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Supplementary Text

Dual mechanisms for the cloud fraction change. The ensemble-mean changes in cloud
fraction (6C, shading in Fig. S1 A to C) are much stronger from 40°S to 40°N (roughly the
extended tropics, including the subtropics) than in the extratropics (1). This is particularly true for
changes in high and low clouds, which generally follow the SST change patterns (T*, relative SST
increase deviating from the tropical mean warming), with rs of 0.46 and -0.48, respectively. With
respect to the SST (Fig. S1D), the opposite signs of rs reflect the distinct dynamics between these
cloud types. Briefly, a positive T* value is associated with enhanced convection, which increases
high clouds (2), and with weakened boundary layer stability, which reduces low clouds (3).
Equivalently, cloud tops can rise or fall (4—7), depending on the sign of fraction changes

controlled by the SST patterns.

However, the cloud fraction changes are not entirely determined by the SST patterns, and there
are spatial shifts that vary considerably between cloud types. In particular, low clouds decrease
greatly over the eastern basins in the Pacific and Atlantic Oceans, while high clouds increase
along the equator, except over the Indo-Pacific warm pool where a strong reduction zone extends
towards the subtropics. Most pronounced changes occur where the climatological cloud fraction
is large, e.g., the horizontal correlation between the ensemble-mean §C and C is large (-0.44) for
low clouds. Indeed, these 6C patterns are covered by the stippled areas in Fig. S1 where C is
more than 20%. In addition, strong intermodel spreads (contours) of 6C also appear in these
areas and are highly correlated in space with the ensemble-mean € for high (0.6), middle (0.52),
and low (0.79) clouds. These tropics-wide patterns manifest as beta-style scaling and relate the
strength of the fraction changes to the present-day amounts of clouds, not only at low levels but

for all cloud types.

Such climatological modulation complicates the dynamical interpretation of the cloud fraction
change by generating a large strength disparity between cloud types. In particular, middle cloud
6C is confined by moderate C values in a small region of the subtropical southeastern Pacific,
while leaving an order of magnitude lower change in the vast remaining regions compared to
those in high and low clouds. This is more evident in the vertical transects (Fig. S2 A and B),
where the ensemble-mean §C exhibits a strong contrast between the mid-troposphere (440-680
hPa) and other altitudes, which is consistent with the intermodel spread. As a measure of the
strength of §C, the spread appears to be closely related to the ensemble-mean C (rs > 0.76). In

sum, Fig. S1 qualifies that the fraction changes in all types of clouds are governed by the SST



patterns in terms of sign and by the climatological amounts in terms of strength, which apparently

integrates the pattern effect and beta scaling scheme, respectively.

Intermodel uncertainty in cloud sensitivity and feedback. All individual simulations show
strong spatial correlations between T*and A (Fig. S3A), with ensemble means of 0.55 and -0.53
in the high and low cloud cases, respectively, which are about 0.1 larger than those for §C (Fig.
S3B). This robustly demonstrates the cross-model consistency of the proportional warmer-get-
higher paradigm; nevertheless, rs can vary between models by more than a third of the ensemble
mean. Furthermore, the percentage sensitivity « is antisymmetric between high and low clouds
(rm = -0.56), implying a concurrent strength of T* control between the cloud types in a given
model. Indeed, its very large range even two times of the mean (e.g., -2 to -25% K" in Fig. 3) can
be attributed to a major factor (besides SST), the stability indices controlling the tropical-oceanic
low clouds (3, 8-10). As shown in Fig. S4, they are reshaped by the SST in spatial patterns for
52-76%, and their typically studied spatial-mean changes can explain up to 38% of the
intermodel variability in @. Thus, a is a comprehensive representation of atmospheric dynamics
revealed from a new percentage perspective, which can inclusively constrain key cloud-

controlling factors (11-14).

In the CMIP projections, the original global A is 0.11+0.13, 0.12+0.37, 0.26+0.3, and 0.49+0.65 W
m2 K (90% confidence) for high, middle, low, and total clouds, respectively (Fig. S5). Middle
(44%) and non-obscured low (43%) clouds dominate the intermodel spread of total cloud 4,
mainly due to their diverse changes in shortwave radiation (15). High clouds considerably affect
both solar reflection and infrared absorption, but they tend to offset each other with an intermodel
anticorrelation (rm = -0.96), leaving a small contribution (13%) to the net A uncertainty. Since low
clouds are one dominator of total cloud feedback, we take them as the main example for

examining the intermodel variability (Fig. 3) with our percentage analytical framework.

Interestingly (Fig. S8), total cloud feedback in the tropics has a 37% covariance (rm = 0.61) with
the extratropical feedback, and hence controls 85% of the global uncertainty with rm, of 0.92. For
the main stream of models, the a of non-obscured low clouds is well correlated (-0.59) with the
tropical feedback, accounting for 35% of the intermodel range (Fig. S8C). These robustly couple
a to the global A for total clouds (rm = -0.69) in Fig. 3C, explaining 48% of the intermodel range.
Mainly due to low cloud dissipation in the extratropics, three outlier models contain weak « but
strong 4 to relax their correlation by ~30%, over both the tropics and the globe. Fortunately, a

later investigation will show that their effect is marginal, which supports the robustness of our



constraint. Even when they are included, high cloud « is strongly correlated (0.74) with the global

A, explaining 55% of the variance.

Fractional kernels and SVD patterns. Indeed, the cloud climatology € modulates the fractional
kernels to feature much stronger spatial variations in Fig. S9 compared to the radiative kernels K
(15). The shortwave kernel integrates reflective cooling by total clouds, and the longwave kernel
inherits infrared warming by high clouds. An rs of -0.73 between them indicates the radiative
offset in high clouds, so that solar reflection by low clouds dominates the net kernel, with a minor
contribution from mid-level clouds. Thus, a pronounced net yK appears over the eastern basins,
with maximum spreads around the equatorical oceans, reflecting biases in the cloud simulation
(16, 17) and introducing strong uncertainty into the global cloud feedback via these fractional
kernels. Replacing the CMIP cloud fraction with the MODIS observations can remove this
intermodel variability, leaving a minor spread in y,K only around the Tibetan Plateau due to the

surface shortwave albedo. The replacement also corrects a few biases in the simulation, although

the net YK exhibits quite good skills to resemble y, K with rs = 0.79. These include an
underestimated fraction and elevated tops of low clouds and an overestimated fraction of middle
and high clouds, due to an upward error in the retrieval algorism of cloud height from the satellite
simulator in the CMIP models (18).

We apply the SVD analyses to obtain covariant modes between the global T*and A, for both the
scaled and unscaled cases (Methods). The two leading SVD modes (Fig. S11) explain 45% and
31% of the variance in the unscaled A’ from Eq. 9, and switch ranks in the scaled case to reflect
the efficiency of our substitution. In the horizontal distributions, the tropical clouds are strongly
correlated with the SSTs, e.g., the non-obscured low clouds in modes 1 (-0.57) and 2 (-0.5), and
high clouds in mode 2 (0.56). The zonal-mean modes also feature high rs values: 0.46/0.56 for
high clouds over the Pacific/Indian Ocean, and -0.45/-0.93/-0.55 for low clouds over the
Pacific/Atlantic/Indian Ocean in mode 1; 0.83/0.54 for high clouds over the Pacific/Indian Ocean,

and -0.37/-0.43 for low clouds over the Pacific/Atlantic in mode 2.

Optical depth and outlier models. Our percentage analytical framework explicitly addresses
cloud feedback caused by amount and altitude changes; however, thin-thick cloud transitions also
have a comparable uncertainty contribution (12, 19). Therefore, it is necessary to decompose
cloud feedback (20) and examine whether our constraint has an implicit effect on optical depth
feedback. Fig. S14 compares the feedback components and shows that their uncertainties are
thoroughly reduced in all cloud types, although not always in each stage. The percentage
uncertainty (90% confidence) reductions in the global high, middle, low, and total cloud feedback
are, respectively: 24%, 70%, 36%,18% for cloud amount; 46%, 11%, 58%, and 34% for altitude;



33%, 72%, 54%, and 40% for optical depth. Surprisingly, optical depth is the largest contributor to
constraining total cloud feedback, with a strong effect for each cloud type; in contrast, amount
feedback is only substantially constrained for middle clouds. In summary, our method is most
effective for cloud altitude and optical depth feedbacks, rather than amount feedback as expected

from a constraint on cloud fraction change.

Thus, although we simply sum over all optical depths, this feedback can be implicitly adjusted by
using our constraint in a variety of ways. First, the observational replacement of the climatological
cloud fraction applies to the 7-by-7 clisccp, which can correct the ground truth for the optical
depth change. Second, the amount change relies on a weighted average of the percentage
change across the p-t bins, and the rest of the percentage change remains in the p-t matrix
(submatrices) for total clouds (cloud types). Hence, the 7-level sensitivity substitution of the 7-by-
7 A would affect both the altitude and optical depth feedback by scaling the amount change. Last,
the constricted models also facilitate the most likely SST patterns to avoid some unrealistic
optical depth changes. As a result, Fig. S14 indicates that our constraint is sufficiently effective,

leaving uncorrected parts in the opacity effect and stability change for future studies.

We then formally examine the outlier effects of HadGEM3-GC3.1-LL, UKESM1.0-LL, and
UKESM1.1-LL from CMIP6. Without them, the global total, low, middle, and high cloud feedbacks
(90% confidence) are, respectively: 0.41+0.67, 0.22+0.28, 0.09+0.38, and 0.1+0.14 W m2 K™ for
the original; 0.41+0.31, 0.28+0.24, 0.06+0.11, and 0.07+0.14 W m2 K" for the substituted;
0.46+0.27, 0.33+0.21, 0.07+0.09, 0.06+0.06 W m2 K" for the constrained feedback. It can be
clearly seen that this outlier removal has little effect on all uncertainties, and its most prominent
impact is to reduce the ensemble means. For example, total cloud feedback drops by 0.08, 0.04,
and 0.03 W m? K, which decrease from the original to the constrained feedback. This shows the
robustness of our constraint, as it is the least affected. Furthermore, the main contributors are
higher-level clouds, while low clouds are unaffected. Relative to the uncertainty, this one-ninth

reduction is insignificant, so we prefer to include the outliers in our final results.

Methods

Intermodel statistical analysis. This statistical analysis explores the dynamical interpretations
for tracing the valuable sources of uncertainty, e.g., the contribution of the percentage cloud
sensitivity to cloud feedback. Regular statistics use spatiotemporal fields as inputs, but here we
replace the time axis with the model series to perform intermodel analysis. In particular, the
intermodel correlations and regressions are performed for cloud feedback, and the variances

explained by different factors are estimated as the exclusive R? (to be introduced) for the total



effect. In addition, Student’s t-tests are used to assess the confidence of the correlations using

the following formula:

t, =221 (li),
2 1-r

where fr is the test statistic derived from the correlation r (rs or rm) and the sample size n. All of rm

across the 21 models are above the 90% confidence level. Except for the (percentage) fraction
change in total and middle clouds, all of rs pass the 99.99% confidence tests because the tropical

sample size is at least 4430 for the SST patterns or 270 for the zonal-mean cloud fraction.

As an extension of the EOF, the SVD analysis (21, 22) is a popular multivariate statistical
method, which uses two variables as inputs to identify their patterns with the maximum
covariance. Here we perform intermodel SVD (23, 24) to extract the effect of the SST patterns on
the regional cloud changes with their covariant modes. Two sets of SVDs are applied to the
monthly intermodel anomalies of A and A, in Egs. 5 and 6, respectively. They are both between
the global T* (4-D: x, y, month, model) and cloud changes (6-D: x, y, p, T, month, model) in terms
of the percentage for the extended tropics (40°S—40°N) and the fraction for the outside
extratropics. All of the variables have been concatenated into 2-D matrices with dimensions only
along the model and the combinations of others, and the ensemble mean is removed for each
grid box. A covariance matrix Co = A‘T*/N is then constructed by eliminating the common model

dimension, where t denotes the transpose operator and N represents the number of models.

The SVD function converts Co into a tuple of three arrays E, Z, and F. Each column in E contains
a singular vector for A, as does F for T*, while Z contains the singular values not used here.
These orthonormal singular vectors are identified as the spatial modes and are projected onto
each of the variables to define the corresponding PCs, which are also model-dependent. We then
use the fractional kernels to compute the partial feedback due to the cloud patterns in each of the
SVD modes, and we multiply it by the corresponding PC. This reconstructs the T*related
intermodel variability in cloud feedbacks associated with these modes, which are ranked
according to the individual variances (direct R?) they explain for the intermodel uncertainty in the
total cloud feedback. Finally, the multi-model partial feedbacks reconstructed by the leading SVD
modes are linearly combined to quantify their cumulative variance (25) using the exclusive R?

method below.

Variances explained by linearly interdependent factors. Here we develop an exclusive R?
method to solve the overfitting problem in the variance explanations of the linearly interdependent
factors for the cloud type decompositions and uncertainty attributions. For example, the sum of

the variances (direct R?) explained by the cloud types exceeds 1 for the global shortwave



feedback (Fig. S5A), due to the strong negative correlation of the percetage sensitivity between
high and low clouds. To correct this, we need to remove the part that is repeatedly counted in the
different factors due to their linear dependence. This study involves the situations with 2—4

factors.

Z = A + B is the simplest case, with two factors. The results of the exclusive R? method are
denoted as R? and R for A and B, respectively, and the direct R? values (squared correlations)

are denoted as R?(Z, A) and R?(Z, B). The repetitive part between A and B is double counted (2 x

__ R%(ZA)+R%*(z,B)-1

1)in R?(Z,A) + R?(Z,B), so it is expressed as RZ; = . With the sum guaranteed to

be 1, the exclusive R? can be obtained as follows:

2 _R2
RZ =R*(Z,A) — R3; =M

R = R¥(2,B) - Ry, = A ED)

In the three-factor case, the common part between A, B, and C is overcounted by 6 (3 x 2) times
in R2(Z,A) + R*(Z,B) + R%(Z, ), and that between any two factors is counted twice. For four
factors, the overcounting of the part common to all of them increases to 12 (4 x 3), and those for
fewer factors remain the same as in the simpler cases. Consequently, the maximum overcounting
of the common part would reach i x (i — 1) in the case with i factors. All of the situations can be
treated in a similar way to the two-factor case, although the mathematical procedures should

become increasingly complicated.
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Fig. S1. Comparisons of the horizontal distributions between (D) the SST patterns T* (K) and the
cloud fraction change 6C (%) for (A) high, (B) middle, and (C) low clouds. The ensemble mean is
shown by the shading, with cloud and SST changes using the left and right color bars in opposite
schemes, respectively. The intermodel spread is presented by the contours (Cl: 1% for 6C and
0.125 K for T* darker indicates a greater value). The stippling in (A to C) denotes the regions with
a climatological cloud fraction of >20%, and the dashed lines mark the extended tropics including
the subtropics (40°S—40°N). Here we use the 21 CMIP simulations normalized by the global-
mean surface (air) warming.
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Fig. S2. Comparisons of the oceanic (A and C) zonal means and (B and D) equatorial (5°S—5°N)
meridional means between (A and B) the cloud fraction change &€ (shading, %) and (C and D)
the percentage change in cloud fraction A (shading, %). The stippling indicates that the ensemble
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B) as contours (Cl: 5%; darker indicates a greater value). Here we use the 21 CMIP simulations
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Fig. S3. Spatial correlations in the individual models (solid lines) between the SST patterns T*
and (A) the percentage change A, (B) fraction change &C in total (black) and specific types (color)
of clouds. The dashed lines represent the ensemble means of the solid lines, and their values are
marked with the intermodel spreads. Here we use the 21 CMIP simulations normalized by the
global-mean surface (air) warming.
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Fig. S4. Same as in Fig. 3 but (A to C) for the tropical relationships between the percentage
sensitivity (a) of low clouds (% K™') and the intercepts (K) in the spatial regression of (D) the
stability index changes against the SST patterns. Calculated over the oceans, the stability indices
include: the lower-tropospheric stability (LTS), defined as the 700-1000 hPa difference in the
potential temperature (A); the estimated inversion strength (EIS), which eliminates the lapse rate
change in the free troposphere (B); and the estimated cloud-top entrainment index (ECTEI),
which incorporates a cloud-top entrainment criterion (C). Using the same style as in the left panel
in Fig. 1, (D) compares their regional changes (shading, K) with the SST patterns (contours, K) in
the ensemble mean. It should be noted that the intermodel regressions keep y-x across (A to C).
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Fig. S5. Intermodel scatterplots of the global radiative feedback 4 (W m2 K™") for total clouds and
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the symbols mark the anomalies of individual models that deviate from the ensemble mean,
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Fig. $10. Comparisons of the horizontal (left) and zonal-mean (right) distributions between the
(A) original (1) and (B) substituted (4,) cloud feedback (W m? K-'). The ensemble mean (shading)
is presented with the intermodel spread (contours, Cl: 1 W m? K™'; darker indicates a greater
value). The dashed lines mark the extended tropics for 40°S—40°N and divide the cloud types by
altitude at 440 and 680 hPa. Here we use the monthly-mean cloud radiative kernels, SST and
cloud observations, and 21 CMIP simulations normalized by the global-mean surface (air)
warming.
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Fig. S11. Unscaled intermodel SVD (A to F) mode 1 and (G to L) mode 2 between the T*
anomaly (K) and the anomalous percentage change A’ (%) in the tropical (A and G) high, (B and
H) middle, and (C and /) low clouds, and the zonal mean modes for the (D and J) Pacific, (E and
K) Atlantic, and (F and L) Indian Oceans. Horizontal distributions (A to C and G to /) show A’ as
shading and T* as contours (Cl: 0.1 K; yellow positive, cyan negative; 0 omitted). For zonal
means (D to F and J to L), the left panel compares cloud-type decompositions with 7%, and the
right panel presents clouds (shading) with the simulated fractional net kernel (contours, Cl: 0.05
W m2 %"; yellow positive, cyan negative; 0 omitted). Here we use the 21 CMIP simulations
normalized by the global-mean surface (air) warming.
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Fig. S12. Cumulative variance (%) of the substituted cloud feedback 4, explained by the leading
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SVD modes are reordered according to the individual variances (direct R?) by their responsible
partial feedbacks, and then linearly combined to compute the cumulative variance as the
exclusive R? (Methods). Here we use the monthly-mean cloud radiative kernels, SST and cloud
observations, and 21 CMIP simulations normalized by the global-mean surface (air) warming.
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Fig. S13. Same as in Fig. 4 but for the original cloud feedback 4 and its factor effects evaluated
using the attribution procedure, including the accumulation of the first 12 SVD modes controlled
by the T*, residual factors, fractional kernel biases, and nonlinear T*kernel interaction for (A)
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Fig. S14. Decomposed comparisons between the original cloud feedback 4 (W m2 K') and that
constrained in two stages, for (A) cloud amount, (B) altitude, (C) optical depth, and (D) residual
feedback of all cloud types. For each feedback, the symbol denotes the ensemble mean, with thin
and thick error bars spanning the 90% and 66% (~1 standard deviation) confidence intervals,
respectively. Here we use the monthly-mean radiative kernels, SST and cloud observations, and
21 CMIP simulations normalized by the global-mean surface (air) warming.
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