but non-functional itself and that of allele C does too; and HpD:HD and HD:HD are similar.
HpD means hidden partial dominant.
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Supplementary Figure 62 The schematic diagram of regulation model for molecular mechanism of
additive, dominant and over-dominant effect produced by the sequential complementation of two
alleles of one polymorphic site under two independent regulators or responsors as the downstream
backgrounds. The grey thick lines show two chromosomes, the red and green bars on which represent
the homologous alleles of the regulators or responsors of T and C alleles at target site, respectively; and
the function of these regulators or resposors keep constant among P,, P, and F;. Different numbers of red
and green pies represent the maximum outputs of the homozygotes of allele T and C of target site,
respectively. The doted cylinder or the same size of solid cylinder represent the required regulator or
responsor function that can transform the full maximum output of the homozygote of the corresponding
target allele, with red corresponding to allele T and green to allele C; and the solid cylinders in doted
cylinder represent different regulator or response functions and thus provide different backgrounds to the
target allele. The arrow represents the function process. The transformed output of T without that of C or
the transformed output of C without that of T does not take effect, and thus represented by the red or
green break curves respectively for allele T or C; and the transformed outputs of T following the
transformed output of C or the transformed outputs of C following the transformed out of T can only take
effect, as indicated by the solid curves. HA:HA means the complementation of the hidden additive effect
of allele T and the hidden additive effect of allele C, in that the transformed output of allele T is additive
but non-functional itself and that of allele C does too; and HpD:HD and HD:HD are similar. HpD means

hidden partial dominant.
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Supplementary Figure 63 The simulated diagram of regulation model for molecular mechanism of
additive and dominant effect produced by single site in relation to the assembly of functional trimer
ABA. (a) The schematic diagram depicting the assembly of trimer ABA. In this model, the nonfunctional
dimer AB can compete component B against the functional trimer ABA. (b) The simulated curve of ABA
concentration in the equilibrium state with different concentrations of subcomponent A and keeping
subcomponent B constant. The sigmodial curve indicates that the sensitivity of ABA concentration to the
concentration of A will decrease along with the decrease of background sufficiency as denoted by the
increased ratio between A and B, and a nearly complete dominant effect will occur when the
concentration of A reaches nearly 2X that of B. (c) The dominant degree of the timer ABA produced by
different concentrations of subcomponent A in two parents (X; and X»). (d) The simulated curve of ABA
concentration in the equilibrium state with different concentrations of subcomponent B and keeping
subcomponent A constant. The curve indicates that the sensitivity of ABA concentration to the
concentration of B will decrease and nearly lost along with the decrease of background sufficiency as
denoted by the increased ratio between B and A. (e¢) The dominant degree of the timer ABA produced by
different concentrations of subcomponent B in two parents (X; and X,). All the simulated results
indicated that the non-additive effect usually generates under insufficient background. Detail of the model

and the values of parameters can be found in supplementary note.
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Supplementary Figure 64 The expression level of associated candidate genes within additive (A)
and over dominant (OD) QTLs. (a) The expression level of associated candidate genes of SPP QTLs in
young panicles of Nipponbare. (b) The expression level of candidate genes of SPP QTLs in the young
panicles of 9311 and PA64S. (c) The expression level of associated candidate genes of KWG QTLs in the
embyro of Nipponbare. (d) The expression level of associated candidate genes of PNP QTLs in the root
of Nipponbare. The raw data of gene expression in (a), (¢) and (d) were obtained from the database of
RiceXpro. 1 time, 2 time and >=3 times means those candidate genes within the QTLs that can be

detected in 1, 2, and 3 or more than 3 situations among four combinations under two environments.
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Supplementary Figure 65 The theoretical population size with at least one homozygous genotype of
all advantage alleles in different generations of two parents with different numbers of polymorphic
loci (from 1 to 10). Here, we calculate the population under the hypothesis that there is no linkage
between loci and all loci are randomly combined; L1 - L10 mean the locus number from 1 to 10; F2 - F10

mean the self-crossing generations from 2 to 10.



