

Mapping wild boar density across Europe: combining spatial models and density estimates

Graham Smith

graham.smith@apha.gov.uk

Animal and Plant Health Agency

Joaquin Vicente

Instituto de Investigación en Recursos Cinegéticos -IREC (CSIC-UCLM-JCCM)

Simon Croft

Animal and Plant Health Agency

Daniel Warren

Animal and Plant Health Agency

José A. Blanco-Aguiar

Instituto de Investigación en Recursos Cinegéticos -IREC (CSIC-UCLM-JCCM)

Pelayo Acevedo

Instituto de Investigación en Recursos Cinegéticos -IREC (CSIC-UCLM-JCCM)

Tancredi Guerrasio

University of Sassari

Massimo Scandura

University of Sassari

Marco Apollonio

University of Sassari

João Carvalho

University of Aveiro

Rita Tinoco Torres

University of Aveiro

Nuno Pinto

University of Aveiro

Guilherme Ares-Pereira

University of Aveiro

Carlos Fonseca

University of Aveiro

Oliver Keuling

University of Veterinary Medicine Hannover

Nikica Šprem

University of Zagreb
Alexander Gavashelis
Ilia State University
Niko Kerdikoshvili
Ilia State University
Vasili Shakun
Scientific and Practical Center of the National Academy of Sciences of Belarus for Bioresources
Valérie De Waele
Public Service of Wallonia
Alain Licoppe
Public Service of Wallonia
Radim Plhal
Mendel University in Brno
Claudio Bicho
Palombar – Associação de Conservação da Natureza e do Património Rural
Iván Gutiérrez
Palombar – Associação de Conservação da Natureza e do Património Rural
João Santos
Palombar – Associação de Conservação da Natureza e do Património Rural
Elena Buzan
University of Primorska
Boštjan Pokorny
Slovenia & Slovenian Forestry Institute
Dragan Gačić
Faculty of Forestry
Alper Ertürk
Kastamonu University
Anil Soyumert
Kastamonu University
Stoyan Stoyanov
University of Forestry
Gradimir Gruychev
University of Forestry
Sonia Illanas
Instituto de Investigación en Recursos Cinegéticos -IREC (CSIC-UCLM-JCCM)
Javier Fernandez -Lopez
Instituto de Investigación en Recursos Cinegéticos -IREC (CSIC-UCLM-JCCM)
Sándor Csányi
Hungarian University of Agriculture and Life Sciences

Kamila Plis

Mammal Research Institute of the Polish Academy of Sciences

Tomasz Podgóński

Czech University of Life Sciences Prague

Stefania Zanet

Università degli Studi di Torino

Ezio Ferroglio

Università degli Studi di Torino

Research Article

Keywords:

Posted Date: October 18th, 2025

DOI: <https://doi.org/10.21203/rs.3.rs-7526029/v1>

License: This work is licensed under a Creative Commons Attribution 4.0 International License.

[Read Full License](#)

Additional Declarations: Competing interest reported. The authors declare no competing interests, except for editorial board members listed as co-authors: Ezio Ferroglio, Stefania Zanet, Pelayo Acevedo, Massimo Scandura.

Abstract

The wild boar population in Europe has been growing in recent decades prior to the arrival of African swine fever (ASF), which has now spread across much of eastern Europe. We combined two independent sources of wild boar data: occurrence sightings and hunting bag. We combined these with environmental predictors and used them in two species distribution modelling approaches, a Maxent approach for occurrence data and a GLMM for the hunting bag, to produce output at the European level. The output of these models was then combined with robust and comparable density estimates from 77 sites across Europe to produce a density estimate and total population size for each country. The output indicates a total population of wild boar in Europe between 13.5–19.6 million individuals prior to the hunting season each year in the core wild boar range prior to the appearance of ASF. Overall, there is good agreement between these two approaches although the estimates can vary substantially for some countries. Although the output may need to be adjusted where local factors substantially affect the population (e.g., areas of range spread) the output can be used for assessing risk of disease spread and effect of management. We propose that the availability of density estimates from the European Observatory of Wildlife will permit robust population estimates for other species of interest.

Introduction

The population of wild boar (*Sus scrofa*) in Europe has been steadily increasing in recent decades, even as hunting pressure has remained stable or declined (Gaspar et al. 2025; Massei et al. 2015). However, this trend is based on hunting data that are not consistently collected across Europe, making it difficult to accurately assess population dynamics and density (More et al. 2018).

One major consequence of rising wild boar densities is the heightened risk of disease outbreaks. African swine fever (ASF) was first detected in the European Union in 2014 in Lithuania, Poland, Latvia and Estonia (EFSA 2015) and has since spread both locally and through human-related activities (EFSA et al. 2020). While some success has been achieved in controlling long-distance spread through strong management strategies (European Commission 2019; Licoppe et al. 2023; Smith et al. 2022), ASF continues to expand, significantly reducing populations of both wild boar and domestic pigs (Sauter-Louis et al. 2021).

Wildlife management across Europe is fragmented, with ASF control strategies varying between countries (Vicente et al. 2019). These differences also influence hunting pressure in unpredictable ways, making it difficult to use hunting records to infer wild boar density after ASF has emerged.

To understand the impact of ASF and its management on wild boar populations, it is essential to obtain accurate estimates of population density before disease arrival and to continue monitoring afterward. Density estimates are more informative than relative abundance indices because they provide absolute figures needed for effective disease surveillance, risk assessment, and population management. They also help address conflicts involving wild boar and assess the ecological carrying capacity of habitats. Unlike relative indices, density values are directly comparable across regions and time.

Reliable methods exist for estimating wild boar density at local scales (ENETWILD consortium et al. 2018b). At a broader scale, high-quality hunting statistics, when collected at fine spatial resolution, can be used to model long-term trends in relative abundance across Europe (ENETWILD-consortium et al. 2022c; ENETwild consortium et al. 2019). To improve these models, it is necessary to compile and validate wild boar occurrence and abundance data and calibrate them using accurate local density estimates.

In this study, we combined two updated spatial modelling approaches (one based on occurrence data and the other on hunting data) with reliable density estimates from across Europe (ENETWILD-consortium et al. 2022b; ENETWILD-consortium et al. 2023). Using predictions at a 2x2 km resolution from the European Observatory of Wildlife (EOW) platform (ENETWILD-consortium et al. 2022a: <https://wildlifeobservatory.org/>) and recent literature (from 2015 onward), we calibrated these models to produce density maps for wild boar in Europe. We then estimated the total wild boar population size by country and evaluated the results.

Methods

Density data

Wild boar density data were collected from 83 different locations, primarily in late summer or early autumn using the Random Encounter Model (REM) approach (Rowcliffe et al. 2008), as detailed in Table S2. A few additional data points were sourced from published literature. We only included data from areas where African swine fever (ASF) had not been detected in wild boar at the time of density estimation, based on the latest updates from the EU ASF Zoning measures (DG Health and Food Safety; see Fig. 1). To ensure data quality and consistency, we applied the following selection criteria: (1) methodological reliability – only studies that followed the field and analytical protocols recommended by the ENETWILD consortium (ENETWILD consortium et al. 2018b) were included; (2) estimate uncertainty – each density estimate had to include a measure of uncertainty, specifically the coefficient of variation; (3) georeferenced data – the exact location of each study area had to be clearly georeferenced. The resulting density estimates ranged from 0.18 to 74 wild boar per square kilometre. The highest densities were typically found in protected or peri-urban areas, where population control is limited and food availability is higher.

Occurrence model

Sightings of terrestrial mammals, including wild boar, were obtained from the Global Biodiversity Information Facility (GBIF) on December 8, 2023 (<https://doi.org/10.15468/dl.au5w7a>). The data were filtered to include only: human observations with a coordinate uncertainty of 2 km or less (to match a 2x2 km ETRS grid cell); unique records (duplicates with the same date, location, and species were removed); sightings recorded after 1985; and observations within the terrestrial landmass of Europe.

To focus on wild boar distribution before the introduction of ASF, we separated sightings into pre- and post-ASF periods. ASF outbreak data were sourced from WAHIS/WOAH, which provided the date and location of confirmed cases in wild boar. The earliest outbreak date in each region (based on GADM level 1 administrative boundaries) was used to classify sightings accordingly (see Fig. 1).

To account for survey effort and species range limitations in distribution modelling: survey effort was estimated using sightings of other medium-to-large terrestrial mammals, serving as a proxy for observer activity (Coomber et al. 2021; Croft and Smith 2019; Phillips and Dudík 2008) and stable species range (Fig. 2) was defined using data from (IUCN 2021) and Map of Life (Burgin et al. 2020; Mammal Diversity Database 2020; Wilson et al. 2009–2019).

Environmental variables used in the model included climate, land cover/use, topography, and human influence (see Table S1). To reduce multicollinearity, a Variance Inflation Factor (VIF) analysis was conducted, removing variables with VIF scores above 2 (Naimi et al. 2014).

We used Maxent (Phillips et al. 2004), a presence-background modelling approach, to estimate habitat suitability. While Maxent does not use true absence data, it provides a relative measure of habitat suitability, which is sufficient for our goal of estimating relative abundance. To reduce spatial bias caused by clustered observations (spatial autocorrelation), we applied spatial thinning. This involved randomly subsampling occurrence points to ensure a minimum distance between them and systematically increasing the thinning distance until the model's training AUC (Area Under the Curve) peaked, indicating the best balance between reducing bias and retaining information (see Fig. 3). A thinning distance of approximately 60 km was found optimal, aligning with known wild boar dispersal distances (Santini et al. 2013) and a deterministic thinning method, geoThin (Smith et al. 2023), was used to generate a single, reproducible model.

Using the model output and reliable wild boar density estimates from the EOW (Table S2), we created a Pan-European density map as follows. Each study site with a known density was assigned a boundary polygon which were rasterised at a 1×1 km resolution. Habitat suitability values from the model were extracted for each raster cell with a known density. A generalised linear model (GLM) was then fitted with wild boar density as the response variable and habitat suitability as the predictor, using a gamma distribution and identity-link function due to the right-skewed nature of the density data. The model was applied across Europe to predict wild boar densities. For areas with suitability scores below 0.34 (the suitability threshold estimated using Maxent), density was set to zero, assuming wild boar absence. Finally, the density map was clipped by country boundaries to calculate mean density, and total population estimates per country. The transferability of both models were assessed by producing a Multivariate Environmental Similarity Surface (MESS), which highlights the differences between the environmental space occupied by model training and model projection data (Elith et al. 2010).

Hunting model

To calibrate the hunting yield-based model into wild boar population densities, we first predicted hunting yield (HY) at a 10×10 km resolution, following the methodology developed by the (ENETWILD-consortium et al. 2022c). The response variable used in the model was HY density (Fig. 4), defined as the maximum number of individuals hunted annually between the 2015 and 2020 hunting seasons, divided by the area in square kilometres.

We applied the ENETWILD framework for wild ungulates (ENETWILD-consortium et al. 2021; ENETWILD-consortium et al. 2022c), using a generalised linear model (GLM) with a negative binomial distribution and a logarithmic link function to identify the most relevant eco-geographical predictors of HY (Cameron and Trivedi 2013). To avoid multicollinearity, we assessed predictor variables using the Variance Inflation Factor (VIF) and excluded any with a VIF above 2. The model was trained on 80% of the data, with the remaining 20% used for validation. Final model selection was based on a forward-backward stepwise procedure based on the Akaike Information Criterion (AIC) (Akaike 1974).

To evaluate model performance, we created calibration plots by comparing the mean observed HY within percentile-based intervals of predicted HY from the validation dataset. Ideally, these values should align along the identity line, indicating accurate predictions (Pearce and Ferrier 2001). We also assessed model performance across four European bioregions and tested calibration both with and without zero-density values.

From the wild boar density dataset, we used the 77 ASF-free sites where hunting was practiced. For each site, we extracted the median predicted density of hunted animals within buffer zones of 5, 10, and 15 km. We then modelled density at each spatial scale using a generalised linear mixed model (GLMM). In these models, the response variable was the log-transformed density, while the fixed effects included the log-transformed area of the sampling location (in hectares) and the log-transformed hunting yield. Bioregion was included as a random effect. We compared models across the three spatial resolutions using AIC to identify the most parsimonious model. This best-fitting model was then used to convert hunting yield data into wild boar population density estimates at a 2×2 km resolution across Europe.

Results

Occurrence model

A single habitat suitability model was produced (Fig. 5), and its performance was evaluated by analysing the contribution of different environmental variables. The results showed that factors such as growing season length, precipitation during the warmest quarter of the year, moderate broad-leaved tree cover, herbaceous vegetation, and cropland together accounted for almost half of the model's predictive power (Table S3). The MESS analysis revealed only a few regions where environmental conditions were not well represented in the training data (Fig. 5, top right), indicating where the model's predictions were most unreliable. The final model achieved a training AUC score of 0.89, suggesting strong predictive

performance. Finally, the suitability scores were converted into absolute density estimates to support further analysis (Fig. 6).

Hunting model

The hunting yield model output (individuals hunted per km²) for wild boar at 10x10 km is shown in Fig. 7, also indicating that only few areas are beyond the environmental domain according to MESS analyses.

The calibration plots for wild boar (Fig. 8) demonstrated strong predictive performance across all bioregions, indicating that the model effectively captures the spatial distribution patterns. Removing zero values from the validation datasets had little impact on the results; in fact, the model's performance slightly improved without them, while still maintaining good predictive accuracy in all regions. A clear density gradient was observed across the continent, with medium to high densities concentrated in Central, Western, and Southern Europe. In contrast, densities declined toward the north and east, with a more scattered pattern of medium to low densities.

The model also predicted moderate to high densities in southern Sweden and Norway, likely influenced by the similarity in climatic conditions to those in the Western bioregion, which may have shaped the model's projections in these areas.

Calibration of predictive models into densities

The results of the model at three spatial scales indicated that a 15 km buffer was the best option (Table 1) as this had the lowest AIC score, so the parameters for this model were determined (Table 2).

Table 1
Results of the general linear mixed models (GLMMs) for each spatial resolution showing the Akaike Information Criterion (AIC) score, R² marginal (effects only of fixed factors) and R² conditional (effects of both fixed and random factors).

Spatial resolution	AIC	R ² m	R ² c
5 km	162	0.32	0.37
10 km	161	0.32	0.37
15 km	159	0.35	0.40

Table 2
The parameters of the hunting yield model.

	Estimate	t-value	p-value
Intercept	5.01	4.153	***
log(surface)	-0.47	-3.406	**
log(HYs)	0.59	3.068	**

The modelled wild boar density estimation was obtained by fitting the surface of the study area to the median value in the dataset (3,602 ha) and results calculated at a 2x2 km resolution (Fig. 9).

Comparison of the two approaches

These two independent approaches were then compared at a country level (Table 3) for mean density and calculated total population size. Total estimates for each of the models ranged from 14.6 to 21.9 million wild boar considering all countries, including those where the wild boar is absent (Ireland), recently present in expansion (e.g. Norway, Finland, The Netherlands, UK) or relict (Denmark, Albania), as well as the European part of Russia. When ignoring these countries to better stick to current distribution range of wild boar, it resulted in a reduction to 13.5 million (for occurrence model) and 19.6 million (for hunting yield model).

Although for some countries (e.g. Russia, Slovenia, Switzerland) there were discrepancies in the population estimate according to the methodology applied (Table 3), in general there was a clear association between the estimates obtained by country (Fig. 10).

Table 3

The predicted pre-ASF mean density and calculated population size of wild boar for European countries from the two models. Hunting data are for the hunting year ending (e.g. 2020/21 is referred to 2021).

Country	Occurrence model		Hunting model		Comments
	Mean density (km ⁻²)	Total population	Mean density (km ⁻²)	Total population	
Albania*	3.40	97,817	5.09	143,264	May be overestimated: hunting banned since 2014 to address a decline in population
Armenia	1.70	50,448	1.64	36,540	No reliable hunting data
Azerbaijan	1.34	115,612	No predictions obtained		No reliable hunting data
Austria	0.49	41,119	4.80	396,208	51,758 hunted in 2022 (ENETWILD)
Belarus	3.73	773,085	2.10	432,108	48,074 hunted in 2014 (ENETWILD)
Belgium	2.42	74,231	4.61	137,175	36,390 hunted in 2014, before ASF (ENETWILD). Strong expansion and population grown recent years
Bosnia and Herzegovina	2.99	152,739	6.68	332,933	3,087 hunted in 2022 (ENETWILD)
Bulgaria	2.80	311,989	3.79	406,330	45,224 hunted in 2017 (ENETWILD)
Croatia	3.72	212,433	5.63	302,804	52,381 hunted in 2022 (ENETWILD)
Czechia	1.13	88,994	3.96	305,602	240,011 hunted in 2020 (ENETWILD)
Denmark*	0.85	36,881	4.42	187,303	177 hunted in 2022 (ENETWILD), almost eradicated due to population control
Estonia	3.61	164,297	2.43	106,989	32,580 hunted in 2014, before ASF (ENETWILD). After ASF, 13,525 in 2023
Finland*	0.56	188,598	0.08	23,481	Population expanding north, 1,413 hunted in 2022 (ENETWILD), Limited

Country	Occurrence model	Hunting model	Comments
			population and distribution in the south.
France	3.15	1,733,519	5.54 3,006,666 842,802 hunted in 2022 (ENETWILD)
Georgia	1.96	137,204	5.66 348,208 No reliable data on total hunting bag.
Germany	2.11	755,040	4.61 1,625,229 Underestimated, 881,886 hunted in 2020 (ENETWILD), before ASF.
Greece	3.90	517,142	5.77 755,493 53,488 hunted in 2018 (ENETWILD). Strong expansion and population grown recent years
Hungary	2.91	271,148	3.36 312,080 168,289 hunted in 2019 (ENETWILD)
Ireland**	0.80	56,490	No predictions were obtained Mostly absent, only recent escapes from farms
Italy	3.18	955,936	5.85 1,749,584 313,080 hunted in 2022 (ENETWILD). Limited population and distribution (increasing) in Sicily (8.5% of Italy's total land area)
Kosovo	4.32	46,808	5.07 53,361 Few wild boar hunted and recorded annually (ENETWILD)
Latvia	3.52	228,036	2.58 164,108 50,956 hunted in 2016 (ENETWILD) when ASF impacted the country.
Lithuania	3.02	196,530	2.41 155,562 48,317 hunted in 2015 (ENETWILD) before ASF. After ASF, hunting bag is currently above 50% of pre-ASF bag.
Moldova	0.66	22,356	1.42 47,065 2,623 hunted in 2019 (ENETWILD)
Montenegro	3.16	42,158	5.47 74,450 1,157 hunted in 2019 (ENETWILD)
The Netherlands**	1.84	69,275	5.06 179,254 3,793 hunted in 2023 (ENETWILD). Strong expansion and population grown recent years
North Macedonia	3.52	87,706	4.57 106,920 1,893 hunted in 2020 (ENETWILD)

Country	Occurrence model	Hunting model	Comments
Norway**	0.74	240,122	2.06 597,872 449 hunted in 2021 (ENETWILD). Reduced number of wild boar in recent expansion from Southern border with Sweden
Poland	2.55	797,511	3.36 1,048,028 376,008 hunted in 2020 (ENETWILD)
Portugal	4.31	395,618	4.60 398,820 37,789 hunted in 2015 (ENETWILD)
Romania	2.04	485,394	1.93 454,465 52,090 hunted in 2019 (ENETWILD)
Serbia	3.43	267,955	2.90 221,142 15,228 hunted in 2022 (ENETWILD)
Slovakia	2.34	114,819	3.31 158,215 75,223 hunted in 2020 (ENETWILD)
Slovenia	0.23	4,652	7.14 137,138 19,927 hunted in 2022 (ENETWILD). Strong population growth recent years
Spain	3.48	1,760,443	4.82 2,406,359 434,542 hunted in 2022 (ENETWILD). Approximately 85% of the surface is legally enabled for hunting. However, in less than 1% of the 10x10 km grid cell of the Spanish mainland there is no evidence of wild boar.
Sweden	0.94	424,252	0.99 415,735 119,972 hunted in 2022 (ENETWILD). Less than a third of the country's surface (but increasing) presents well established populations. Strong growth in recent years
Switzerland	0.13	5,473	4.28 174,207 14,078 hunted in 2022 (ENETWILD). Strong population growth in recent years
Turkey	1.43	1,116,278	3.16 2,301,372 No reliable data available on the total hunting bag.
Ukraine	2.07	1,241,825	1.83 1,039,803 11,167 hunted in 2015 (ENETWILD)
United Kingdom*	1.24	303,132	4.65 1,110,033 450 hunted in 2019 (ENETWILD). Few thousand

Country	Occurrence model	Hunting model	Comments
			individuals in localized areas.
Total excluding *relict/small populations and/or in limited areas	13,477,138	19,610,699	This total still includes Sweden, a country at the limit of wild boar range.
Total	14,585,065	21,851,906	

* Total excluding relict populations or where wild boar is only recently present and/or in limited areas, inc. Russia. Azerbaijan was not included since no predictions were obtained for the hunting data model.

**Relict or only recently present in limited areas.

Discussion

This work marks a milestone in wildlife monitoring at the European level. For the first time, to our knowledge, we combined spatial modelling with local density estimates using a harmonised approach to produce calibrated density maps for a terrestrial vertebrate species. This achievement was made possible through a long-term monitoring framework that applies rigorous data quality standards and includes detailed metadata to assess data reliability.

A key enabler of this approach was the development of a European-wide network of “observation points” under the European Observatory of Wildlife (ENETWILD-consortium et al. 2024). These sites follow common protocols to generate harmonised and comparable wildlife density data. In this study, we applied updated spatial modelling techniques, based on both occurrence and hunting data, alongside reliable density estimates from across Europe. This allowed us to make two independent estimates of wild boar densities and total population numbers by country.

The need for harmonised wildlife monitoring across Europe is urgent. While hunting data alone show a steady increase in wild boar numbers; from 2.2 million harvested annually around 2010 (Massei et al. 2015), to over 3 million by 2017 (Linnell et al. 2020), and nearly 4 million in recent years (ENETwild consortium et al. 2024). These figures did not previously allow for reliable estimates of total population size. Our methodology now enables such estimates, using validated predictions of habitat suitability and relative abundance.

Estimating wild boar density (individuals per unit area) is especially important given the species’ continued expansion despite the impact of ASF. Local density estimates, combined with national and continental-scale modelling, provide more meaningful insights than relative indices alone.

These estimates are valuable for several reasons. First, they help clarify the ecological, economic, and social impacts of wild boar populations. Second, they support more effective management at local,

regional, and international levels, informing control efforts, logistics, and adaptive strategies. Third, harmonised methods make data comparable across countries, improving coordination. Finally, accurate density and population size estimates are essential for disease risk assessment and control planning, especially for managing outbreaks or endemic diseases like ASF. Understanding population thresholds for disease spread, persistence, or fade-out is critical for designing effective interventions, including vaccination and population control.

The approach

Estimating the absolute population size of wild mammals is inherently challenging due to methodological inconsistencies across countries. National estimates often rely on different techniques, making them difficult to compare or combine. In this study, we explored two independent approaches to estimate wild boar population density and size across Europe.

The first approach uses occurrence data from the Global Biodiversity Information Facility (GBIF), collected over many years through citizen science and biodiversity surveys. The second relies on recent hunting yield data, gathered at the finest spatial resolution available. Both datasets were calibrated using robust local density estimates, primarily derived from a consistent methodology applied across Europe (ENETWILD-consortium et al. 2023).

Importantly, these two approaches are entirely independent, with expert input limited to defining the geographic extent of wild boar populations in Europe.

These methodologies have been developed and refined over recent years (ENETwild consortium et al. 2018a; ENETwild consortium et al. 2019; ENETwild Consortium et al. 2018c) and represent the best available tools for continental-scale population estimation. While future improvements may allow for integration of these methods, they currently provide the most reliable estimates of wild boar abundance across Europe (ENETWILD-consortium et al. 2024).

The estimates

The estimated pre-hunting season wild boar population in Europe, prior to the spread of ASF, was approximately 13.5 million individuals based on occurrence data, and 19.6 million based on hunting data. These figures exclude countries with minimal or no wild boar presence and do not correspond to a specific year, as ASF first emerged in Georgia in 2007 and reached the Baltic States by 2014, subsequently spreading across Eastern Europe.

Despite this, these estimates can be considered indicative of the expected population size before 2024 in many countries, assuming stable hunting pressure. As wild boar continue to expand into new regions, such as the UK and Sweden, some national estimates remain uncertain. In some cases, they may be inaccurate due to local factors like intensive population control (e.g., Denmark) or limited hunting activity (e.g., Albania).

The occurrence model predicted significantly higher populations in north-eastern countries (Belarus, Finland, Latvia) and lower populations across a band of countries from northwest to southeast Europe (including the UK, Denmark, the Netherlands, Germany, Switzerland, Czech Republic, Austria, Slovenia), as well as Georgia, Turkey, and Moldova. These latter countries often fall along the transition zone between low and high densities in the hunting model (see Fig. 4). Notably, some of these countries (e.g., the UK, Norway, Denmark, the Netherlands) lack long-standing, widespread wild boar populations despite suitable habitat, which may also explain discrepancies between the two modelling approaches.

Croft et al. (2025) highlighted that several European countries lacked sufficient occurrence data to reliably model species distributions. These countries span both ends of the data quality spectrum and are not necessarily those with poor hunting data (see ENETWILD-consortium et al. 2021). Therefore, it remains unclear which method, occurrence or hunting data, is more accurate. Each has strengths: hunting data can yield reliable estimates from a few years of records, while occurrence data require longer-term datasets.

The spatial patterns of wild boar abundance derived from hunting data align well with previous studies and ENETWILD reports. Overall, the results are consistent with known wild boar distribution. After European roe deer (*Capreolus capreolus*), wild boar is the most widespread ungulate in Europe, inhabiting a wide range of environments: from forests and scrublands to agricultural areas and high-altitude regions with harsh winters. For species lacking reliable hunting data, occurrence models remain the only viable option. We advocate for the development of harmonized wildlife monitoring systems across Europe to ensure standardized, high-quality data collection—critical for managing ASF and other wildlife diseases.

In the 2021/2022 hunting season, European countries reported a total wild boar harvest of approximately 3.7 million animals. This figure excludes countries with relict or recently established populations, as well as regions like Russia, the Caucasus, and Turkey, where hunting data are unavailable or less reliable. Since some hunted animals may go unreported or be poached, this is a conservative estimate. Assuming a minimum annual harvest rate of 33%, this implies a population of at least 11.1 million wild boar in these areas. Accounting for underreporting and the presence of wild boar in non-hunted areas, the total population likely falls within the range of 13.5–14.6 million (occurrence model for current distribution and extrapolated to all Europe, respectively) or 19.6–21.8 million (hunting model for current distribution and extrapolated to all Europe, respectively).

Some density estimates included areas where wild boar are absent (e.g., northern Sweden, Balearic Islands). Models were calibrated using pre-main harvest season densities—typically from late summer to early autumn—when populations are at their peak. This may partly explain why model predictions exceed estimates based solely on hunting data.

However, these figures should be interpreted on a country-by-country basis, as wild boar distribution, data quality, hunting coverage, and population dynamics vary widely. For example, in Spain—where 85% of the land is legally open to hunting—wild boar are present in nearly all 10x10 km grid cells. In contrast,

well-established populations occupy less than one-third of Sweden's territory, where the species has greatly increased its range and population during the last two decades.

Despite ASF, the average annual hunting bag has increased by 4% over the past decade, about 120,000 more wild boar have been hunted each year (see Fig. 11). As populations continue to grow, our projections are expected to align more closely with hunting-based estimates, reflecting the species' full potential in terms of abundance.

Overall, we believe our country-level estimates of total wild boar populations are broadly consistent with expectations. However, some discrepancies remain between modelling approaches and across specific countries (see comments in Table 3).

A key strength of predictive models is their ability to estimate population sizes across the species' entire range, including areas with limited or no data. One such example in our study is the Caucasus region, where wild boar population dynamics differ notably from much of Europe. In this region, socio-cultural and regulatory factors play a significant role. Ethnic differences in hunting practices have a marked impact: some groups hunt wild boar year-round, placing considerable pressure on local populations, while others refrain from hunting due to cultural traditions, creating localized refuges.

Enforcement of wildlife protection laws also varies widely. Outside protected areas, illegal year-round hunting is common in some countries and may pose a threat to wild boar populations. Even within designated reserves, enforcement is often inconsistent. As a result, models—particularly those based on environmental predictors and maximum hunting yields—may overestimate pre-ASF wild boar populations in some countries. These projections may instead reflect the species' potential population size, which could be reached if current positive trends continue.

We have produced wild boar density estimates for all European countries prior to the emergence of ASF. While these estimates should be refined over time through improved data quality and methodology, the next logical step is to assess the impact of ASF on population densities using available data. However, once ASF emerges or is anticipated in a region, hunting practices typically shift, rendering hunting-based estimates unreliable in the short term. In contrast, general mammal sighting data are less affected by disease outbreaks, though they require several years of data collection to establish robust relationships between sightings and habitat.

The most reliable approach would be to monitor wild boar densities before and after ASF outbreaks using consistent methodologies. This is one of the goals of the EOW, which aims to include as many study sites as possible and improve their representativeness. Still, given the limited number of sites likely to conduct such monitoring, extrapolating results across Europe will always involve a degree of uncertainty.

This work highlights the urgent need for harmonised wildlife monitoring across Europe to ensure consistent and standardised data collection. Beyond this specific case, our approach demonstrates how

calibrated density maps can enhance the monitoring of terrestrial wildlife across the continent.

Declarations

Competing Interests

The authors declare no competing interests, except for editorial board members listed as co-authors: Ezio Ferroglio, Stefania Zanet, Pelayo Acevedo, Massimo Scandura.

Funding

The authors thank the European Food Safety Authority and the European Union's Horizon Europe Project 101136346 EUPAHW for funding. Views and opinions expressed are those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Executive Agency. Neither the European Union nor the granting authority can be held responsible for them. J. Carvalho was supported by a research contract (DOI: 10.54499/CEECIND/01428/ 2018/CP1559/CT0012; ref. CEECIND/01428/2018). R.T. Torres was supported by a research contract (DOI:10.54499/2021.00690. CEECIND/CP1659/CT0029; ref. 2021.00690.CEECIND/CP1659/CT0029) and thanks to FCT/MCTES for the financial support UID/50006 + LA/P/0094/2020 (doi.org/10.54499/LA/P/0094/2020). P Acevedo and J Vicente were partly funded by AGROBOAR project (PID2022-142919OB-100) funded by MCIU/AEI/ <https://doi.org/10.13039/501100011033/> and FEDER, UE. and JA Blanco-Aguiar was funded by the European Commission – NextGenerationEU, through Momentum CSIC Programme (*MNT24-IREC-01*). N. Šprem, B. Pokorny and E. Buzan were supported by the HRZZ and ARIS Weave project "Wild boar fear of hunting: effects on space use, stress, and meat quality" (HRZZ- IP-2022-10-7502 and ARIS-N4-0350). D. Gačić was supported by a research contract (The Ministry of Science, Technological Development and Innovation of the Republic of Serbia, Agreement on financing the scientific research work of NIO in 2025, registration number 451-03-137/2025-03/200169 dated February 04, 2025). E. Buzan was supported also by the Slovenian Research and Innovation Agency programme P1–0386 and the STEPCHANGE European Union's Horizon 2020 Research and Innovation Program under grant agreement No. 101006386, oriented to accelerate collaboration of hunters as citizen scientists in wildlife monitoring. Thanks also to Dr. Norbert Bleier for his invaluable work in the "Gemenc" area, and for the Gemenc Forest and Game Management Co. Ltd. supporting the fieldwork. Several co-authors are supported by the Biodiversa project BIG_PICTURE: Improved transnational monitoring of biodiversity and ecosystem change for science and society project, which encourages implementation and scientific utilization of data obtained with the help of camera-traps (E. Buzan and B. Pokorny, Slovenia: contract number C3360-24-452020).

Author Contribution

Conceptualization: Graham Smith, Joaquin Vicente; Methodology: Simon Croft, Daniel Warren, Pelayo Acevedo, Javier Fernández-López, Sonia Illanas, Jose Antonio Blanco-Aguiar; Formal analysis and investigation: Tancredi Guerrasio, João Carvalho, Rita Tinoco Torres, Nuno Pinto, Guilherme Ares-Pereira, Carlos Fonseca, Oliver Keuling, Nikica Šprem, Dragan Gačić, Alexander Gavashelishvili, Niko Kerdikoshvili, Vasili Shakun, Valérie De Waele, Radim Plhal, Cláudio Bicho, Iván Gutiérrez, João Santos, Elena Bužan, Boštjan Pokorny, Stoyan Stoyanov, Gradimir Grujčev; Writing - original draft preparation: Graham Smith; Data provision (hunting yields, densities): all; Writing - review and editing: all; Funding acquisition: Joaquin Vicente, Graham Smith; Resources: Tancredi Guerrasio, Massimo Scandura, Marco Apollonio; Supervision: Graham Smith, Joaquin Vicente

Acknowledgement

The authors thank the European Food Safety Authority and the European Union's Horizon Europe Project 101136346 EUPAHW for funding. Views and opinions expressed are those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Executive Agency. Neither the European Union nor the granting authority can be held responsible for them. We would like to thank the many people who contributed in the field in all European countries where EOW has been implemented or gave permission to use the sites. Thanks also to Giorgi Sulamanidze for his invaluable assistance in facilitating fieldwork in Lagodekhi National Park, Georgia. We would like to thank Associação de Caçadores de Santulhão, in particular Faustino Pissarro, for making it possible to conduct this study at Zona de Caça Associativa de Santulhão (Vimioso, Portugal). We are also grateful to Miguel Nóvoa (Palombar) for facilitating key contacts in the study area, and to Francesco Turchini, Patrícia Pereira and Maria Iranzo for their help during fieldwork and/or processing photos. J. Carvalho was supported by a research contract (DOI: 10.54499/ CEECIND/01428/ 2018/CP1559/CT0012; ref. CEECIND/01428/2018). R.T. Torres was supported by a research contract (DOI:10.54499/2021.00690. CEECIND/CP1659/CT0029; ref. 2021.00690.CEECIND/CP1659/CT0029) and thanks to FCT/MCTES for the financial support UID/50006 + LA/P/0094/2020 (doi.org/10.54499/LA/P/0094/2020). P Acevedo and J Vicente were partly funded by AGROBOAR project (PID2022-142919OB-100) funded by MCIU/AEI/ <https://doi.org/10.13039/501100011033/> and FEDER, UE. and JA Blanco-Aguiar was funded by the European Commission – NextGenerationEU, through Momentum CSIC Programme (MNT24-IREC-01). N. Šprem, B. Pokorny and E. Buzan were supported by the HRZZ and ARIS Weave project "Wild boar fear of hunting: effects on space use, stress, and meat quality" (HRZZ- IP-2022-10-7502 and ARIS-N4-0350). D. Gačić was supported by a research contract (The Ministry of Science, Technological Development and Innovation of the Republic of Serbia, Agreement on financing the scientific research work of NIO in 2025, registration number 451-03-137/2025-03/200169 dated February 04, 2025). E. Buzan was supported also by the Slovenian Research and Innovation Agency programme P1-0386 and the STEPCHANGE European Union's Horizon 2020 Research and Innovation Program under grant agreement No. 101006386, oriented to accelerate collaboration of hunters as citizen scientists in wildlife monitoring. Thanks also to Dr. Norbert Bleier for his invaluable work in the "Gemenc" area, and for the Gemenc Forest and Game Management Co. Ltd. supporting the fieldwork. Several co-authors are supported by the

Biodiversa project BIG_PICTURE: Improved transnational monitoring of biodiversity and ecosystem change for science and society project, which encourages implementation and scientific utilization of data obtained with the help of camera-traps (E. Buzan and B. Pokorný, Slovenia: contract number C3360-24-452020).

Data Availability

Data is provided within the manuscript or supplementary information files.

References

1. Akaike H (1974) A new look at the statistical model identification. *IEEE Trans Autom Control* 19:716–723. <https://doi.org/10.1109/TAC.1974.1100705>
2. Burgin CJ, Wilson DE, Mittermeier RA, Rylands AB, Lacher TE, Sechrest W (2020) *Illustrated Checklist of the Mammals of the World*. Lynx Editions, Barcelona
3. Cameron AC, Trivedi PK (2013) *Regression analysis of count data*, vol 53. Cambridge University Press, Cambridge, UK
4. Coomber FG, Smith BR, August TA, Harrower CA, Powney GD, Mathews F (2021) Using biological records to infer long-term occupancy trends of mammals in the UK. *Biol Conserv* 264:109362. <https://doi.org/10.1016/j.biocon.2021.109362>
5. Croft S, Smith GC (2019) Structuring the unstructured: estimating species-specific absence from multi-species presence data to inform pseudo-absence selection in species distribution models. <https://doi.org/10.1101/656629>. bioRxiv:656629
6. Croft S, Warren D, Blanco-Aguiar J, Smith G (2025) Predicting the distribution of common wild mammal species across Europe – are there sufficient occurrence data? bioRxiv:2025.2002.2027.640497. <https://doi.org/10.1101/2025.02.27.640497>
7. EFSA (2015) African swine fever. *EFSA J* 13:4163. <https://doi.org/10.2903/j.efsa.2015.4163>
8. EFSA et al. (2020) Epidemiological analyses of African swine fever in the European Union (November 2018 to October 2019). *EFSA J* 18:e05996. <https://doi.org/10.2903/j.efsa.2020.5996>
9. Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. *Methods Ecol Evol* 1:330–342. <https://doi.org/10.1111/j.2041-210X.2010.00036.x>
10. ENETWILD-consortium et al (2022a) Launch of the European Wildlife Observatory platform at 13th international symposium on wild boar and other suids (IWBS 2022) – 6–9 September 2022. *EFSA Supporting Publications* 19:7768E. <https://doi.org/10.2903/sp.efsa.2022.EN-7768>
11. ENETWILD-consortium et al (2022b) Data generated by camera trapping in 40 areas in Europe including East and South Europe: report of the field activities (May 2022). *EFSA Supporting Publications* 19:7456E. <https://doi.org/10.2903/sp.efsa.2022.EN-7456>

12. ENETWILD-consortium et al (2024) Generating wildlife density data across Europe in the framework of the European Observatory of Wildlife (EOW). EFSA Supporting Publications 21:9084E. <https://doi.org/10.2903/sp.efsa.2024.EN-9084>
13. ENETWILD-consortium et al (2023) Wild ungulate density data generated by camera trapping in 37 European areas: first output of the European Observatory of Wildlife (EOW). EFSA Supporting Publications 20:7892E. <https://doi.org/10.2903/sp.efsa.2023.EN-7892>
14. ENETWILD-consortium et al (2021) Update of model for wild boar abundance based on hunting yield and first models based on occurrence for wild ruminants at European scale. EFSA Supporting Publications 18:6825E. <https://doi.org/10.2903/sp.efsa.2021.EN-6825>
15. ENETWILD-consortium et al (2022c) New models for wild ungulates occurrence and hunting yield abundance at European scale. EFSA Supporting Publications 19:7631E. <https://doi.org/10.2903/sp.efsa.2022.EN-7631>
16. ENETwild consortium, Croft S, Smith G, Acevedo P, Vicente J (2018a) Wild boar in focus: Review of existing models on spatial distribution and density of wild boar and proposal for next steps. EFSA Supporting Publications 15:1490E. <https://doi.org/10.2903/sp.efsa.2018.EN-1490>
17. ENETwild consortium, Croft S, Smith G, Acevedo P, Vicente J (2019) Wild boar in focus: initial model outputs of wild boar distribution based on occurrence data and identification of priority areas for data collection. EFSA Supporting Publications 16:1533E. <https://doi.org/10.2903/sp.efsa.2019.EN-1533>
18. ENETWILD consortium et al et al (2018b) Guidance on estimation of wild boar population abundance and density: methods, challenges, possibilities. EFSA Supporting Publications 15:1449E. <https://doi.org/10.2903/sp.efsa.2018.EN-1449>
19. ENETwild et al (2024) consortium. Update on available data on wild boar population and ASF epidemiology Zenodo:<https://doi.org/10.5281/zenodo.10527290>
20. ENETwild C et al (2018c) Analysis of hunting statistics collection frameworks for wild boar across Europe and proposals for improving the harmonisation of data collection. EFSA Supporting Publications 15:1523E. <https://doi.org/10.2903/sp.efsa.2018.EN-1523>
21. European Commission (2019) African Swine Fever: eradication in Czechia confirmed. https://europa.eu/rapid/press-release_MEX-19-1431_en.htm. Accessed 3/10/2019 2019
22. Gaspar M et al (2025) The demographic collapse of hunting in the Iberian Peninsula. *People Nat* 7:765–776. <https://doi.org/10.1002/pan3.10770>
23. The IUCN red list of threatened species (2021) <https://www.iucnredlist.org/>. Accessed 8/12/2023
24. Licoppe A et al (2023) Management of a Focal Introduction of ASF Virus in Wild Boar: The Belgian Experience. *Pathogens* 12:152. <https://doi.org/10.3390/pathogens12020152>
25. Linnell JDC et al (2020) The challenges and opportunities of coexisting with wild ungulates in the human-dominated landscapes of Europe's Anthropocene. *Biol Conserv* 244:108500. <https://doi.org/10.1016/j.biocon.2020.108500>

26. Mammal Diversity Database (2020) Mammal Diversity Database (Version 1.2) Map of Life. 2021. Mammal range maps harmonised to the Mammals Diversity Database. <http://doi.org/10.5281/zenodo.4139818>

27. Massei G et al (2015) Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. *Pest Manag Sci* 71:492–500. <https://doi.org/10.1002/ps.3965>

28. More S et al (2018) African swine fever in wild boar. *EFSA J* 16:e05344. <https://doi.org/doi:10.2903/j.efsa.2018.5344>

29. Naimi B, Hamm NAS, Groen TA, Skidmore AK, Toxopeus AG (2014) Where is positional uncertainty a problem for species distribution modelling? *Ecography* 37:191–203. <https://doi.org/10.1111/j.1600-0587.2013.00205.x>

30. Pearce J, Ferrier S (2001) The practical value of modelling relative abundance of species for regional conservation planning: a case study. *Biol Conserv* 98:33–43. [https://doi.org/10.1016/S0006-3207\(00\)00139-7](https://doi.org/10.1016/S0006-3207(00)00139-7)

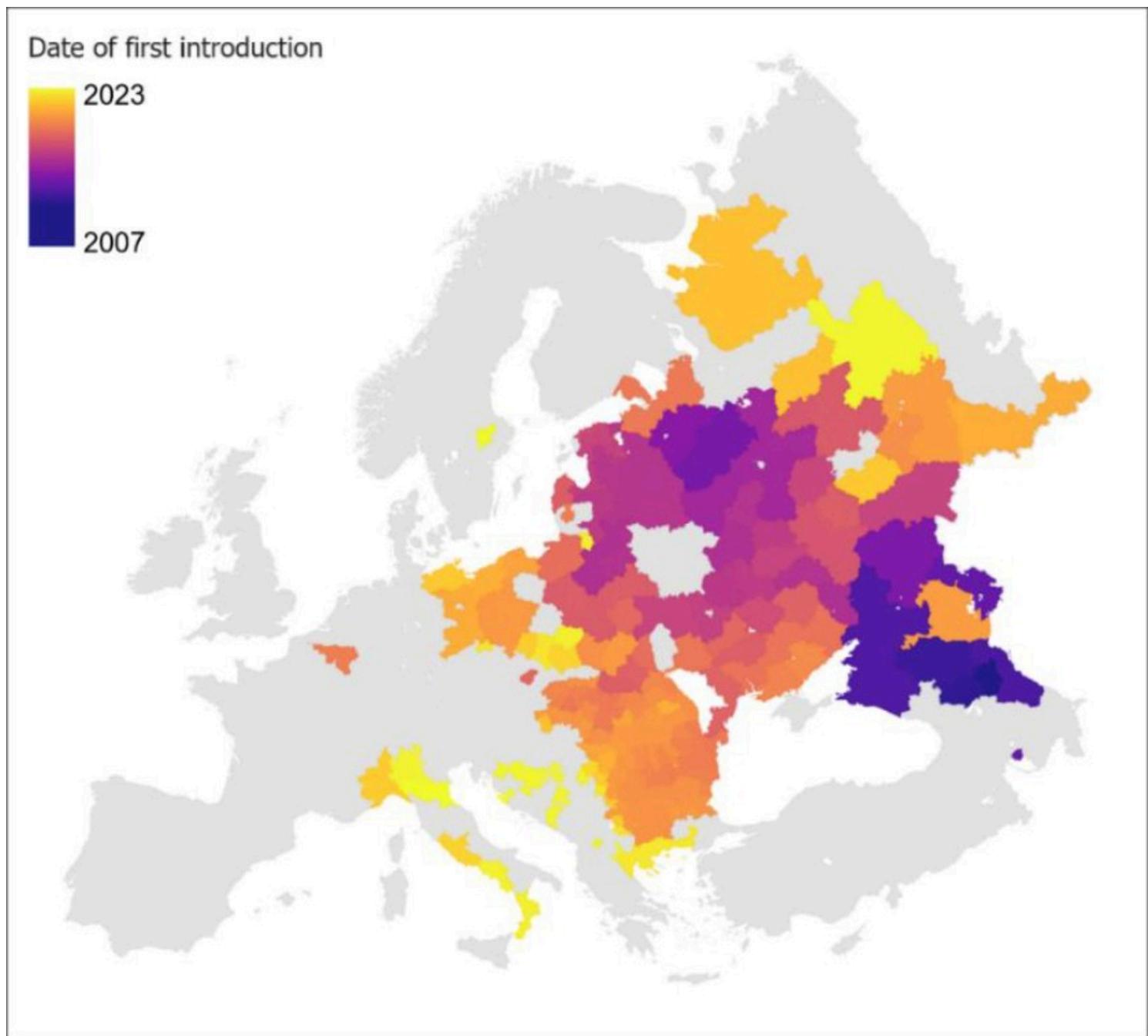
31. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. *Ecography* 31:161–175. <https://doi.org/10.1111/j.0906-7590.2008.5203.x>

32. Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. Paper presented at the Proceedings of the twenty-first international conference on Machine learning, Banff, Alberta, Canada

33. Rowcliffe JM, Field J, Turvey ST, Carbone C (2008) Estimating animal density using camera traps without the need for individual recognition. *J Appl Ecol* 45:1228–1236. <https://doi.org/10.1111/j.1365-2664.2008.01473.x>

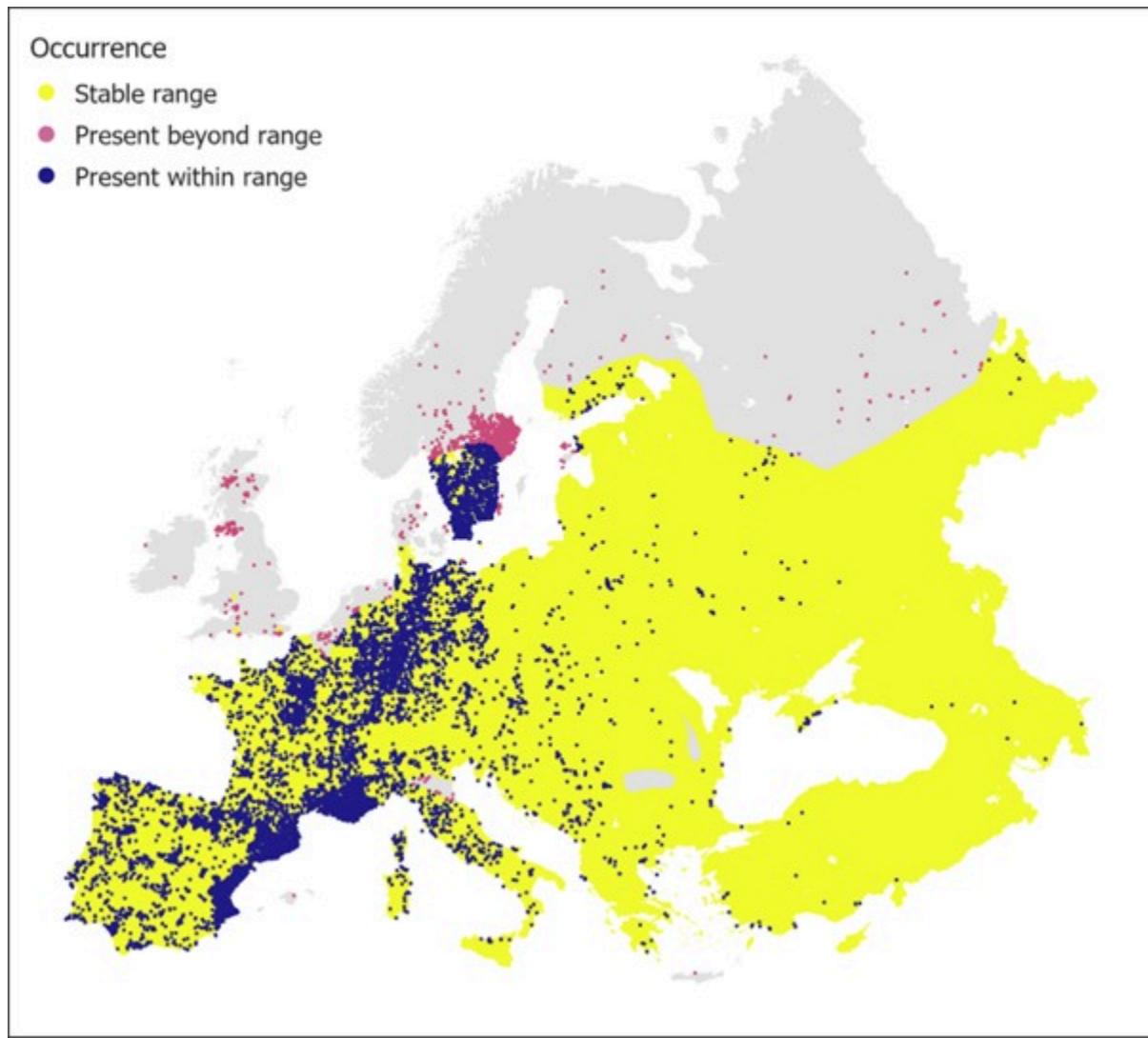
34. Santini L, Di Marco M, Visconti P, Baisero D, Boitani L, Rondinini C (2013) Ecological correlates of dispersal distance in terrestrial mammals. *Hystrix* 24. <https://doi.org/10.4404/hystrix-24.2-8746>

35. Sauter-Louis C et al (2021) African Swine Fever in Wild Boar in Europe—A. *Rev Viruses* 13:1717. <https://doi.org/10.3390/v13091717>

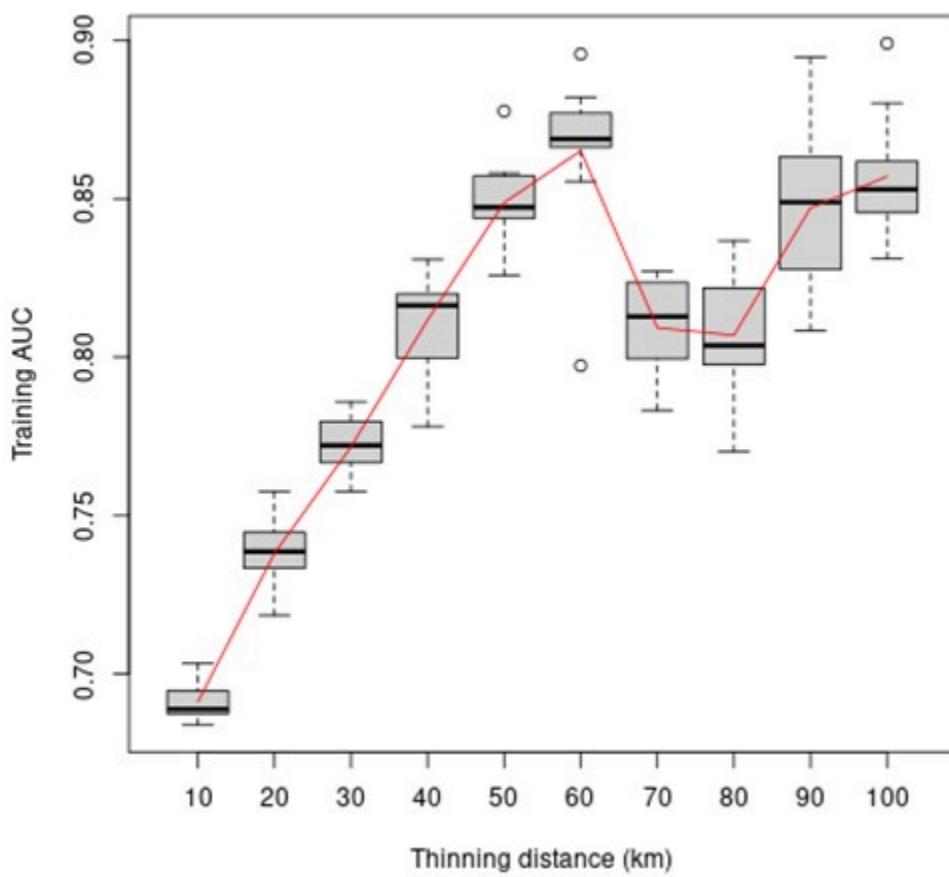

36. Smith AB, Murphy SJ, Henderson D, Erickson KD (2023) Including imprecisely georeferenced specimens improves accuracy of species distribution models and estimates of niche breadth. *Glob Ecol Biogeogr* 32:342–355. <https://doi.org/10.1111/geb.13628>

37. Smith GC, Brough T, Podgórski T, Ježek M, Šatrán P, Vaclavek P, Delahay R (2022) Defining and testing a wildlife intervention framework for exotic disease control. *Ecol Solutions Evid* 3:e12192. <https://doi.org/10.1002/2688-8319.12192>

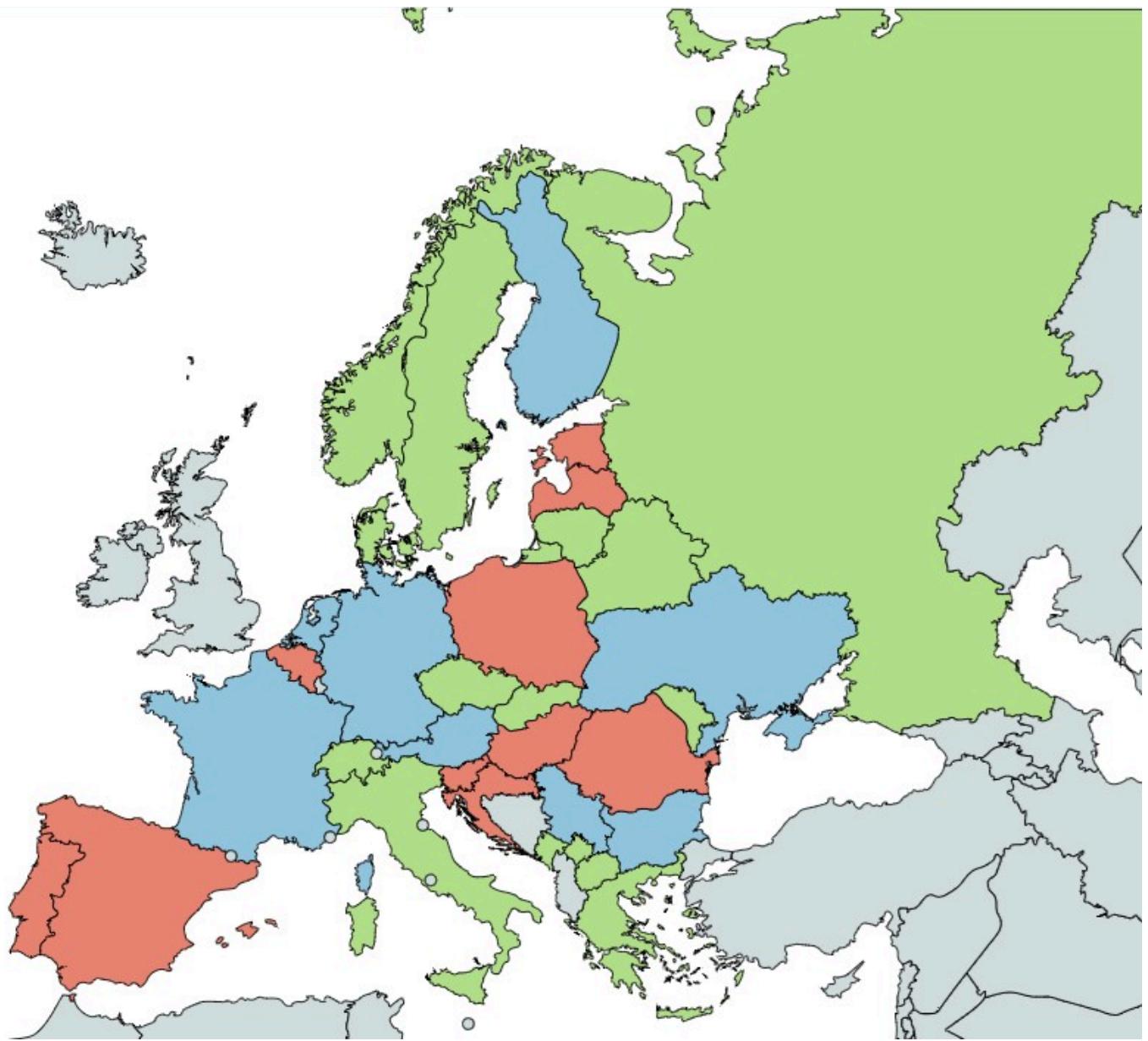
38. Vicente J et al (2019) Science-based wildlife disease response. *Science* 364:943–944. <https://doi.org/10.1126/science.aax4310>


39. Wilson DE, Lacher JTE, Mittermeier RA, Rylands AB (eds) (2009–2019) *Handbook of the Mammals of the World*: (Vol. 1–9). Lynx Editions, Barcelona

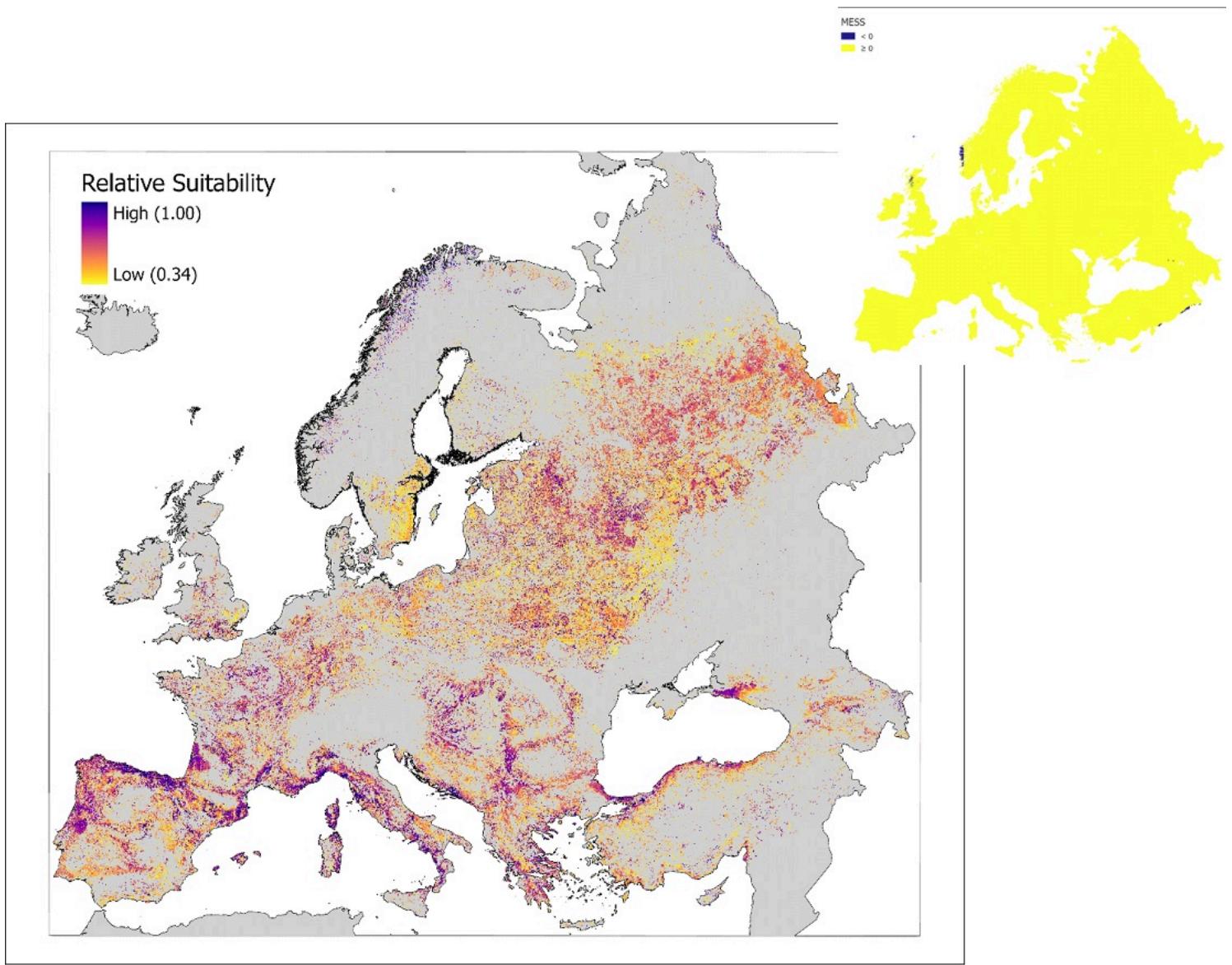
Figures


Figure 1

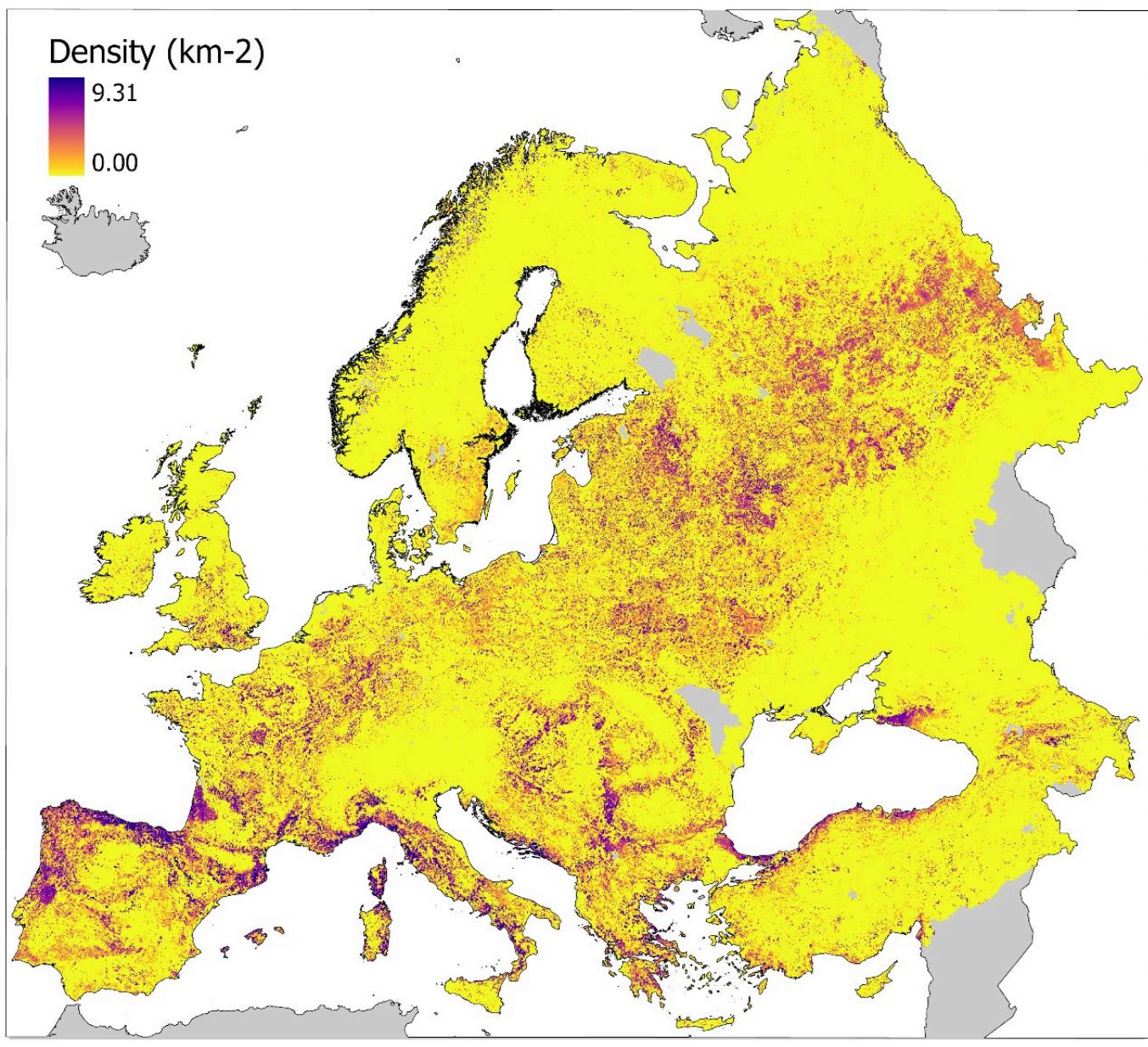
Map showing date of the first ASF outbreaks in wild boar in a specific area. Darker colours denote earlier dates of introduction.


Figure 2

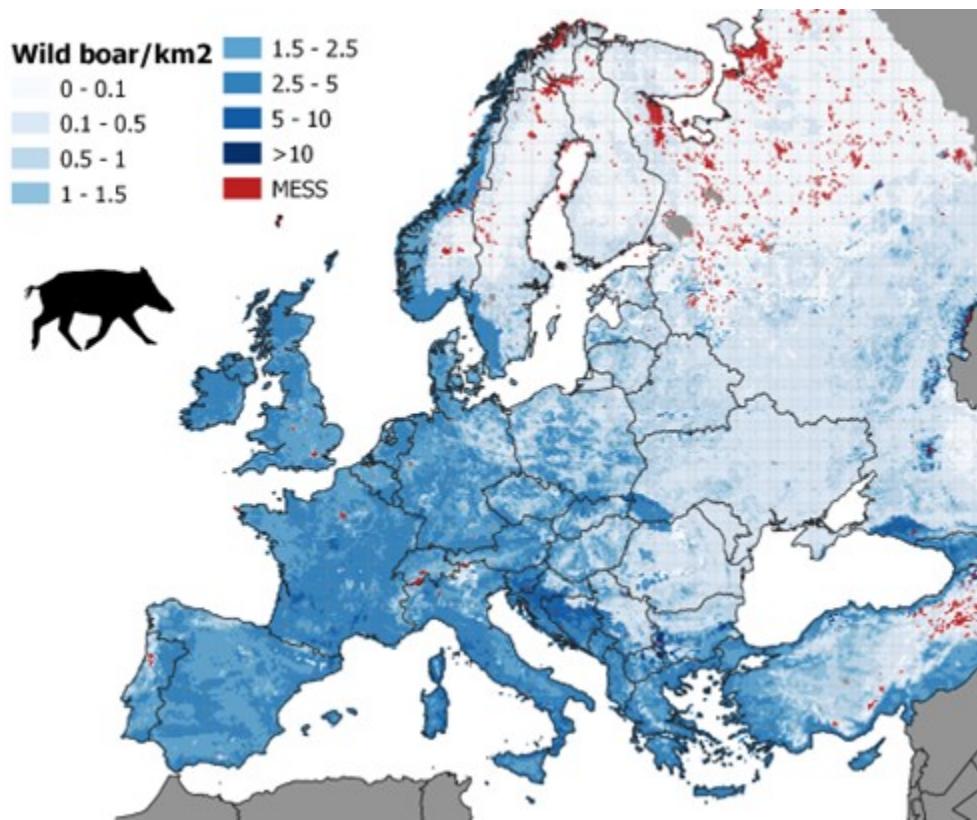
Map showing GBIF presences and the expert-defined “stable” range for wild boar.


Figure 3

Plot showing model performance measured using training AUC based on subsampling of data locations to ensure an increasing minimum spacing. Optimal minimum spacing appears to occur around 60 km which matches the maximum dispersal distance for wild boar.


Figure 4

Resolution of wild boar hunting statistics at national level used to predict hunting yields at 2x2 km: red – hunting ground level data; green – municipality level data; blue- NUTS2 or NUTS3 level data; grey – no data.


Figure 5

Map of predicted habitat suitability for wild boar at 2x2 km. Values below the threshold are grey. Darker colours denote higher probability. Results of the MESS analysis (top right map), showing the coverage of training data in terms of environmental conditions in yellow. Note: predictions were extrapolated to areas beyond the current distribution range of wild boar (Figure 2).

Figure 6

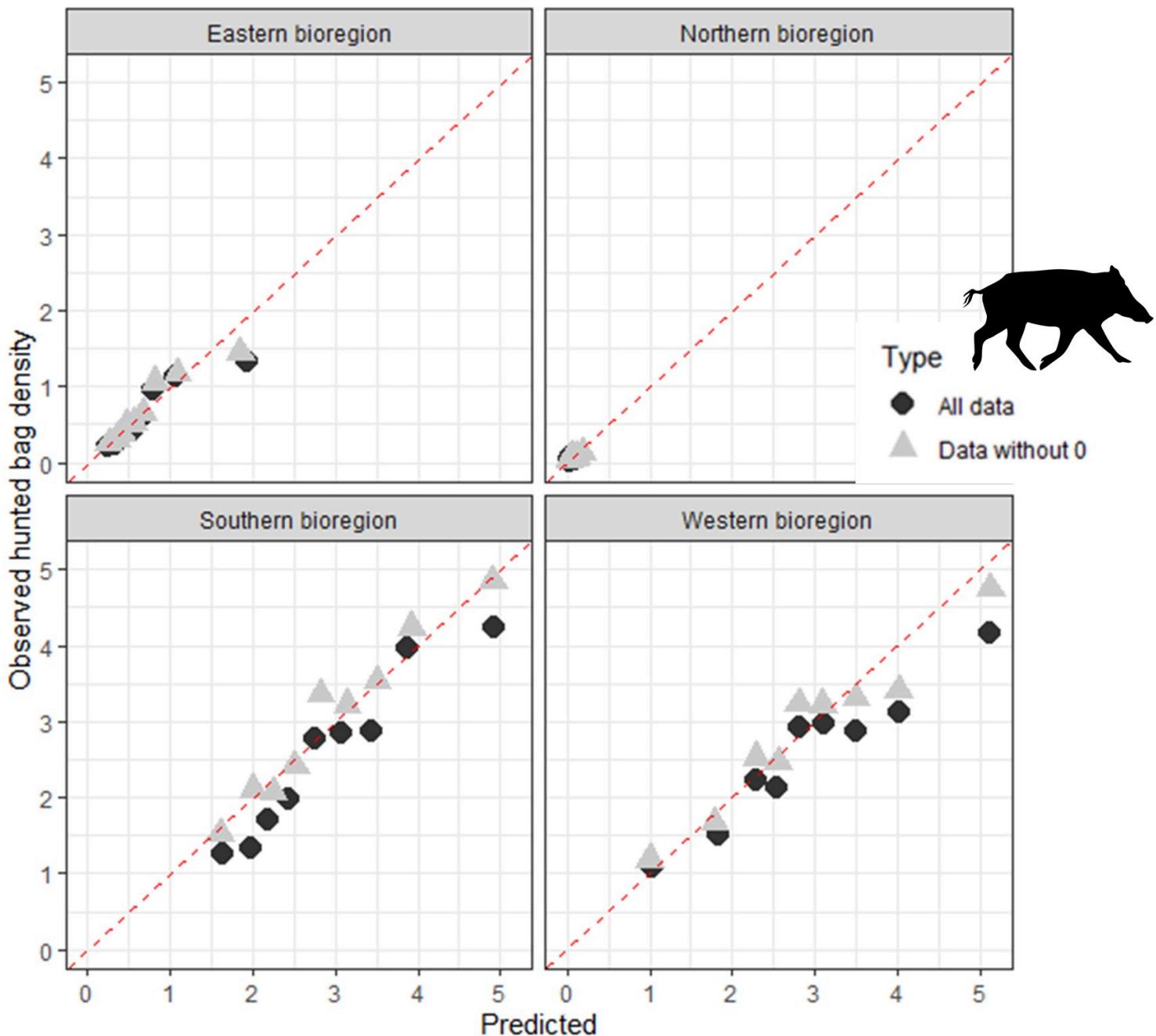
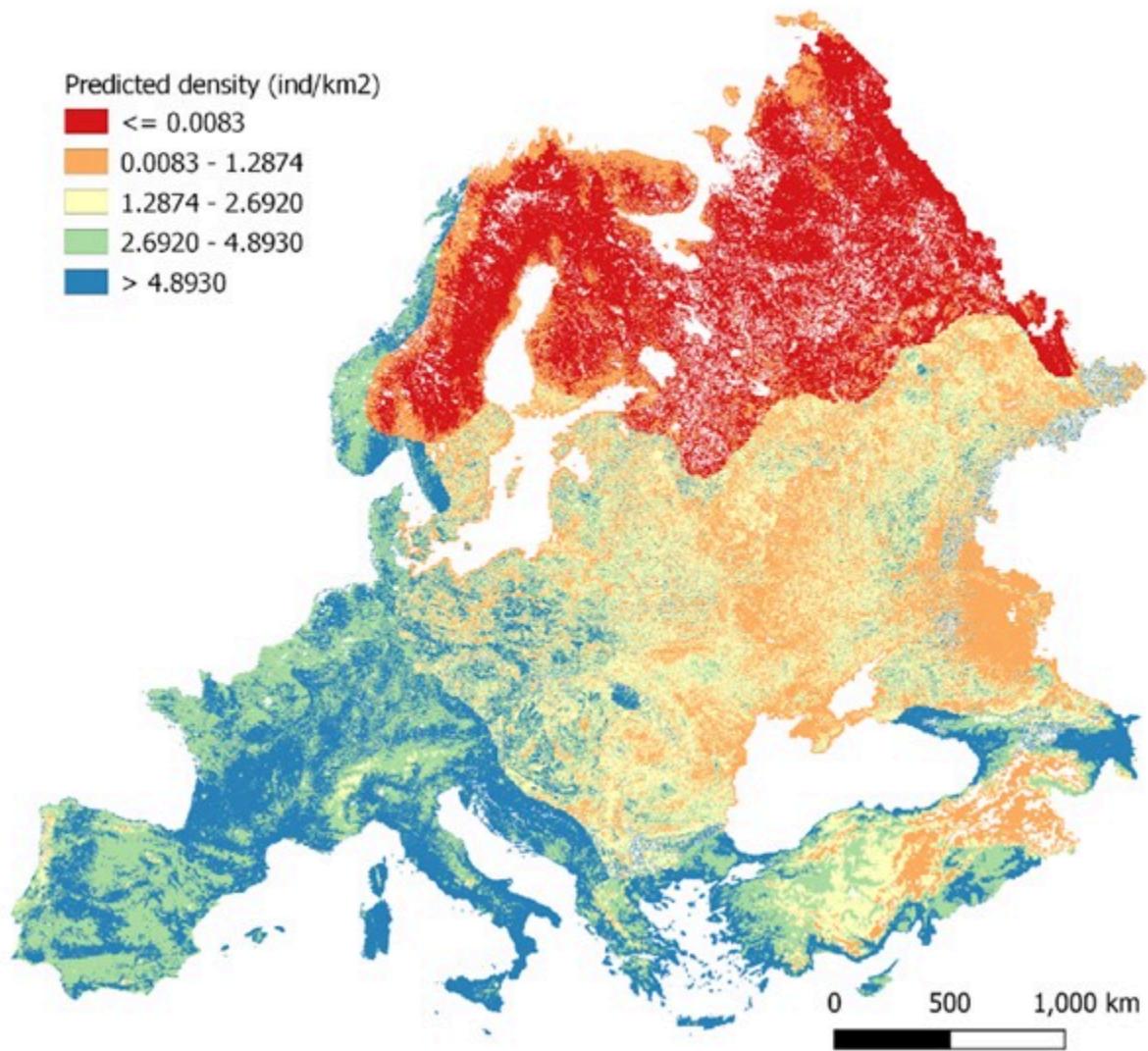
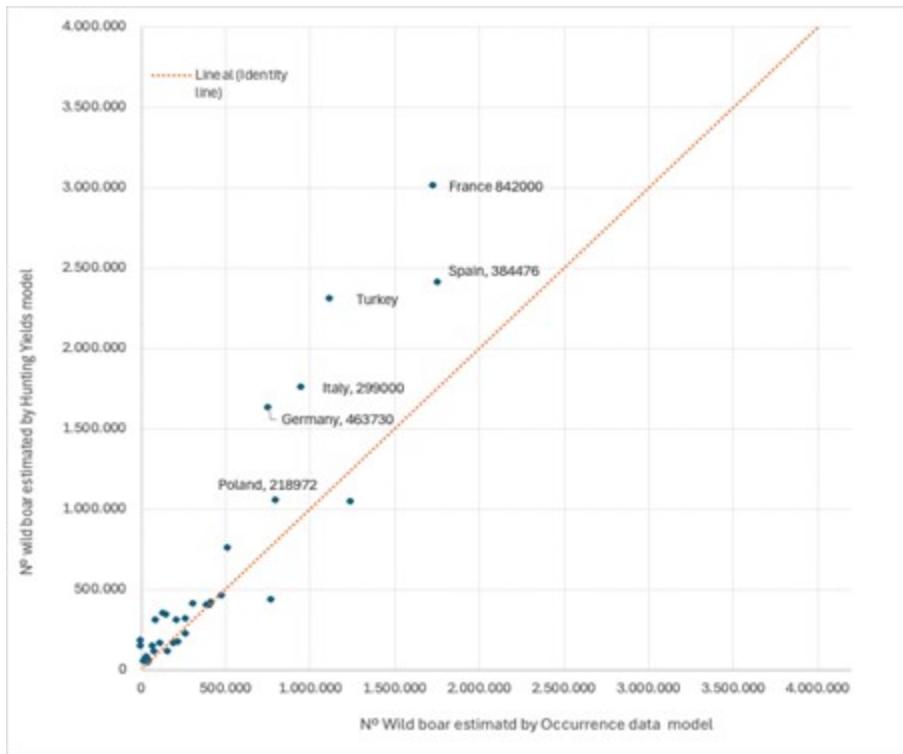

Predicted pre-ASF wild boar density (2x2 km resolution) based on occurrence data. Note: predictions were extrapolated to areas beyond the current distribution range of wild boar (Figure 2).

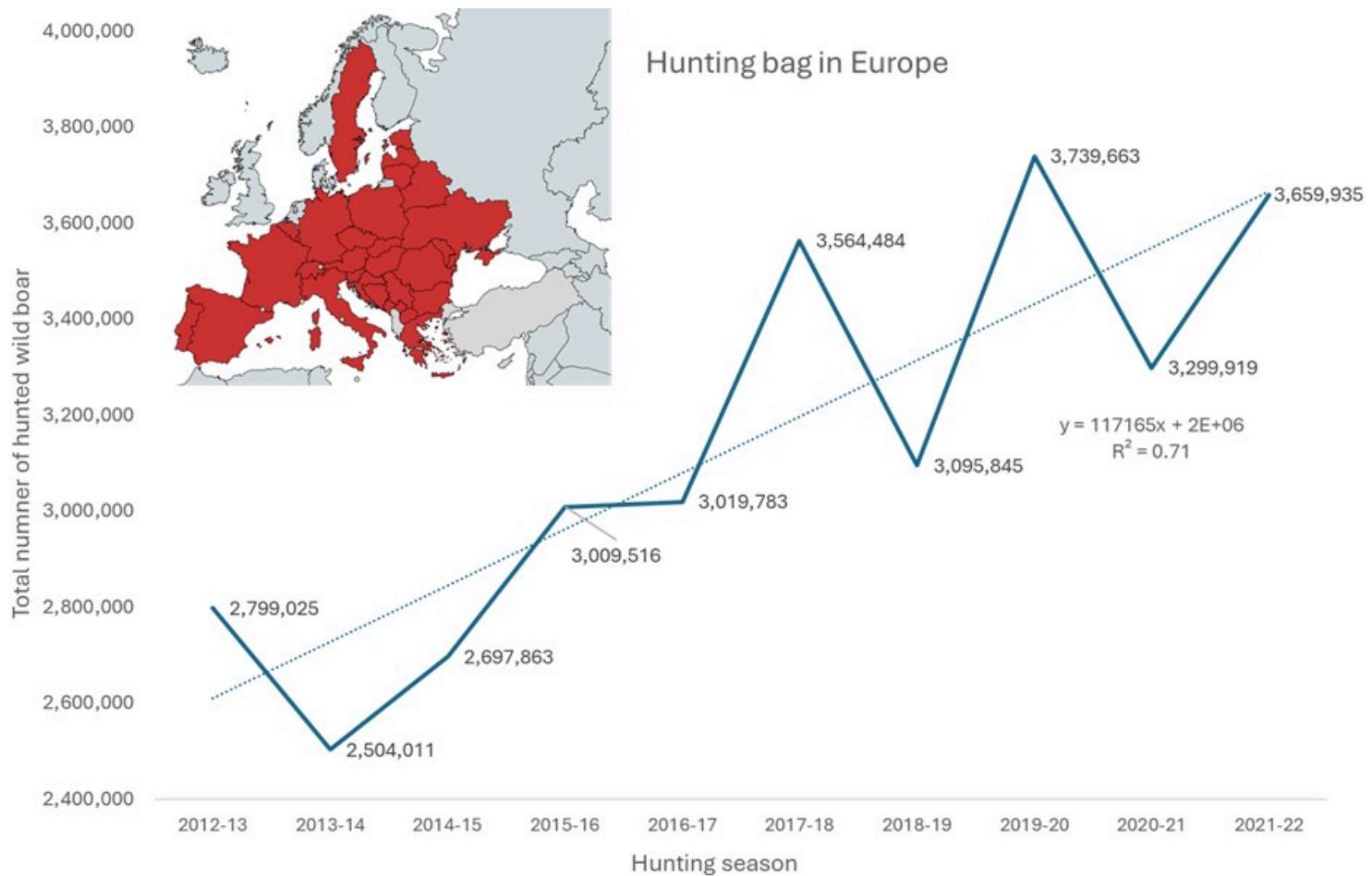
Figure 7


Predicted hunting yield (individuals per km^2) for wild boar at 10x10 km grid. Red areas are beyond the environmental domain according to MESS analyses. Note: predictions were extrapolated to areas beyond the current distribution range of wild boar (Figure 2).

Calibration plot Wild boar


Figure 8

Calibration plot for assessing predictive performance of wild boar HY model for each bioregion of Europe. Plots show the relationship between the predicted hunting yield densities (HY) and the observed ones on the validation datasets.


Figure 9

Predicted pre-ASF wild boar density (2x2 km resolution) after the calibration of predicted hunting yields-based abundance.

Figure 10

Association between total population estimates from the hunting model and the occurrence model by country. Relict populations or those only recently present in limited areas, including Russia, were excluded from the analyses. For those countries with higher numbers, the wild boar hunting bag in season 2020/21 is shown (Data provided by Enetwild Consortium, no data available for Turkey).

Figure 11

The wild boar average annual hunting bag in selected countries, which is still increasing annually by 4% during the last 10 years, about (about 120,000 more wild boar hunted per year (source: ENETWILD data).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- [wildboarineuropev6supp.docx](#)