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1) Baseline Machine Learning
1.1. Support Vector Regression (SVR)
Insensitive loss function (ε-insensitive loss):

This means deviations smaller than 0.1 are ignored, while only errors larger than 0.1 are penalized.
Primal optimization problem:

subject to

Here:
w = model weight vector
b = bias term
ϕ(xi) = mapping of input into high-dimensional feature space
ξi, ξi∗​ = slack variables, allowing tolerance for violations
10 = regularization penalty controlling tradeoff between margin width and error tolerance

RBF (Radial Basis Function) kernel:

This kernel transforms data into a higher-dimensional space to handle non-linear relationships.

Dual optimization problem (Lagrangian form):

Here:
αi,αi∗​ = Lagrange multipliers
The dual form allows the kernel trick to avoid explicit computation in high-dimensional space

Prediction function:

This combines support vectors weighted by their multipliers.

1.2. Linear Regression (LR)
Model formulation:

Here:
y = response vector
X = design matrix of predictors
β= regression coefficients
ε= error term

Prediction function:


Loss function (least squares):


Parameter solution (ordinary least squares estimator):


1.3. Lasso Regression (L1-regularized linear regression)
The formulation introduces an additional L1 penalty to enforce sparsity in β:

Here:
λ= regularization strength
Encourages many coefficients to shrink exactly to zero → feature selection

1.4. Gradient Boosted Decision Trees (GBDT)
An ensemble method that builds trees sequentially. Each new tree fits the residual errors of the previous model:
Base learner: regression tree
Loss function: typically squared error for regression or log loss for classification
Update rule:

where  is the new weak learner, and  is the learning rate.

2) Mechanistic Mapping, Surgical Feasibility, and Comparative Validation
Additional analyses and justifications were considered to enhance the translational and mechanistic value of DeepPoint-DBS. First, a symptom-specific mapping was proposed to differentiate the subthalamic nucleus (STN) subregions and corresponding field gradients that mediate tremor, rigidity, and bradykinesia. Using diffusion tractography–based connectomic analysis, symptom improvements could be aligned with distinct motor network pathways. This would directly connect DeepPoint-DBS predictions to mechanistic neuroscience, thereby strengthening the overall impact of the study.
Second, several points were identified for integration into the discussion or limitation sections to address feasibility and clinical applicability. These included (1) demonstrating the feasibility of predicting effective stimulation parameters prior to the initial DBS programming session, showing that DeepPoint-DBS can reasonably predict the corresponding stimulation parameters' therapeutic efficacy, (2) demonstrating that surgeons could obtain effective stimulation parameter combinations from multiple predictions of therapeutic efficacy, and (3) proposing, as a long-term direction, integration into closed-loop DBS devices for automated adaptive programming. These points would emphasize both immediate translational potential and long-term clinical scalability. Finally, to highlight novelty and superiority, a head-to-head comparison with current state-of-the-art approaches was suggested. DeepPoint-DBS could be compared against volume of tissue activated (VTA) and field threshold models, atlas-based methods such as Lead-DBS pipelines, and convolutional neural network (CNN)–based predictive frameworks. Such comparisons would establish DeepPoint-DBS as an advancement over existing methodologies by demonstrating improved accuracy, mechanistic interpretability, and real-time clinical usability.



Supplementary Figures
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Supplementary Figure 1. GUI of lead-DBS.
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[bookmark: OLE_LINK36][bookmark: OLE_LINK49]Supplementary Figure 2. End-to-end PointNet++ Architecture for Predicting MDS-UPDRS III Scores in Parkinson’s Disease via 3D Point Cloud Processing. The network consists of a feature extraction stage with three Set Abstraction modules, followed by a fully connected regression head composed of three dense layers.
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Supplementary Figure 3. Machine learning pipeline after feature engineering. Statistical features of spatial coordinates and electric field properties were extracted and used for model training.
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