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Supplementary Text 

Dual mechanisms for the cloud fraction change. The ensemble-mean changes in cloud 

fraction (𝛿𝐶, shading in Fig. S1 A to C) are much stronger from 40°S to 40°N (roughly the 

extended tropics, including the subtropics) than in the extratropics (1). This is particularly true for 

changes in high and low clouds, which generally follow the SST change patterns (T*, relative SST 

increase deviating from the tropical mean warming), with rs of 0.46 and -0.48, respectively. With 

respect to the SST (Fig. S1D), the opposite signs of rs reflect the distinct dynamics between these 

cloud types. Briefly, a positive T* value is associated with enhanced convection, which increases 

high clouds (2), and with weakened boundary layer stability, which reduces low clouds (3). 

Equivalently, cloud tops can rise or fall (4–7), depending on the sign of fraction changes 

controlled by the SST patterns. 
 

However, the cloud fraction changes are not entirely determined by the SST patterns, and there 

are spatial shifts that vary considerably between cloud types. In particular, low clouds decrease 

greatly over the eastern basins in the Pacific and Atlantic Oceans, while high clouds increase 

along the equator, except over the Indo-Pacific warm pool where a strong reduction zone extends 

towards the subtropics. Most pronounced changes occur where the climatological cloud fraction 

is large, e.g., the horizontal correlation between the ensemble-mean 𝛿𝐶 and 𝐶 is large (-0.44) for 

low clouds. Indeed, these 𝛿𝐶 patterns are covered by the stippled areas in Fig. S1 where 𝐶 is 

more than 20%. In addition, strong intermodel spreads (contours) of 𝛿𝐶 also appear in these 

areas and are highly correlated in space with the ensemble-mean 𝐶 for high (0.6), middle (0.52), 

and low (0.79) clouds. These tropics-wide patterns manifest as beta-style scaling and relate the 

strength of the fraction changes to the present-day amounts of clouds, not only at low levels but 
for all cloud types. 

 

Such climatological modulation complicates the dynamical interpretation of the cloud fraction 

change by generating a large strength disparity between cloud types. In particular, middle cloud 

𝛿𝐶 is confined by moderate 𝐶 values in a small region of the subtropical southeastern Pacific, 

while leaving an order of magnitude lower change in the vast remaining regions compared to 

those in high and low clouds. This is more evident in the vertical transects (Fig. S2 A and B), 

where the ensemble-mean 𝛿𝐶 exhibits a strong contrast between the mid-troposphere (440–680 

hPa) and other altitudes, which is consistent with the intermodel spread. As a measure of the 

strength of 𝛿𝐶, the spread appears to be closely related to the ensemble-mean 𝐶 (rs ³ 0.76). In 

sum, Fig. S1 qualifies that the fraction changes in all types of clouds are governed by the SST 
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patterns in terms of sign and by the climatological amounts in terms of strength, which apparently 

integrates the pattern effect and beta scaling scheme, respectively. 

 

Intermodel uncertainty in cloud sensitivity and feedback. All individual simulations show 

strong spatial correlations between T* and Δ (Fig. S3A), with ensemble means of 0.55 and -0.53 

in the high and low cloud cases, respectively, which are about 0.1 larger than those for 𝛿𝐶 (Fig. 

S3B). This robustly demonstrates the cross-model consistency of the proportional warmer-get-

higher paradigm; nevertheless, rs can vary between models by more than a third of the ensemble 

mean. Furthermore, the percentage sensitivity 𝛼 is antisymmetric between high and low clouds 

(rm = -0.56), implying a concurrent strength of T* control between the cloud types in a given 

model. Indeed, its very large range even two times of the mean (e.g., -2 to -25% K-1 in Fig. 3) can 

be attributed to a major factor (besides SST), the stability indices controlling the tropical-oceanic 

low clouds (3, 8–10). As shown in Fig. S4, they are reshaped by the SST in spatial patterns for 

52–76%, and their typically studied spatial-mean changes can explain up to 38% of the 

intermodel variability in 𝛼. Thus, 𝛼 is a comprehensive representation of atmospheric dynamics 

revealed from a new percentage perspective, which can inclusively constrain key cloud-

controlling factors (11–14). 

 
In the CMIP projections, the original global 𝜆 is 0.11±0.13, 0.12±0.37, 0.26±0.3, and 0.49±0.65 W 

m-2 K-1 (90% confidence) for high, middle, low, and total clouds, respectively (Fig. S5). Middle 

(44%) and non-obscured low (43%) clouds dominate the intermodel spread of total cloud 𝜆, 

mainly due to their diverse changes in shortwave radiation (15). High clouds considerably affect 

both solar reflection and infrared absorption, but they tend to offset each other with an intermodel 

anticorrelation (rm = -0.96), leaving a small contribution (13%) to the net 𝜆 uncertainty. Since low 

clouds are one dominator of total cloud feedback, we take them as the main example for 

examining the intermodel variability (Fig. 3) with our percentage analytical framework. 

 

Interestingly (Fig. S8), total cloud feedback in the tropics has a 37% covariance (rm = 0.61) with 

the extratropical feedback, and hence controls 85% of the global uncertainty with rm of 0.92. For 

the main stream of models, the 𝛼 of non-obscured low clouds is well correlated (-0.59) with the 

tropical feedback, accounting for 35% of the intermodel range (Fig. S8C). These robustly couple 

𝛼 to the global 𝜆 for total clouds (rm = -0.69) in Fig. 3C, explaining 48% of the intermodel range. 

Mainly due to low cloud dissipation in the extratropics, three outlier models contain weak 𝛼 but 

strong 𝜆 to relax their correlation by ~30%, over both the tropics and the globe. Fortunately, a 

later investigation will show that their effect is marginal, which supports the robustness of our 
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constraint. Even when they are included, high cloud 𝛼 is strongly correlated (0.74) with the global 

𝜆, explaining 55% of the variance. 

 

Fractional kernels and SVD patterns. Indeed, the cloud climatology 𝐶 modulates the fractional 

kernels to feature much stronger spatial variations in Fig. S9 compared to the radiative kernels 𝐾 

(15). The shortwave kernel integrates reflective cooling by total clouds, and the longwave kernel 

inherits infrared warming by high clouds. An rs of -0.73 between them indicates the radiative 

offset in high clouds, so that solar reflection by low clouds dominates the net kernel, with a minor 

contribution from mid-level clouds. Thus, a pronounced net 𝛾𝐾 appears over the eastern basins, 

with maximum spreads around the equatorical oceans, reflecting biases in the cloud simulation 

(16, 17) and introducing strong uncertainty into the global cloud feedback via these fractional 

kernels. Replacing the CMIP cloud fraction with the MODIS observations can remove this 

intermodel variability, leaving a minor spread in 𝛾!𝐾 only around the Tibetan Plateau due to the 

surface shortwave albedo. The replacement also corrects a few biases in the simulation, although 

the net 𝛾𝐾 exhibits quite good skills to resemble 𝛾!𝐾 with rs = 0.79. These include an 

underestimated fraction and elevated tops of low clouds and an overestimated fraction of middle 
and high clouds, due to an upward error in the retrieval algorism of cloud height from the satellite 

simulator in the CMIP models (18). 

 

We apply the SVD analyses to obtain covariant modes between the global T* and Δ, for both the 

scaled and unscaled cases (Methods). The two leading SVD modes (Fig. S11) explain 45% and 

31% of the variance in the unscaled Δ′ from Eq. 9, and switch ranks in the scaled case to reflect 

the efficiency of our substitution. In the horizontal distributions, the tropical clouds are strongly 

correlated with the SSTs, e.g., the non-obscured low clouds in modes 1 (-0.57) and 2 (-0.5), and 

high clouds in mode 2 (0.56). The zonal-mean modes also feature high rs values: 0.46/0.56 for 

high clouds over the Pacific/Indian Ocean, and -0.45/-0.93/-0.55 for low clouds over the 

Pacific/Atlantic/Indian Ocean in mode 1; 0.83/0.54 for high clouds over the Pacific/Indian Ocean, 

and -0.37/-0.43 for low clouds over the Pacific/Atlantic in mode 2. 

 

Optical depth and outlier models. Our percentage analytical framework explicitly addresses 
cloud feedback caused by amount and altitude changes; however, thin-thick cloud transitions also 

have a comparable uncertainty contribution (12, 19). Therefore, it is necessary to decompose 

cloud feedback (20) and examine whether our constraint has an implicit effect on optical depth 

feedback. Fig. S14 compares the feedback components and shows that their uncertainties are 

thoroughly reduced in all cloud types, although not always in each stage. The percentage 

uncertainty (90% confidence) reductions in the global high, middle, low, and total cloud feedback 

are, respectively: 24%, 70%, 36%,18% for cloud amount; 46%, 11%, 58%, and 34% for altitude; 
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33%, 72%, 54%, and 40% for optical depth. Surprisingly, optical depth is the largest contributor to 

constraining total cloud feedback, with a strong effect for each cloud type; in contrast, amount 

feedback is only substantially constrained for middle clouds. In summary, our method is most 

effective for cloud altitude and optical depth feedbacks, rather than amount feedback as expected 
from a constraint on cloud fraction change. 

 

Thus, although we simply sum over all optical depths, this feedback can be implicitly adjusted by 

using our constraint in a variety of ways. First, the observational replacement of the climatological 

cloud fraction applies to the 7-by-7 clisccp, which can correct the ground truth for the optical 

depth change. Second, the amount change relies on a weighted average of the percentage 

change across the p-𝜏 bins, and the rest of the percentage change remains in the p-𝜏 matrix 

(submatrices) for total clouds (cloud types). Hence, the 7-level sensitivity substitution of the 7-by-

7 Δ would affect both the altitude and optical depth feedback by scaling the amount change. Last, 

the constricted models also facilitate the most likely SST patterns to avoid some unrealistic 

optical depth changes. As a result, Fig. S14 indicates that our constraint is sufficiently effective, 

leaving uncorrected parts in the opacity effect and stability change for future studies. 

 

We then formally examine the outlier effects of HadGEM3-GC3.1-LL, UKESM1.0-LL, and 
UKESM1.1-LL from CMIP6. Without them, the global total, low, middle, and high cloud feedbacks 

(90% confidence) are, respectively: 0.41±0.67, 0.22±0.28, 0.09±0.38, and 0.1±0.14 W m-2 K-1 for 

the original; 0.41±0.31, 0.28±0.24, 0.06±0.11, and 0.07±0.14 W m-2 K-1 for the substituted; 

0.46±0.27, 0.33±0.21, 0.07±0.09, 0.06±0.06 W m-2 K-1 for the constrained feedback. It can be 

clearly seen that this outlier removal has little effect on all uncertainties, and its most prominent 

impact is to reduce the ensemble means. For example, total cloud feedback drops by 0.08, 0.04, 

and 0.03 W m-2 K-1, which decrease from the original to the constrained feedback. This shows the 

robustness of our constraint, as it is the least affected. Furthermore, the main contributors are 
higher-level clouds, while low clouds are unaffected. Relative to the uncertainty, this one-ninth 

reduction is insignificant, so we prefer to include the outliers in our final results. 

 

Methods 

Intermodel statistical analysis. This statistical analysis explores the dynamical interpretations 
for tracing the valuable sources of uncertainty, e.g., the contribution of the percentage cloud 

sensitivity to cloud feedback. Regular statistics use spatiotemporal fields as inputs, but here we 

replace the time axis with the model series to perform intermodel analysis. In particular, the 

intermodel correlations and regressions are performed for cloud feedback, and the variances 

explained by different factors are estimated as the exclusive R2 (to be introduced) for the total 
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effect. In addition, Student’s t-tests are used to assess the confidence of the correlations using 

the following formula: 

𝑡" =
√$%&
'
ln .()"

(%"
/, 

where tr is the test statistic derived from the correlation r (rs or rm) and the sample size n. All of rm 

across the 21 models are above the 90% confidence level. Except for the (percentage) fraction 
change in total and middle clouds, all of rs pass the 99.99% confidence tests because the tropical 

sample size is at least 4430 for the SST patterns or 270 for the zonal-mean cloud fraction. 

 

As an extension of the EOF, the SVD analysis (21, 22) is a popular multivariate statistical 

method, which uses two variables as inputs to identify their patterns with the maximum 

covariance. Here we perform intermodel SVD (23, 24) to extract the effect of the SST patterns on 

the regional cloud changes with their covariant modes. Two sets of SVDs are applied to the 

monthly intermodel anomalies of Δ and Δ* in Eqs. 5 and 6, respectively. They are both between 

the global T* (4-D: x, y, month, model) and cloud changes (6-D: x, y, p, 𝜏, month, model) in terms 

of the percentage for the extended tropics (40°S–40°N) and the fraction for the outside 

extratropics. All of the variables have been concatenated into 2-D matrices with dimensions only 

along the model and the combinations of others, and the ensemble mean is removed for each 

grid box. A covariance matrix 𝐶𝑜 = Δ+𝑇∗ 𝑁⁄  is then constructed by eliminating the common model 

dimension, where t denotes the transpose operator and N represents the number of models. 

 

The SVD function converts 𝐶𝑜 into a tuple of three arrays E, Σ, and F. Each column in E contains 

a singular vector for Δ, as does F for T*, while Σ contains the singular values not used here. 

These orthonormal singular vectors are identified as the spatial modes and are projected onto 

each of the variables to define the corresponding PCs, which are also model-dependent. We then 

use the fractional kernels to compute the partial feedback due to the cloud patterns in each of the 

SVD modes, and we multiply it by the corresponding PC. This reconstructs the T*-related 

intermodel variability in cloud feedbacks associated with these modes, which are ranked 

according to the individual variances (direct R2) they explain for the intermodel uncertainty in the 
total cloud feedback. Finally, the multi-model partial feedbacks reconstructed by the leading SVD 

modes are linearly combined to quantify their cumulative variance (25) using the exclusive R2 

method below. 

 

Variances explained by linearly interdependent factors. Here we develop an exclusive R2 

method to solve the overfitting problem in the variance explanations of the linearly interdependent 

factors for the cloud type decompositions and uncertainty attributions. For example, the sum of 

the variances (direct R2) explained by the cloud types exceeds 1 for the global shortwave 
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feedback (Fig. S5A), due to the strong negative correlation of the percetage sensitivity between 

high and low clouds. To correct this, we need to remove the part that is repeatedly counted in the 

different factors due to their linear dependence. This study involves the situations with 2–4 

factors. 
 

𝑍 = 𝐴 + 𝐵 is the simplest case, with two factors. The results of the exclusive R2 method are 

denoted as 𝑅-' and 𝑅.'  for 𝐴 and 𝐵, respectively, and the direct R2 values (squared correlations) 

are denoted as 𝑅'(𝑍, 𝐴) and 𝑅'(𝑍, 𝐵). The repetitive part between 𝐴 and 𝐵 is double counted (2 ´ 

1) in 𝑅'(𝑍, 𝐴) + 𝑅'(𝑍, 𝐵), so it is expressed as 𝑅-.' = /!(1,-))/!(1,.)%(
'

. With the sum guaranteed to 

be 1, the exclusive R2 can be obtained as follows: 

<
𝑅-' = 𝑅'(𝑍, 𝐴) − 𝑅-.' = ()/!(1,-)%/!(1,.)

'

𝑅.' = 𝑅'(𝑍, 𝐵) − 𝑅-.' = (%/!(1,-))/!(1,.)
'

. 

In the three-factor case, the common part between 𝐴, 𝐵, and 𝐶 is overcounted by 6 (3 ´ 2) times 

in 𝑅'(𝑍, 𝐴) + 𝑅'(𝑍, 𝐵) + 𝑅'(𝑍, 𝐶), and that between any two factors is counted twice. For four 

factors, the overcounting of the part common to all of them increases to 12 (4 ´ 3), and those for 

fewer factors remain the same as in the simpler cases. Consequently, the maximum overcounting 

of the common part would reach i ´ (i – 1) in the case with i factors. All of the situations can be 

treated in a similar way to the two-factor case, although the mathematical procedures should 

become increasingly complicated. 
  



 
 

8 
 

 

Fig. S1. Comparisons of the horizontal distributions between (D) the SST patterns T* (K) and the 
cloud fraction change 𝜹𝑪 (%) for (A) high, (B) middle, and (C) low clouds. The ensemble mean is 
shown by the shading, with cloud and SST changes using the left and right color bars in opposite 
schemes, respectively. The intermodel spread is presented by the contours (CI: 1% for 𝜹𝑪 and 
0.125 K for T*; darker indicates a greater value). The stippling in (A to C) denotes the regions with 
a climatological cloud fraction of >20%, and the dashed lines mark the extended tropics including 
the subtropics (40°S–40°N). Here we use the 21 CMIP simulations normalized by the global-
mean surface (air) warming. 
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Fig. S2. Comparisons of the oceanic (A and C) zonal means and (B and D) equatorial (5°S–5°N) 
meridional means between (A and B) the cloud fraction change 𝜹𝑪@@@@ (shading, %) and (C and D) 
the percentage change in cloud fraction ∆ (shading, %). The stippling indicates that the ensemble 
mean is beyond the intermodel spread, and the background cloud climatology is shown in (A and 
B) as contours (CI: 5%; darker indicates a greater value). Here we use the 21 CMIP simulations 
normalized by the global-mean surface air warming. 
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Fig. S3. Spatial correlations in the individual models (solid lines) between the SST patterns T* 
and (A) the percentage change ∆, (B) fraction change 𝜹𝑪 in total (black) and specific types (color) 
of clouds. The dashed lines represent the ensemble means of the solid lines, and their values are 
marked with the intermodel spreads. Here we use the 21 CMIP simulations normalized by the 
global-mean surface (air) warming. 
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Fig. S4. Same as in Fig. 3 but (A to C) for the tropical relationships between the percentage 
sensitivity (𝜶) of low clouds (% K-1) and the intercepts (K) in the spatial regression of (D) the 
stability index changes against the SST patterns. Calculated over the oceans, the stability indices 
include: the lower-tropospheric stability (LTS), defined as the 700–1000 hPa difference in the 
potential temperature (A); the estimated inversion strength (EIS), which eliminates the lapse rate 
change in the free troposphere (B); and the estimated cloud-top entrainment index (ECTEI), 
which incorporates a cloud-top entrainment criterion (C). Using the same style as in the left panel 
in Fig. 1, (D) compares their regional changes (shading, K) with the SST patterns (contours, K) in 
the ensemble mean. It should be noted that the intermodel regressions keep y-x across (A to C). 
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Fig. S5. Intermodel scatterplots of the global radiative feedback 𝝀 (W m-2 K-1) for total clouds and 
that by type (color) for the (A) shortwave, (B) longwave, and (C) net radiation. For each feedback, 
the symbols mark the anomalies of individual models that deviate from the ensemble mean, 
represented by a dashed line. Black dots compare the sum of the cloud types to total clouds, 
which lies exactly along the black y = x line. The feedback variances (exclusive R2 in Methods, %) 
explained by the specific cloud types are listed with the slopes in the corresponding regressions. 
Here we use the monthly-mean cloud radiative kernels and 21 CMIP simulations normalized by 
the global-mean surface air warming. 
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Fig. S6. Same as in Fig. 1 but computed with the MODIS clouds and the averaged SST 
observations for 2003–2022 using the LIM. The stippling indicates that the trend mode is beyond 
the spread in the LIM noise perturbations. 
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Fig. S7. Same as in Fig. S2 but computed using the MODIS cloud observations for 2003–2022 
and the LIM. 
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Fig. S8. Same as in Fig. 3 but for the relationships of total cloud radiative feedback (W m-2 K-1) in 
the tropics (𝝀𝑻) with cloud feedbacks over (A) the globe (𝝀) and (B) the extratropics (𝝀𝑬), as well 
as (C) the percentage sensitivity (𝜶) of low clouds (% K-1). It should be noted that the intermodel 
regressions keep x-y across (A and C) but are transposed to y-x in (B), and the outliers are 
marked in (C). 
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Fig. S9. Horizontal distributions (left) and zonal means (right) of the tropical fractional kernels (W 
m-2 %-1) for the (A and D) shortwave, (B and E) longwave, and (C and F) net radiation, which are 
calculated using the cloud climatology in (A to C) the CMIP simulations and (D to F) the MODIS 
observations. After summing over all of the optical depths, the vertical sums are calculated for the 
left panel, and the zonal means for the right panel. The ensemble mean is shown by the shading, 
and the intermodel spread is by the contours (CI: 0.05 W m-2 %-1; darker indicates a greater 
value). The dashed lines at 440 and 680 hPa divide the cloud types by altitude. Here, the 
monthly-mean cloud radiative kernels are multiplied by the cloud climatology from the 21 CMIP 
simulations and the MODIS data during 2003–2022, to compute the unequal spatial weights for 
the SST pattern effect. 
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Fig. S10. Comparisons of the horizontal (left) and zonal-mean (right) distributions between the 
(A) original (𝝀) and (B) substituted (𝝀𝒔) cloud feedback (W m-2 K-1). The ensemble mean (shading) 
is presented with the intermodel spread (contours, CI: 1 W m-2 K-1; darker indicates a greater 
value). The dashed lines mark the extended tropics for 40°S–40°N and divide the cloud types by 
altitude at 440 and 680 hPa. Here we use the monthly-mean cloud radiative kernels, SST and 
cloud observations, and 21 CMIP simulations normalized by the global-mean surface (air) 
warming. 
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Fig. S11. Unscaled intermodel SVD (A to F) mode 1 and (G to L) mode 2 between the T* 
anomaly (K) and the anomalous percentage change ∆′ (%) in the tropical (A and G) high, (B and 
H) middle, and (C and I) low clouds, and the zonal mean modes for the (D and J) Pacific, (E and 
K) Atlantic, and (F and L) Indian Oceans. Horizontal distributions (A to C and G to I) show ∆′ as 
shading and T* as contours (CI: 0.1 K; yellow positive, cyan negative; 0 omitted). For zonal 
means (D to F and J to L), the left panel compares cloud-type decompositions with T*, and the 
right panel presents clouds (shading) with the simulated fractional net kernel (contours, CI: 0.05 
W m-2 %-1; yellow positive, cyan negative; 0 omitted). Here we use the 21 CMIP simulations 
normalized by the global-mean surface (air) warming. 
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Fig. S12. Cumulative variance (%) of the substituted cloud feedback 𝝀𝒔 explained by the leading 
SVD modes for only the anomalies associated with the ensemble-mean fractional kernels. The 
SVD modes are reordered according to the individual variances (direct R2) by their responsible 
partial feedbacks, and then linearly combined to compute the cumulative variance as the 
exclusive R2 (Methods). Here we use the monthly-mean cloud radiative kernels, SST and cloud 
observations, and 21 CMIP simulations normalized by the global-mean surface (air) warming. 
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Fig. S13. Same as in Fig. 4 but for the original cloud feedback 𝝀 and its factor effects evaluated 
using the attribution procedure, including the accumulation of the first 12 SVD modes controlled 
by the T*, residual factors, fractional kernel biases, and nonlinear T*-kernel interaction for (A) 
total, (B) high, (C) middle, and (D) low clouds. 
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Fig. S14. Decomposed comparisons between the original cloud feedback 𝝀 (W m-2 K-1) and that 
constrained in two stages, for (A) cloud amount, (B) altitude, (C) optical depth, and (D) residual 
feedback of all cloud types. For each feedback, the symbol denotes the ensemble mean, with thin 
and thick error bars spanning the 90% and 66% (~1 standard deviation) confidence intervals, 
respectively. Here we use the monthly-mean radiative kernels, SST and cloud observations, and 
21 CMIP simulations normalized by the global-mean surface (air) warming. 
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Fig. S15. Same as in Fig. 5C but for the tropical cloud feedback computed using the 20 historical 
simulations during 1986–2005, and its comparison with the observed tropical feedback based on 
the MODIS clouds and SST suite during 2003–2022. 
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