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1431 Supplementary Method 1: Automated threshold selection

ﬁgg To ensure reproducibility and to avoid subjectivity in defining extreme event thresh-

1434 olds, we provide here a detailed description of the automated threshold selection
procedure applied in this study. A robust and unbiased definition of thresholds is essen-

1435 . . . . ; o .

1436 tial for consistent identification across indicators, and this supplementary methods

outlines the procedure used to derive statistically indistinguishable thresholds. The

ﬁg; automated selection process consists of the following steps, with detailed parameter
1439 settings given in Supplementary Tab. 4:

1440 . . o

1441 1. Tail Transformation: System stress indicators I are transformed so that

system-critical events reside in the right (upper) tail of the distribution. For

ﬁjg example, wind capacity factors (where low values indicate stress) are inverted so
1444 that extreme events correspond to high values:

1445

1446 e -1, if required (e.g., wind CF) 1)
1447 R , otherwise

1448

1449

2. Knee-Point Analysis: The empirical distribution of each indicator after tail

1450 transformation I’ is analyzed to detect the point of highest curvature (“knee”),

1451 indicating the onset of tail behavior. Thresholds are expressed in the quantile
1452 space to make results comparable across indicators and time periods. Following
1453 common practice in extreme-value analysis for energy systems [16], we set a
1454 conservative lower bound for the candidate thresholds as the maximum of (i) the
1455 knee-point quantile rounded up to the next integer percentile and (ii) a minimum
ﬁgg baseline percentile gumin. The lower quantile threshold 7,y is then defined as:

1458 100

1459 Tlower = max{—r : qknee] s Qmin} (2)
1460 100

1461

1462 Here, gxnee € [0, 1] denotes the quantile level corresponding to the knee-point of
1463 the empirical distribution of I’, and gmi, is the minimal admissible percentile.
1464 In this study we set gmin to the 95 percentile, following common practice in
1465 extreme-value analysis [16, 30].

1466 3. Candidate Threshold Grid: Starting from the minimum quantile thresh-
1467 old Tjower, candidate quantile thresholds 7 are defined on a fine quantile grid
1468 Teandidate With step size A; = 0.001:

1469

1470 Jcandidate = {T \ Tmin £ 7 < 1.0- A,

1471 3)
1472 T=‘rmin+k-AT,k€N}
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4. Z-Normalization: Depending on the threshold type thr, Z-normalization is 1473
applied element-wise over the time series to ensure comparability across scales 1474

and years y: 1475
I~ u 1476
, for thr ¢ {yearly} 1477
o

z=1," (4) 1478

It y Hy
————  for thr € {yearly} 1479
oy 1480

Here, I; and I , denote the indicator at timestep 7 (global) and at timestep ¢ in 1481
year y, respectively. u and o are the global mean and standard deviation, while 1482
iy and oy are calculated individually per year. 1483
5. GPD Fitting with Bootstrapping: To approximate the tail behavior above 1484
each threshold, we repeatedly resample the exceedances and fit a theoretical tail 1485

model to capture its shape and uncertainty. For each candidate threshold r, 1486
exceedances X quantify how much the values of the standardized indicator Z — 1487
exceed the corresponding threshold value z, and are calculated as: 1488
1489

X={Z-z | Z>z), 1490

_ (5) 1491

where z, = Quantile,(Z) 1492

1493

Here, Quantile,(Z) denotes the 7-quantile of Z, i.e., the value below which a 1494
fraction 7 of the data lies. These exceedances are repeatedly resampled with 1495
replacement using k bootstrap replicates. A Generalized Pareto Distribution 1496
(GPD) is then independently fitted to each bootstrap sample to model tail 1497
behavior and quantify parameter uncertainty. 1498
6. Distance Metric: To measure how the fitted theoretical tail model matches the 1499
empirical tail, we calculate the average absolute difference between their quantiles 1500
across several probability levels. For each bootstrap sample k, the mean absolute 1501
distance dy (1) between empirical (EMP) and theoretical quantiles is calculated 1502

over m evenly spaced probability levels p;: 1503
1504

_ 1 & 1505

di(7) = - Z |QemP (Pi) — Qcpp (pi)l 6) 1506

=1 1507

1508

Here, p; = ﬁ for i = 1,...,m define the probability levels used for matching. 1509
Qemp(pi) denotes the empirical quantile of the resampled exceedances at level 1510
pi, and Qgpp(p;) denotes the theoretical quantile from the GPD fitted to the 1511
bootstrap sample. 1512

7. Threshold Filtering: For each candidate threshold 7, the mean Anderson- 1513
Darling (AD) statistic across bootstrap replicates is used to evaluate the quality 1514

of GPD fits. Thresholds are retained only if the average p-value of the AD test 1515
Pap exceeds 0.05 and the number of identified extreme events N, (7) is at least 1516
1517

1518
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1519 62 (ensuring one event per year in the design period):

1520

12;; Thiltered = {T € Tcandidate : ﬁAD(T) > 0.05 (7>
1523 A Ne(1) > 62}

1524

1525 Here, N.(7) denotes the number of distinct extreme events identified for the
1526 threshold 7, as defined by the sequent peak algorithm. The AD test is chosen
1527 over the Kolmogorov—Smirnov (KS) test because it gives greater weight to the
1528 tails of the distribution, which is essential for extreme value modeling focused on
1529 rare, high-impact events.

1530 8. Optimal Threshold Selection: The optimal quantile threshold 7,,, is defined
1531 as the one minimizing the mean distance (di (7)) across bootstrap replicates
1532 among the candidate thresholds that pass filtering:

1533

122151 Topr =arg _min  (di (7)) (8)
1536

1537 9. Defining Threshold Ranges: To account for sampling uncertainty and avoid
1538 overfitting, we define an indistinguishable quantile threshold range 7 around the
1539 optimal threshold 7,,;. This range includes all thresholds forming a contiguous
1540 block around 7,,, whose average distances (di (7)) lie within the bootstrap-
1541 derived one-sigma confidence interval around 7, ,;:

1542

1543 . - -

1544 T = {T € Thltered : (di(T))k € C110(<dk(Topt)>k) (9)
1545

1546 Here, CI,, denotes the central 68 % bootstrap confidence interval, defined as
1547 the interval between the 16th and 84th percentiles of the bootstrap distribution
1548 of (Ek (Topt))k- This one-sided yet compact interval conservatively captures the
1549 threshold variability around the optimum 7,,,;, avoiding overly broad threshold
1550 ranges seen with symmetric intervals [32].

1551

1552 Supplementary Method 2: Extreme event identification method
1553
1554
1555
1556

To consistently capture both the duration and severity of stress periods, we extend
the sequent peak algorithm into a severity-aware extreme event identification method.
This supplementary method details the procedure, which integrates results across
multiple thresholds and applies a probabilistic weighting to emphasize rare and

122; operationally relevant extremes. The resulting method consists of the following steps:
1223 1. Event Mask Construction: For each threshold 7, a binary event mask 1; ,
1561 is created: : —

19 i CD * O,
1562 1, . = i e > (10)
1563 0, otherwise.
1564
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This mask marks all timesteps ¢ that are part of an extreme event as identified
by the SPA-algorithm for the threshold 7*. These binary masks serve as the
foundation for integrating results across multiple thresholds.

2. Extreme Event Identification: For each threshold 7*, the set of identified
extreme events & is defined as the collection of all maximal contiguous intervals
of timesteps ¢ for which the event mask 1; ,+ equals one:

ceruNT), with el = [téi),te(‘i)] cT (11)

_ (o1 2
Er ={ep, e -

T*9+

Each event ei* corresponds to a contiguous time interval where 1; .~ = 1 for all
te [ts(,i), téi)], and 1; .~ =0 for ¢ = ts(,i) —landt= téi) +1, ensuring that the events
are maximal.

3. Exceedance Probability Weighting: For each threshold 7, compute its over-
all exceedance probability EP.+ (the fraction of hours classified as extreme)
and derive weights w« that penalize thresholds identifying too many hours as

extreme:

| we = —log(EPy)

(12)

This weighting scheme emphasizes thresholds that isolate rarer, more selective
extreme conditions, with the logarithmic form ensuring smoother scaling across
exceedance probabilities.

Supplementary Method 3: Extreme event quantification
metrics

To evaluate extreme events in a consistent and comparable manner, we define a set
of severity-, duration-, and impact-based metrics that integrate information across
multiple thresholds. This supplementary note introduces the quantification frame-
work and its logarithmic weighting scheme, which together provide a comprehensive
characterization of extreme events.

Extreme events are quantified using a logarithmic-weighted average of threshold-
specific metrics M, » across the threshold range 7 *:

_ ZT*ET* W Mt,‘r*

(Mi)w,. = S (13)

Here, M; .~ denotes the per-threshold value of a chosen metric (e.g., severity, duration,
Consumer Cost), and w,+ are the exceedance-probability weights. From this general
formulation, the following extreme event quantification metrics are defined, with sub-
script e for event-level values, ¢ for time series, and no subscript for metrics aggregated
over all events:
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1626
1627
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1631
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1635
1636
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Integrated Probability: The probability of how consistently each timestep ¢
is classified as extreme across thresholds:

P, = <1z,7*>wi (14>

Here, P, € [0,1] represents a probability-like measure indicating the weighted
share of thresholds that classify timestep ¢ as extreme, thereby reflecting the
degree of cross-threshold agreement. While P, is primarily used for visualization
and qualitative interpretation, it may also serve as a filtering criterion to iden-
tify time intervals that are consistently recognized as extreme across multiple
thresholds. In this work, we apply a zero-threshold filter (P, > 0) to visualize all
timesteps that are classified as extreme by at least one threshold.

Frequency: The total number of extreme events, averaged across thresholds and
floored:

F=[(Ne())w.. | (15)

Here, N.(7") is the number of events detected at threshold 7*.
Severity: The maximum weighted SPA-based deficit within an event:

Se = rtnax(CD,SEé)wT* (16)
€e ’

Duration: The weighted sum of extreme event timesteps, representing the
event’s total length:

D, = Z(L,T*)w,.* - At (17)

tee

Here, 1; + is the binary event mask, and At is the timestep length.
Buildup: The duration of the extreme event build up, from start to maximum
severity:

Be = Z <1t,'r*>w,* - At (18>

t <fpeak€e

Here, fpeak € e is the timestep within the event e with maximum severity S..
Recovery: The duration of the recovery phase of the extreme event, from
maximum severity to the end of the event:

R. = Z <1I,T*>WT* - At (19)

t>lpeak€e

Event Consumer Cost: The accumulated Consumer Cost during an extreme
event:

Co= Y (CCy o), (20)
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® Event Unmet Energy Demand: The accumulated Unmet Energy Demand

covered by an extreme event:

Ue = Z(Z UEDi,l’,T*>WT*

tee i

(21)

® Coverage Ratios: The share of a given metric’s total value that is covered by

an extreme event:

Cov., = Zz € e<Mt,T* >WT*
‘ 2 M,

(22)

All metrics are computed per event, aggregated annually, and across the full
dataset, providing a comprehensive multi-threshold characterization of extreme

events.

Supplementary Method 4: Indicator accuracy quantification

methods

To evaluate how reliably different indicators reproduce benchmark extreme events,
this note defines a set of complementary accuracy metrics. These measures quantify
precision, recall, temporal overlap, and alignment quality, providing a robust basis
for comparing indicator performance in event-based identification. The quantification

metrics are defined as follows:

® Event Precision: Fraction of predicted events that are correctly identified by

at least one matching benchmark event.

Precision = <
|81,T* |

I‘TPI,T*|>

(23)

The precision indicates how many predicted events match actual benchmark
events. A high precision means that the indicator produces few false positives.
e Event Recall: Fraction of benchmark events that are correctly identified by at

least one matching predicted event.

TPp o
Recall = < w>
ISB,T* | W

(24)

The recall indicates how many actual benchmark events were detected. A high
recall means few true events are missed by the indicator.
¢ Event F1-Score: Harmonic mean of precision and recall.

Pl < <2 - Precision,+ - Recall .+

Precision .~ + Recall .~

>WT*
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The F1l-score balances both precision and recall, providing a single metric that
equally penalizes both false positives and false negatives.

Benchmark Overlap: Average relative overlap across all matched benchmark
events.

ij,T
M| (i,7) €M

Overlap=< L Z rB > (26)

W

The benchmark overlap indicates how strongly the benchmark events align with
the predicted events. A high overlap means that the correctly identified bench-
mark events are also well covered in time. For example, a value close to one
suggests that matched benchmark events are almost fully overlapped.

Overlap Count: Number of event pairs that exhibit any non-zero temporal
overlap.

Count = (IMz-|),,_. (27)

The overlap count reflects how many event pairs exhibit a temporal alignment.
A high overlap count indicates that many predicted and benchmark events are
overlapping.

Symmetric Accuracy: Fraction of event pairs with non-zero temporal overlap
that exhibit strong temporal alignment.

(TPLe NTPp ) U Fre -
,  WI
|M‘r*| W

T

Accuracy =

(28)

Foo = {0.)) € Me-

Ot =1} ol V Oper = e .1}

The symmetric accuracy denotes the fraction of event pairs whose events are
either matched in both directions (i.e., counted as true positives for both pre-
dicted and benchmark sets) or are fully contained within each other. A high
symmetric accuracy indicates that matched predicted and benchmark events are
temporally well-aligned.
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Supplementary Figures

1- Average system-level correlation across years
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Supplementary Figure 1: Correlation between Positive Residual Energy
Demand and Unmet Energy Demand across all weather years (1960—-2021)
and individual countries. Each cell shows the Pearson correlation for one coun-
try—year combination. Bar plots display averages across time (top, all years) and across
space (right, all countries). Correlations are generally lower and more heterogeneous
than for Consumer Cost, showing that Positive Residual Energy Demand only par-
tially captures the spatio-temporal structure of physical system stress.
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1806 Supplementary Figure 2: Exemplary extreme event identification for the
1807 Wind Capacity Factor in December 1968. Shown is the time series of the Wind

8 Capacity Factor CFwing (black) together with quantile thresholds Q¢ and Qse
1809 (dotted lines). The cumulative deficits C DSPA (shaded in red) quantify event severity.
1810 For this example, the threshold-specific build-up B+, recovery R., and severity peaks
1811 S+ are indicated for the chosen quantile thresholds 7 € {1 %, 5 %}.
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1831 Supplementary Figure 3: Cumulative Consumer Cost as a function of
1832 period length (days). For each weather year, the curve shows the cumulative Con-
1833 sumer Cost of the most expensive periods up to the given length, ending at the annual
1834 total. Highlighted years (1966, 1968, 2010, 2012) represent weather-driven stress years
1835 with particularly high costs. Two phases of steep increase correspond to winter months
1836 (January—March and October—December), demonstrating seasonal clustering of stress.
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Supplementary Figure 4: Temporal alignment between the annual maxi-
mum extreme events identified by different indicators. Each row represents
the winter months of a weather year (1960-2021). Background shading represents
the Unmet Energy Demand (benchmark) timeseries. Colored bars show concurrent
events for Unmet Energy Demand (black), Consumer Cost (orange), Positive Residual
Energy Demand (green), Heating Demand (red), and Wind Capacity Factor (blue).
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1920 Supplementary Figure 5: Temporal alignment between all identified
extreme events identified by different indicators. Each row represents the win-
ter and summer months of a weather year (1960-2021). Background shading represents
1923 the Unmet Energy Demand (benchmark) timeseries. Colored bars show concurrent
events for Unmet Energy Demand (black), Consumer Cost (orange), Positive Residual
5 Energy Demand (green), Heating Demand (red), and Wind Capacity Factor (blue).
1926 py,q figure highlights systematic overprediction by meteorological indicators and fre-
quent partial matches of benchmark events by Positive Residual Energy Demand.
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Supplementary Figure 6: Annual Unmet Energy Demand for all weather
years (1960-2021), averaged over all design years. Bars show annual totals
for electricity (blue), heat (red), and the combined Unmet Energy Demand (black
outline). The figure highlights whether annual shortfalls are dominated by electricity
or heating, with some years exhibiting particularly high combined Unmet Energy
Demand.
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Supplementary Figure 7: Annual Consumer Cost by energy carrier across
all weather years (1960—2021). Stacked bars show contributions from electricity,
heating, hydrogen, oil, gas, and biomass, with totals outlined in black. The figure
illustrates strong inter-annual variability in total Consumer Cost and the changing
composition of consumer expenditures.
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;882 Supplementary Figure 8: Peak annual Unmet Energy Demand across

weather years (1960—2021). The figure presents peak values for combined (top),
heating (middle), and electricity (bottom) Unmet Energy Demand. Weather years are
ordered by the average combined peak value across design years. Highlighted points
indicate selected years (1966, 1968, 2010, 2012). The results underline the role of sec-
tor coupling, as combined peaks differ substantially from those in electricity or heating
alone.
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Supplementary Figure 9: Time-resolved Consumer Cost (CC,) separated
by energy carrier (x € X). Shown are mean values ((CC;)y) and interquartile range
(QFg_gp) across all design years. Electricity and heating display simultaneous win-
ter peaks, indicating cross-sectoral system stress. Fossil oil and biomass costs remain
nearly constant and largely weather-independent, since they can be stored and trans-

ported

at no cost.
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2105 pattern, with pronounced winter peaks, whereas fossil oil and biomass remain nearly

2106 constant and weather-independent.
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Supplementary Figure 11: Illustration of threshold types for extreme event
identification. Example for the Wind Capacity Factor in 1968, showing constant,
annual, and dynamic thresholds applied to the same time series. Constant thresholds
use a fixed upper quantile across all years, annual thresholds recalculate the quan-
tile each year, and dynamic thresholds adjust to the seasonal cycle using smoothed
three-hourly quantiles. The figure illustrates how the different threshold types cap-
ture variability and seasonality.
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2195 Supplementary Figure 12: Correlation-based threshold selection for SPA

219 event time series. Correlation matrix between Consumer Cost and Unmet Energy

Demand SPA timeseries across threshold levels. Correlations increase at very low
2198 quantile thresholds, but these values lie far from the knee-point that marks the onset
219 of extremal behavior. The region of statistically indistinguishable thresholds selected
2900 in our work (77) is highlighted, while the ceiled knee-value thresholds are indicated
2201 by dashed lines.
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Supplementary Tables

Supplementary Table 1: Indicator-specific threshold definitions for extreme
event identification. Shown are the optimal percentile threshold ranges 77, the
corresponding absolute values, and the applied threshold type (constant, annual, or
dynamic) after indicator transformation, used in the extended Sequent Peak Algo-
rithm (SPA).

Indicator Percentiles % Absolutes Threshold Type

lower - optimal - upper ~ lower - optimal - upper

Unmet Energy

99.0-99.4-99.6 13.5-19.2-24.6 GW constant
Demand
Consumer Cost 99.0-99.2-99.4 121-133-150 Mio. EUR annual
Positive Residual 99.0-99.5-99.7 569 - 664 - 723 GW constant
Energy Demand
Heating Demand 95.0-96.3-97.2 869 -905-935 GW constant
Wind Capacity 98.8-99.1-99.4 75--7.1--6.7% dynamic
Factor
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Supplementary Table 3: Evaluation metrics for each stress indicator using
event-based identification. Metrics include precision, recall, F1-score, and tempo-
ral overlap, each reported as minimum, mean, and maximum values. Results are shown

separately for timestep matching, event matching, and maximum event matching.

. Precision Recall F1-Score Overlap

Indicator

min - mean - max min - mean - max min - mean - max min - mean - max

Timestep Matching
Consumer Cost 26.6- 43.6- 56.5 32.4- 489- 71.1  38.7- 44.7- 486 32.4- 489- Tl.1
Positive Residual Energy Demand  25.2- 44.4- 68.2 19.9- 40.0- 61.7  30.8- 40.2- 42.8 19.9- 40.0- 61.7
Heating Demand 94- 21.6- 340 69.7- 82.0- 89.0 16.9- 33.6- 45.7 69.7- 82.0- 89.0
‘Wind Capacity Factor 6.0- 9.1- 11.1 54- 94- 156 7.3- 9.0- 10.2 54- 94- 156
Event Matching
Consumer Cost 21.3- 43.2. 53.8  33.2- 498- 714  32.8- 44.8- 48.8 56.6- 68.0- 85.2
Positive Residual Energy Demand 18.0- 38.1- 65.6  19.8- 42.7- 73.9 29.0- 37.6- 42.0 24.3- 354- 58.9
Heating Demand 20- 6.2- 11.2  73.5- 83.6- 90.1 3.8- 11.5- 19.5  81.4- 87.4- 959
‘Wind Capacity Factor 52- 78- 96 6.2- 104- 16.1 6.5- 88- 10.3 39.0- 452- 56.9
Maximum Event Matching

Consumer Cost 16.1- 35.0- 41.9 48.2- 53.8- 68.3 26.1- 41.7- 45.6 70.2- 83.6- 94.9
Positive Residual Energy Demand  24.2- 37.0- 42.4 7.1- 20.9- 36.6 12.2- 25.6- 354 16.1- 37.9- 65.9
Heating Demand 6.5- 229- 36.1 50.9- 53.3- 57.1 11.5- 31.2- 43.1  88.5- 97.5-100.0
‘Wind Capacity Factor 49- 83- 11.7 1.8 4.8 122 29- 57- 99 304- 40.8- 60.3
Units % % % %
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Supplementary Table 4: Parameter set-
tings for automated threshold selection.
The table specifies the bootstrap setup, can-
didate threshold range, and statistical tests
used to identify robust and statistically indis-
tinguishable thresholds.

Parameter Value Description
Cli, [0.16, 0.84] Bootstrap confidence
interval
Ar 0.001 Increments between
candidate thresholds
k 2500 Number of bootstrap
replicates
m 500 Number of quantile
levels per bootstrap
replicate
Ne (1) 62 Minimum number of

exceedances (distinct
extreme events)
Pap(7) 0.05 Anderson—Darling test
significance level
gmin 95th Minimum admissible
percentile for
candidate thresholds
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