

1427 **Supplementary Information**

1428

1429 **Supplementary Methods**

1430

1431 **Supplementary Method 1: Automated threshold selection**

1432 To ensure reproducibility and to avoid subjectivity in defining extreme event thresh-
 1433 olds, we provide here a detailed description of the automated threshold selection
 1434 procedure applied in this study. A robust and unbiased definition of thresholds is essen-
 1435 tial for consistent identification across indicators, and this supplementary methods
 1436 outlines the procedure used to derive statistically indistinguishable thresholds. The
 1437 automated selection process consists of the following steps, with detailed parameter
 1438 settings given in Supplementary Tab. 4:
 1439

1440 1. **Tail Transformation:** System stress indicators I are transformed so that
 1441 system-critical events reside in the right (upper) tail of the distribution. For
 1442 example, wind capacity factors (where low values indicate stress) are inverted so
 1443 that extreme events correspond to high values:
 1444

$$1445 \quad 1446 \quad 1447 \quad 1448 \quad I' = \begin{cases} -I, & \text{if required (e.g., wind CF)} \\ I, & \text{otherwise} \end{cases} \quad (1)$$

1449 2. **Knee-Point Analysis:** The empirical distribution of each indicator after tail
 1450 transformation I' is analyzed to detect the point of highest curvature (“knee”),
 1451 indicating the onset of tail behavior. Thresholds are expressed in the quantile
 1452 space to make results comparable across indicators and time periods. Following
 1453 common practice in extreme-value analysis for energy systems [16], we set a
 1454 conservative lower bound for the candidate thresholds as the maximum of (i) the
 1455 knee-point quantile rounded up to the next integer percentile and (ii) a minimum
 1456 baseline percentile q_{\min} . The lower quantile threshold τ_{lower} is then defined as:
 1457

$$1458 \quad 1459 \quad 1460 \quad \tau_{\text{lower}} = \max \left\{ \frac{\lceil 100 \cdot q_{\text{knee}} \rceil}{100}, q_{\min} \right\} \quad (2)$$

1461 Here, $q_{\text{knee}} \in [0, 1]$ denotes the quantile level corresponding to the knee-point of
 1462 the empirical distribution of I' , and q_{\min} is the minimal admissible percentile.
 1463 In this study we set q_{\min} to the 95th percentile, following common practice in
 1464 extreme-value analysis [16, 30].

1465 3. **Candidate Threshold Grid:** Starting from the minimum quantile thresh-
 1466 old τ_{lower} , candidate quantile thresholds τ are defined on a fine quantile grid
 1467 $\mathcal{T}_{\text{candidate}}$ with step size $\Delta_{\tau} = 0.001$:

$$1468 \quad 1469 \quad 1470 \quad 1471 \quad 1472 \quad \mathcal{T}_{\text{candidate}} = \{ \tau \mid \tau_{\min} \leq \tau \leq 1.0 - \Delta_{\tau}, \\ \tau = \tau_{\min} + k \cdot \Delta_{\tau}, k \in \mathbb{N} \} \quad (3)$$

4. **Z-Normalization:** Depending on the threshold type thr , Z-normalization is applied element-wise over the time series to ensure comparability across scales and years y : 1473
1474
1475

$$Z_t = \begin{cases} \frac{I'_t - \mu}{\sigma}, & \text{for } thr \notin \{\text{yearly}\} \\ \frac{I'_{t,y} - \mu_y}{\sigma_y}, & \text{for } thr \in \{\text{yearly}\} \end{cases} \quad (4)$$

Here, I'_t and $I'_{t,y}$ denote the indicator at timestep t (global) and at timestep t in year y , respectively. μ and σ are the global mean and standard deviation, while μ_y and σ_y are calculated individually per year. 1476
1477
1478
1479
1480

5. **GPD Fitting with Bootstrapping:** To approximate the tail behavior above each threshold, we repeatedly resample the exceedances and fit a theoretical tail model to capture its shape and uncertainty. For each candidate threshold τ , exceedances X quantify how much the values of the standardized indicator Z exceed the corresponding threshold value z_τ and are calculated as: 1481
1482
1483
1484
1485
1486
1487
1488
1489

$$X = \{Z - z_\tau \mid Z > z_\tau\}, \quad (5)$$

where $z_\tau = \text{Quantile}_\tau(Z)$

Here, $\text{Quantile}_\tau(Z)$ denotes the τ -quantile of Z , i.e., the value below which a fraction τ of the data lies. These exceedances are repeatedly resampled with replacement using k bootstrap replicates. A Generalized Pareto Distribution (GPD) is then independently fitted to each bootstrap sample to model tail behavior and quantify parameter uncertainty. 1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508

6. **Distance Metric:** To measure how the fitted theoretical tail model matches the empirical tail, we calculate the average absolute difference between their quantiles across several probability levels. For each bootstrap sample k , the mean absolute distance $\bar{d}_k(\tau)$ between empirical (EMP) and theoretical quantiles is calculated over m evenly spaced probability levels p_i : 1509
1510
1511
1512
1513
1514
1515
1516
1517
1518

$$\bar{d}_k(\tau) = \frac{1}{m} \sum_{i=1}^m |Q_{\text{EMP}}(p_i) - Q_{\text{GPD}}(p_i)| \quad (6)$$

Here, $p_i = \frac{i}{m+1}$ for $i = 1, \dots, m$ define the probability levels used for matching. $Q_{\text{emp}}(p_i)$ denotes the empirical quantile of the resampled exceedances at level p_i , and $Q_{\text{GPD}}(p_i)$ denotes the theoretical quantile from the GPD fitted to the bootstrap sample. 1509
1510
1511
1512
1513
1514
1515
1516
1517
1518

7. **Threshold Filtering:** For each candidate threshold τ , the mean Anderson-Darling (AD) statistic across bootstrap replicates is used to evaluate the quality of GPD fits. Thresholds are retained only if the average p-value of the AD test \bar{p}_{AD} exceeds 0.05 and the number of identified extreme events $N_e(\tau)$ is at least 1513
1514
1515
1516
1517
1518

1519 62 (ensuring one event per year in the design period):
 1520

$$\mathcal{T}_{\text{filtered}} = \{\tau \in \mathcal{T}_{\text{candidate}} : \bar{p}_{\text{AD}}(\tau) > 0.05 \wedge N_e(\tau) \geq 62\} \quad (7)$$

1524

1525 Here, $N_e(\tau)$ denotes the number of distinct extreme events identified for the
 1526 threshold τ , as defined by the sequent peak algorithm. The AD test is chosen
 1527 over the Kolmogorov–Smirnov (KS) test because it gives greater weight to the
 1528 tails of the distribution, which is essential for extreme value modeling focused on
 1529 rare, high-impact events.

1530 8. **Optimal Threshold Selection:** The optimal quantile threshold τ_{opt} is defined
 1531 as the one minimizing the mean distance $\langle \bar{d}_k(\tau) \rangle_k$ across bootstrap replicates
 1532 among the candidate thresholds that pass filtering:

1533

$$\tau_{opt} = \arg \min_{\tau \in \mathcal{T}_{\text{filtered}}} \langle \bar{d}_k(\tau) \rangle_k \quad (8)$$

1534

1535 9. **Defining Threshold Ranges:** To account for sampling uncertainty and avoid
 1536 overfitting, we define an indistinguishable quantile threshold range \mathcal{T}^* around the
 1537 optimal threshold τ_{opt} . This range includes all thresholds forming a contiguous
 1538 block around τ_{opt} whose average distances $\langle \bar{d}_k(\tau) \rangle_k$ lie within the bootstrap-
 1539 derived one-sigma confidence interval around τ_{opt} :

1540

$$\mathcal{T}^* = \{\tau \in \mathcal{T}_{\text{filtered}} : \langle \bar{d}_k(\tau) \rangle_k \in CI_{1\sigma}(\langle \bar{d}_k(\tau_{opt}) \rangle_k)\} \quad (9)$$

1541

1542 Here, $CI_{1\sigma}$ denotes the central 68 % bootstrap confidence interval, defined as
 1543 the interval between the 16th and 84th percentiles of the bootstrap distribution
 1544 of $\langle \bar{d}_k(\tau_{opt}) \rangle_k$. This one-sided yet compact interval conservatively captures the
 1545 threshold variability around the optimum τ_{opt} , avoiding overly broad threshold
 1546 ranges seen with symmetric intervals [32].

1547

1548 1552 Supplementary Method 2: Extreme event identification method

1553

1554 To consistently capture both the duration and severity of stress periods, we extend
 1555 the sequent peak algorithm into a severity-aware extreme event identification method.
 1556 This supplementary method details the procedure, which integrates results across
 1557 multiple thresholds and applies a probabilistic weighting to emphasize rare and
 1558 operationally relevant extremes. The resulting method consists of the following steps:

1559

1560 1. **Event Mask Construction:** For each threshold τ^* , a binary event mask $\mathbf{1}_{t, \tau^*}$
 1561 is created:

1562

$$\mathbf{1}_{t, \tau^*} = \begin{cases} 1, & \text{if } CD_{t, \tau^*}^{\text{SPA}} > 0, \\ 0, & \text{otherwise.} \end{cases} \quad (10)$$

1563

1564

This mask marks all timesteps t that are part of an extreme event as identified by the SPA-algorithm for the threshold τ^* . These binary masks serve as the foundation for integrating results across multiple thresholds.

2. **Extreme Event Identification:** For each threshold τ^* , the set of identified extreme events \mathcal{E}_{τ^*} is defined as the collection of all maximal contiguous intervals of timesteps t for which the event mask $\mathbf{1}_{t,\tau^*}$ equals one:

$$\mathcal{E}_{\tau} = \{e_{\tau^*}^1, e_{\tau^*}^2, \dots, e_{\tau^*}^{N_{\tau^*}}\}, \quad \text{with } e_{\tau^*}^i = [t_s^{(i)}, t_e^{(i)}] \subseteq \mathbb{T} \quad (11)$$

Each event $e_{\tau^*}^i$ corresponds to a contiguous time interval where $\mathbf{1}_{t,\tau^*} = 1$ for all $t \in [t_s^{(i)}, t_e^{(i)}]$, and $\mathbf{1}_{t,\tau^*} = 0$ for $t = t_s^{(i)} - 1$ and $t = t_e^{(i)} + 1$, ensuring that the events are maximal.

3. **Exceedance Probability Weighting:** For each threshold τ^* , compute its overall exceedance probability EP_{τ^*} (the fraction of hours classified as extreme) and derive weights w_{τ^*} that penalize thresholds identifying too many hours as extreme:

$$w_{\tau} = -\log(EP_{\tau^*}) \quad (12)$$

This weighting scheme emphasizes thresholds that isolate rarer, more selective extreme conditions, with the logarithmic form ensuring smoother scaling across exceedance probabilities.

Supplementary Method 3: Extreme event quantification metrics

To evaluate extreme events in a consistent and comparable manner, we define a set of severity-, duration-, and impact-based metrics that integrate information across multiple thresholds. This supplementary note introduces the quantification framework and its logarithmic weighting scheme, which together provide a comprehensive characterization of extreme events.

Extreme events are quantified using a logarithmic-weighted average of threshold-specific metrics $M_{t,\tau}$ across the threshold range \mathcal{T}^* :

$$\langle M_t \rangle_{w_{\tau^*}} = \frac{\sum_{\tau^* \in \mathcal{T}^*} w_{\tau^*} M_{t,\tau^*}}{\sum_{\tau^* \in \mathcal{T}^*} w_{\tau^*}} \quad (13)$$

Here, M_{t,τ^*} denotes the per-threshold value of a chosen metric (e.g., severity, duration, Consumer Cost), and w_{τ^*} are the exceedance-probability weights. From this general formulation, the following extreme event quantification metrics are defined, with subscript e for event-level values, t for time series, and no subscript for metrics aggregated over all events:

1611 • **Integrated Probability:** The probability of how consistently each timestep t
 1612 is classified as extreme across thresholds:

$$P_t = \langle \mathbf{1}_{t, \tau^*} \rangle_{w_{\tau^*}} \quad (14)$$

1616 Here, $P_t \in [0, 1]$ represents a probability-like measure indicating the weighted
 1617 share of thresholds that classify timestep t as extreme, thereby reflecting the
 1618 degree of cross-threshold agreement. While P_t is primarily used for visualization
 1619 and qualitative interpretation, it may also serve as a filtering criterion to iden-
 1620 tify time intervals that are consistently recognized as extreme across multiple
 1621 thresholds. In this work, we apply a zero-threshold filter ($P_t > 0$) to visualize all
 1622 timesteps that are classified as extreme by at least one threshold.

1623 • **Frequency:** The total number of extreme events, averaged across thresholds and
 1624 floored:

$$F = \lfloor \langle N_e(\tau^*) \rangle_{w_{\tau^*}} \rfloor \quad (15)$$

1627 Here, $N_e(\tau^*)$ is the number of events detected at threshold τ^* .

1628 • **Severity:** The maximum weighted SPA-based deficit within an event:

$$S_e = \max_{t \in e} \langle CD_{t, \tau^*}^{\text{SPA}} \rangle_{w_{\tau^*}} \quad (16)$$

1632 • **Duration:** The weighted sum of extreme event timesteps, representing the
 1633 event's total length:

$$D_e = \sum_{t \in e} \langle \mathbf{1}_{t, \tau^*} \rangle_{w_{\tau^*}} \cdot \Delta t \quad (17)$$

1637 Here, $\mathbf{1}_{t, \tau^*}$ is the binary event mask, and Δt is the timestep length.

1638 • **Buildup:** The duration of the extreme event build up, from start to maximum
 1639 severity:

$$B_e = \sum_{t \leq t_{\text{peak}} \in e} \langle \mathbf{1}_{t, \tau^*} \rangle_{w_{\tau^*}} \cdot \Delta t \quad (18)$$

1643 Here, $t_{\text{peak}} \in e$ is the timestep within the event e with maximum severity S_e .

1644 • **Recovery:** The duration of the recovery phase of the extreme event, from
 1645 maximum severity to the end of the event:

$$R_e = \sum_{t > t_{\text{peak}} \in e} \langle \mathbf{1}_{t, \tau^*} \rangle_{w_{\tau^*}} \cdot \Delta t \quad (19)$$

1650 • **Event Consumer Cost:** The accumulated Consumer Cost during an extreme
 1651 event:

$$C_e = \sum_{t \in e} \langle CC_{t, \tau^*} \rangle_{w_{\tau^*}} \quad (20)$$

- **Event Unmet Energy Demand:** The accumulated *Unmet Energy Demand* covered by an extreme event: 1657
1658
1659

$$U_e = \sum_{t \in e} \left\langle \sum_i UED_{i,t,\tau^*} \right\rangle_{w_{\tau^*}} \quad (21)$$

- **Coverage Ratios:** The share of a given metric's total value that is covered by an extreme event: 1660
1661
1662

$$Cov_e = \frac{\sum_{t \in e} \langle M_{t,\tau^*} \rangle_{w_{\tau^*}}}{\sum_t M_t} \quad (22)$$

All metrics are computed per event, aggregated annually, and across the full dataset, providing a comprehensive multi-threshold characterization of extreme events. 1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674

Supplementary Method 4: Indicator accuracy quantification methods

To evaluate how reliably different indicators reproduce benchmark extreme events, this note defines a set of complementary accuracy metrics. These measures quantify precision, recall, temporal overlap, and alignment quality, providing a robust basis for comparing indicator performance in event-based identification. The quantification metrics are defined as follows: 1675
1676
1677
1678
1679
1680

- **Event Precision:** Fraction of predicted events that are correctly identified by at least one matching benchmark event. 1681
1682
1683

$$\text{Precision} = \left\langle \frac{|\mathcal{TP}_{I,\tau^*}|}{|\mathcal{E}_{I,\tau^*}|} \right\rangle_{w_{\tau^*}} \quad (23)$$

The precision indicates how many predicted events match actual benchmark events. A high precision means that the indicator produces few false positives. 1684
1685
1686

- **Event Recall:** Fraction of benchmark events that are correctly identified by at least one matching predicted event. 1687
1688
1689
1690
1691
1692

$$\text{Recall} = \left\langle \frac{|\mathcal{TP}_{B,\tau^*}|}{|\mathcal{E}_{B,\tau^*}|} \right\rangle_{w_{\tau^*}} \quad (24)$$

The recall indicates how many actual benchmark events were detected. A high recall means few true events are missed by the indicator. 1693
1694
1695

- **Event F1-Score:** Harmonic mean of precision and recall. 1696
1697
1698
1699
1700

$$F1 = \left\langle \frac{2 \cdot \text{Precision}_{\tau^*} \cdot \text{Recall}_{\tau^*}}{\text{Precision}_{\tau^*} + \text{Recall}_{\tau^*}} \right\rangle_{w_{\tau^*}} \quad (25)$$

1703 The F1-score balances both precision and recall, providing a single metric that
 1704 equally penalizes both false positives and false negatives.

- 1705 • **Benchmark Overlap:** Average relative overlap across all matched benchmark
 1706 events.

$$1707 \quad \text{Overlap} = \left\langle \frac{1}{|\mathcal{M}_{\tau}|} \sum_{(i,j) \in \mathcal{M}_{\tau^*}} r_{ij, \tau^*}^B \right\rangle_{w_{\tau^*}} \quad (26)$$

$$1708$$

$$1709$$

1710 The benchmark overlap indicates how strongly the benchmark events align with
 1711 the predicted events. A high overlap means that the correctly identified bench-
 1712 mark events are also well covered in time. For example, a value close to one
 1713 suggests that matched benchmark events are almost fully overlapped.

- 1714 • **Overlap Count:** Number of event pairs that exhibit any non-zero temporal
 1715 overlap.

$$1716 \quad \text{Count} = \langle |\mathcal{M}_{\tau^*}| \rangle_{w_{\tau^*}} \quad (27)$$

$$1717$$

1718 The overlap count reflects how many event pairs exhibit a temporal alignment.
 1719 A high overlap count indicates that many predicted and benchmark events are
 1720 overlapping.

- 1721 • **Symmetric Accuracy:** Fraction of event pairs with non-zero temporal overlap
 1722 that exhibit strong temporal alignment.

$$1723 \quad \text{Accuracy} = \left\langle \frac{|\mathcal{(TP}_{I, \tau^*} \cap \mathcal{TP}_{B, \tau^*}) \cup \mathcal{F}_{\tau^*}|}{|\mathcal{M}_{\tau^*}|} \right\rangle_{w_{\tau^*}}, \quad \text{with} \quad (28)$$

$$1724$$

$$1725$$

$$1726$$

$$1727 \quad \mathcal{F}_{\tau^*} = \left\{ (i, j) \in \mathcal{M}_{\tau^*} \mid O_{ij, \tau^*} = |e_{I, \tau^*}^i| \vee O_{ij, \tau^*} = |e_{B, \tau^*}^j| \right\}$$

$$1728$$

$$1729$$

1730 The symmetric accuracy denotes the fraction of event pairs whose events are
 1731 either matched in both directions (i.e., counted as true positives for both pre-
 1732 dicted and benchmark sets) or are fully contained within each other. A high
 1733 symmetric accuracy indicates that matched predicted and benchmark events are
 1734 temporally well-aligned.

1735

1736

1737

1738

1739

1740

1741

1742

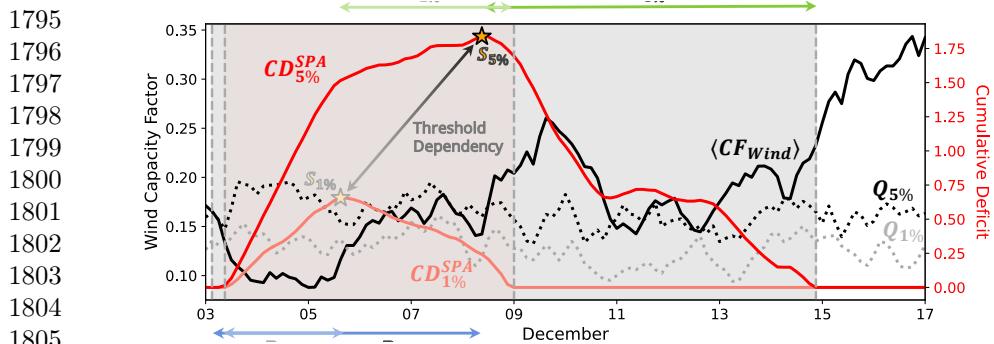
1743

1744


1745

1746

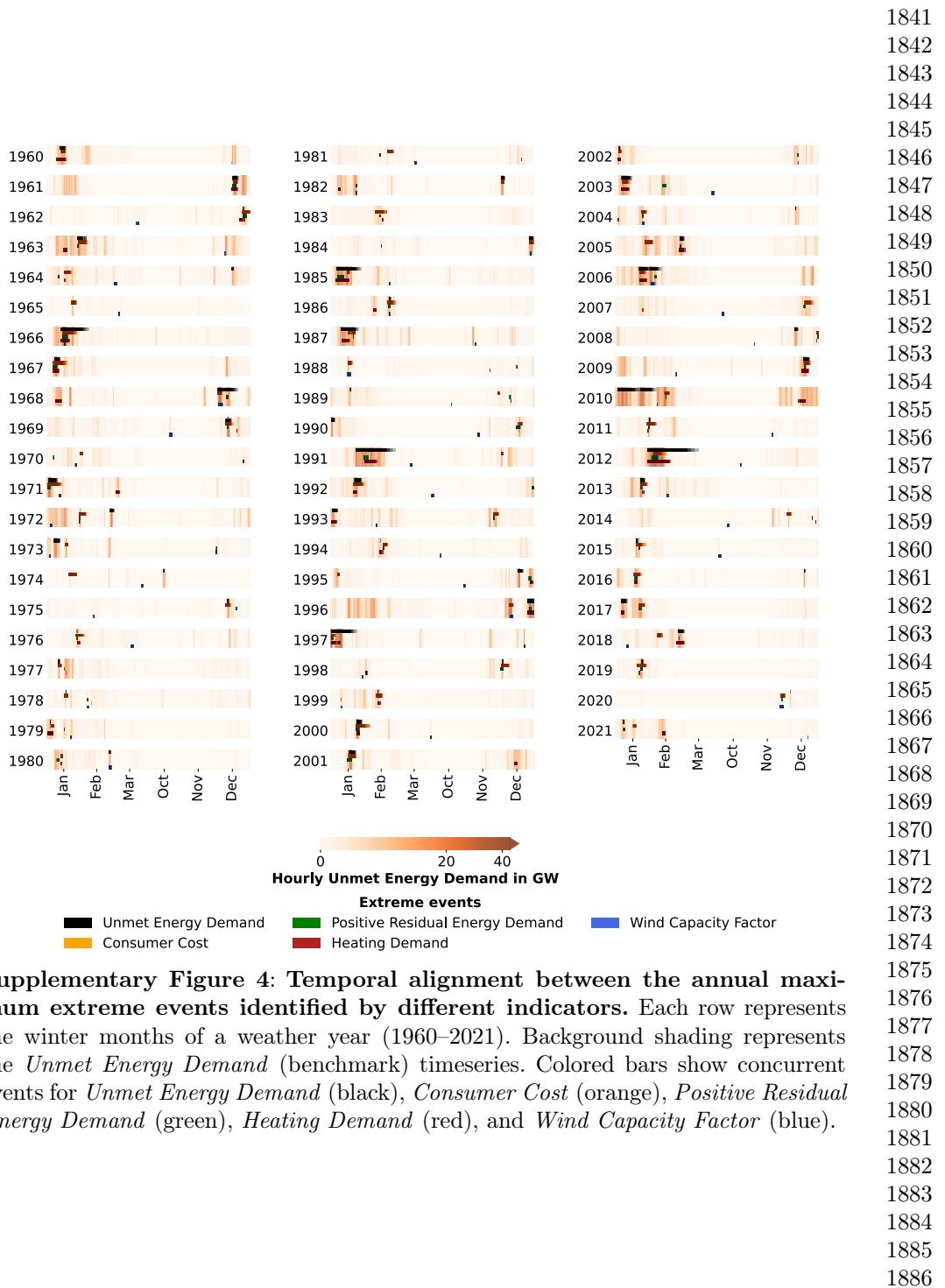
1747

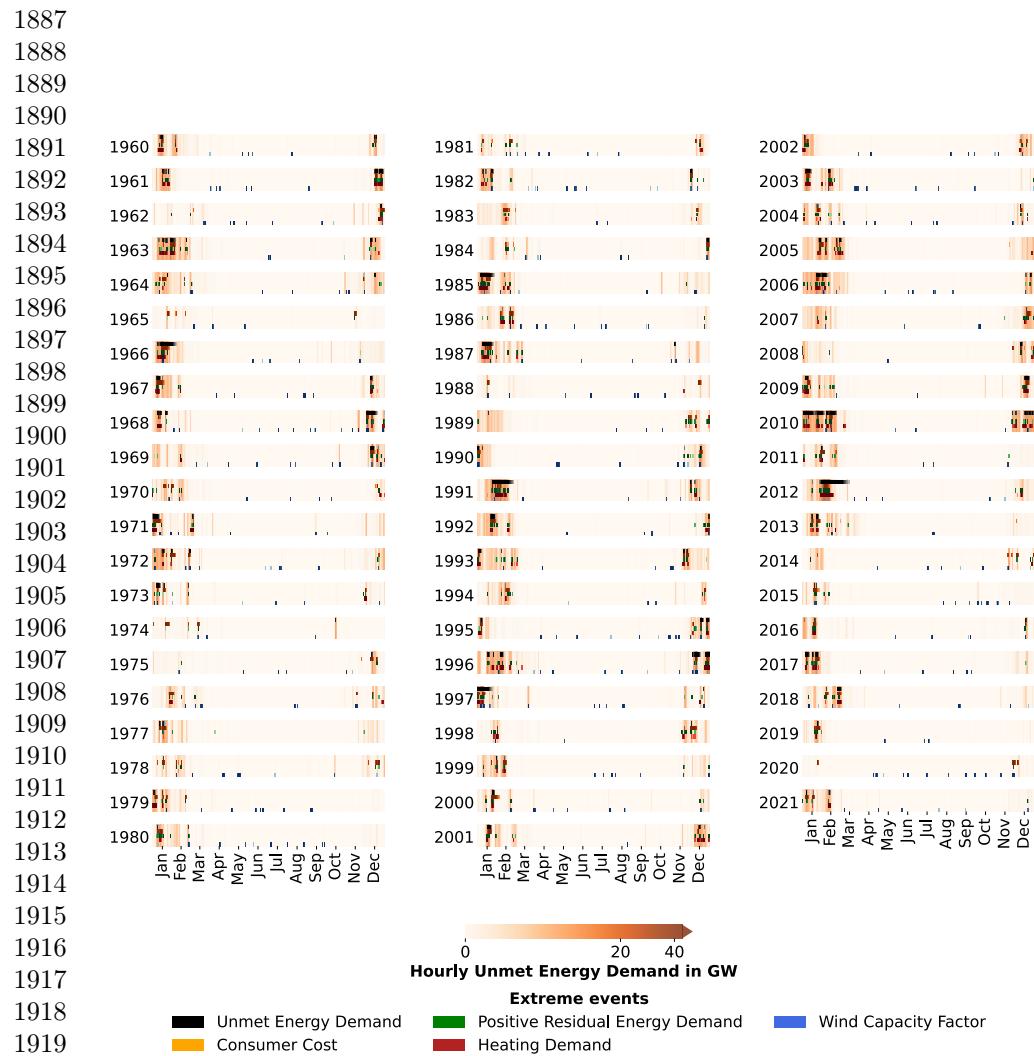

1748

Supplementary Figures

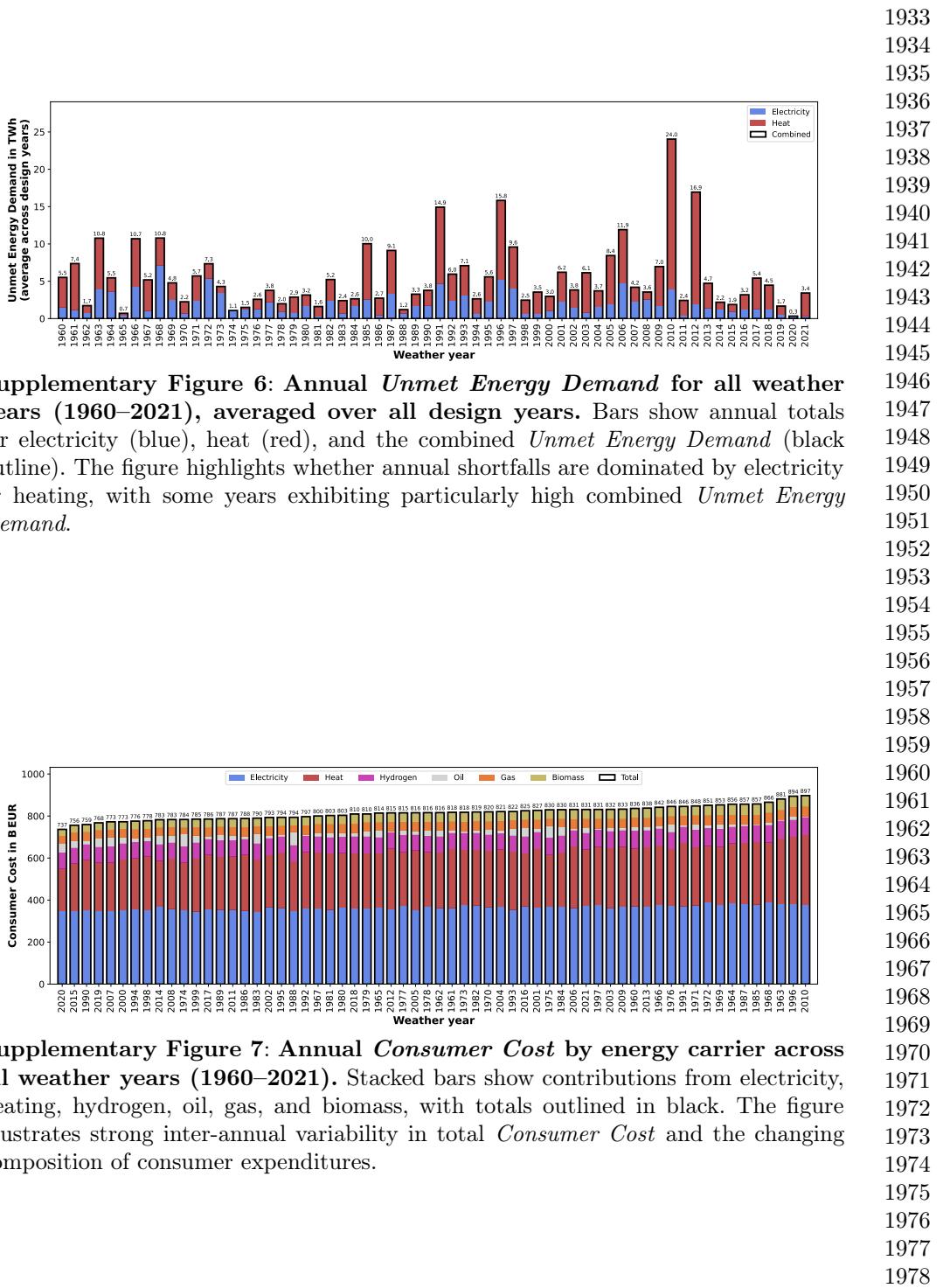


Supplementary Figure 1: Correlation between *Positive Residual Energy Demand* and *Unmet Energy Demand* across all weather years (1960–2021) and individual countries. Each cell shows the Pearson correlation for one country–year combination. Bar plots display averages across time (top, all years) and across space (right, all countries). Correlations are generally lower and more heterogeneous than for *Consumer Cost*, showing that *Positive Residual Energy Demand* only partially captures the spatio-temporal structure of physical system stress.

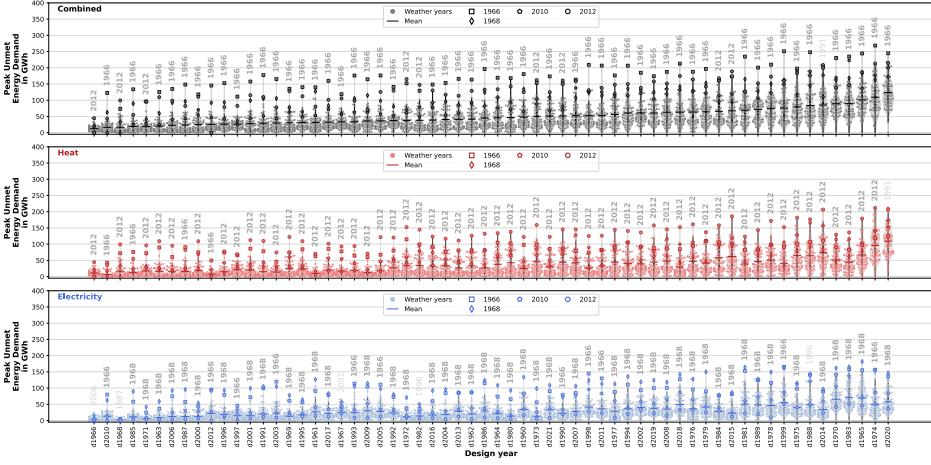

1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794

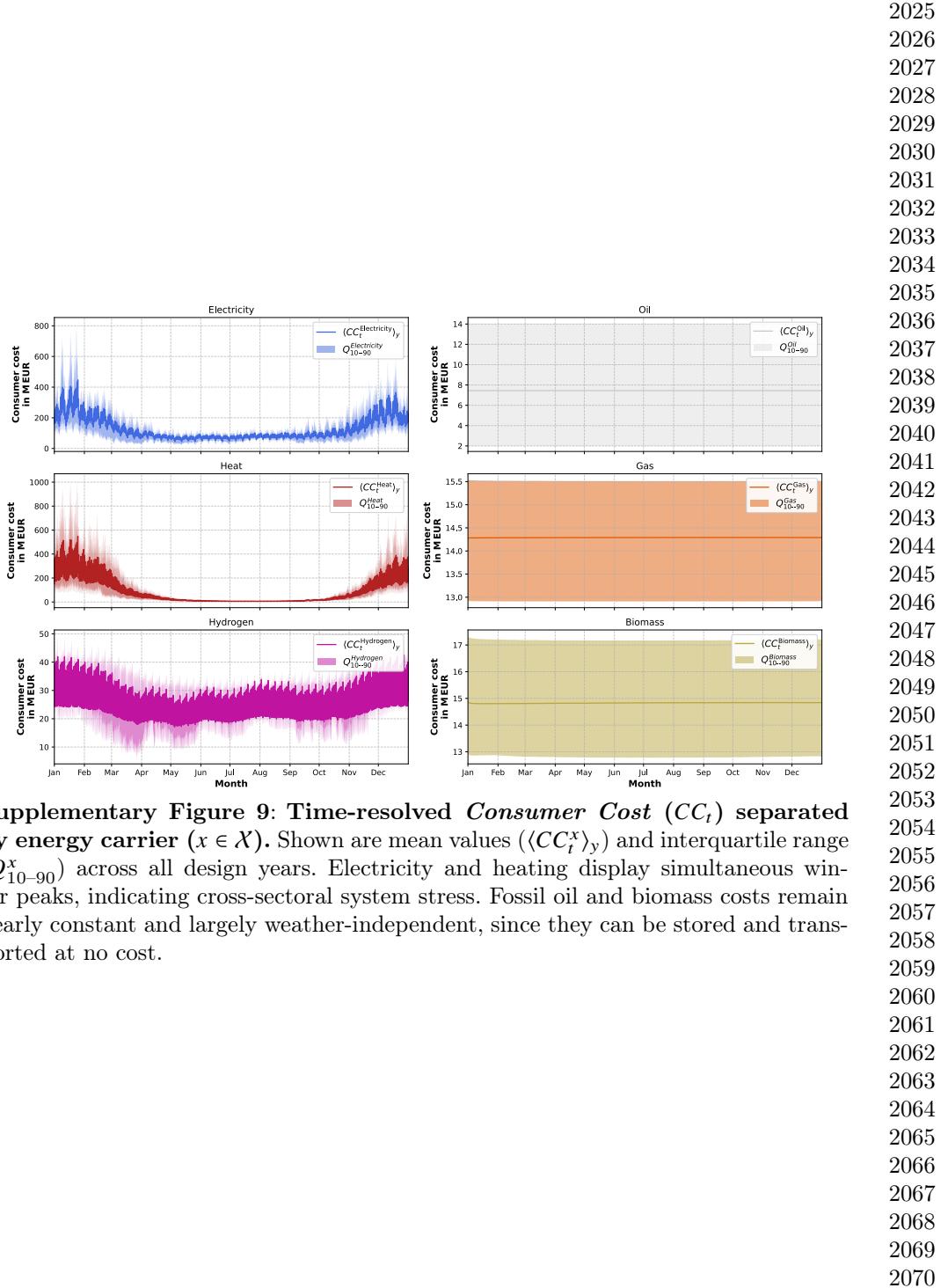


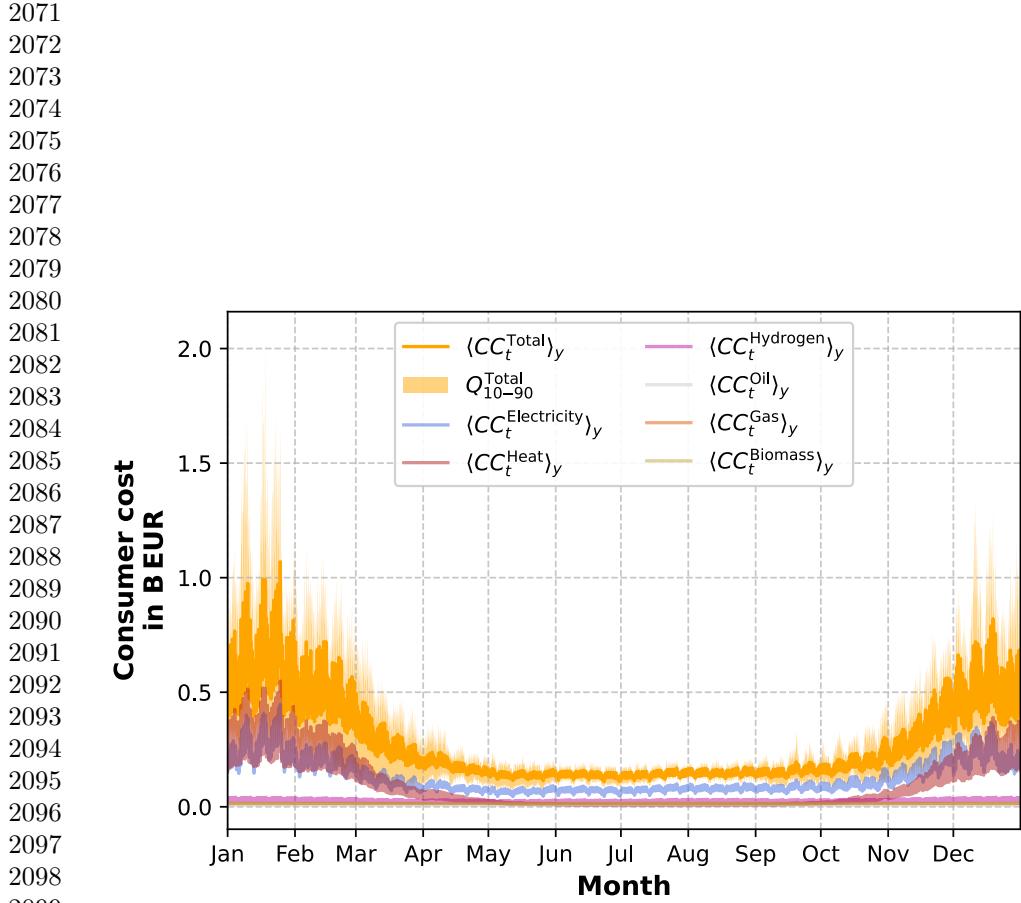
Supplementary Figure 2: Exemplary extreme event identification for the Wind Capacity Factor in December 1968. Shown is the time series of the Wind Capacity Factor CF_{Wind} (black) together with quantile thresholds $Q_{1\%}$ and $Q_{5\%}$ (dotted lines). The cumulative deficits CD_{τ}^{SPA} (shaded in red) quantify event severity. For this example, the threshold-specific build-up B_{τ} , recovery R_{τ} , and severity peaks S_{τ} are indicated for the chosen quantile thresholds $\tau \in \{1\%, 5\%\}$.



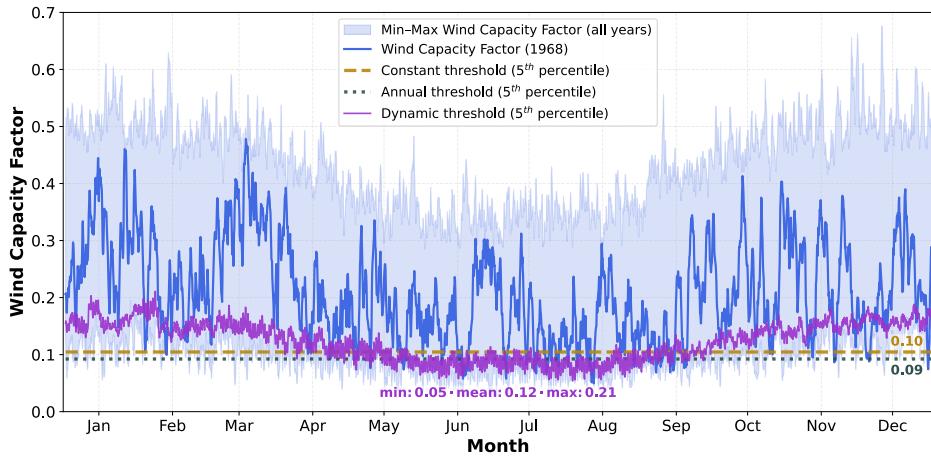
Supplementary Figure 3: Cumulative Consumer Cost as a function of period length (days). For each weather year, the curve shows the cumulative Consumer Cost of the most expensive periods up to the given length, ending at the annual total. Highlighted years (1966, 1968, 2010, 2012) represent weather-driven stress years with particularly high costs. Two phases of steep increase correspond to winter months (January–March and October–December), demonstrating seasonal clustering of stress.




1920 **Supplementary Figure 5: Temporal alignment between all identified**
1921 **extreme events identified by different indicators.** Each row represents the win-
1922 ter and summer months of a weather year (1960–2021). Background shading represents
1923 the *Unmet Energy Demand* (benchmark) timeseries. Colored bars show concurrent
1924 events for *Unmet Energy Demand* (black), *Consumer Cost* (orange), *Positive Residual*
1925 *Energy Demand* (green), *Heating Demand* (red), and *Wind Capacity Factor* (blue).
1926 The figure highlights systematic overprediction by meteorological indicators and fre-
1927 quent partial matches of benchmark events by *Positive Residual Energy Demand*.
1928

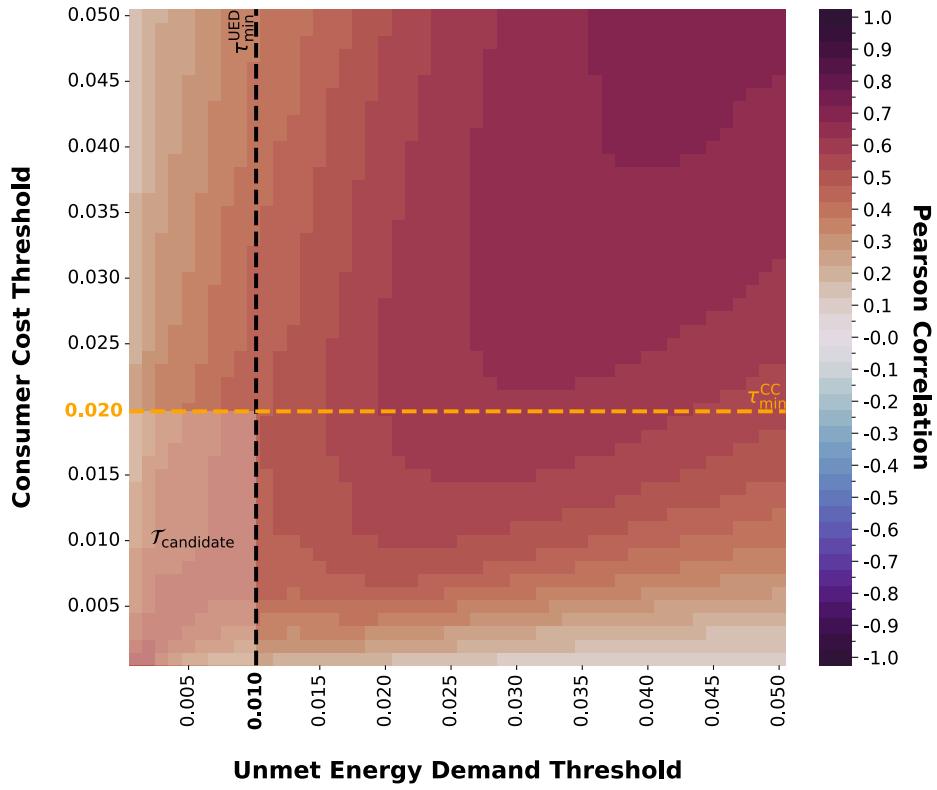

1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024

Supplementary Figure 8: Peak annual *Unmet Energy Demand* across weather years (1960–2021). The figure presents peak values for combined (top), heating (middle), and electricity (bottom) *Unmet Energy Demand*. Weather years are ordered by the average combined peak value across design years. Highlighted points indicate selected years (1966, 1968, 2010, 2012). The results underline the role of sector coupling, as combined peaks differ substantially from those in electricity or heating alone.



Supplementary Figure 9: Time-resolved *Consumer Cost* (CC_t) separated by energy carrier ($x \in \mathcal{X}$). Shown are mean values ($\langle CC_t^x \rangle_y$) and interquartile range (Q_{10-90}^x) across all design years. Electricity and heating display simultaneous winter peaks, indicating cross-sectoral system stress. Fossil oil and biomass costs remain nearly constant and largely weather-independent, since they can be stored and transported at no cost.

2100 **Supplementary Figure 10: Time-resolved Consumer Cost (CC_t) by individual**
2101 **energy carrier ($x \in X$) and their aggregated total (CC_t^{Total}).** Shown are
2102 mean values ($\langle CC_t^x \rangle_y$ and $\langle CC_t^{Total} \rangle_y$) and the interquartile range (Q_{10-90}^{Total}) across all
2103 design years. The aggregate *Consumer Cost* peaks at around 2 B EUR, with signif-
2104 icant increases in the winter months. Electricity and heating dominate the seasonal
2105 pattern, with pronounced winter peaks, whereas fossil oil and biomass remain nearly
2106 constant and weather-independent.


2107
2108
2109
2110
2111
2112
2113
2114
2115
2116

Supplementary Figure 11: Illustration of threshold types for extreme event identification. Example for the *Wind Capacity Factor* in 1968, showing constant, annual, and dynamic thresholds applied to the same time series. Constant thresholds use a fixed upper quantile across all years, annual thresholds recalculate the quantile each year, and dynamic thresholds adjust to the seasonal cycle using smoothed three-hourly quantiles. The figure illustrates how the different threshold types capture variability and seasonality.

2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162

2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192

2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208

Supplementary Figure 12: Correlation-based threshold selection for SPA event time series. Correlation matrix between *Consumer Cost* and *Unmet Energy Demand* SPA timeseries across threshold levels. Correlations increase at very low quantile thresholds, but these values lie far from the knee-point that marks the onset of extremal behavior. The region of statistically indistinguishable thresholds selected in our work (\mathcal{T}^*) is highlighted, while the ceiled knee-value thresholds are indicated by dashed lines.

Supplementary Tables

Supplementary Table 1: Indicator-specific threshold definitions for extreme event identification. Shown are the optimal percentile threshold ranges \mathcal{T}^* , the corresponding absolute values, and the applied threshold type (constant, annual, or dynamic) after indicator transformation, used in the extended Sequent Peak Algorithm (SPA).

Indicator	Percentiles %			Threshold Type	2209
	lower	optimal	upper		
Unmet Energy Demand	99.0	99.4	99.6	constant	2210
Consumer Cost	99.0	99.2	99.4	annual	2211
Positive Residual Energy Demand	99.0	99.5	99.7	constant	2212
Heating Demand	95.0	96.3	97.2	constant	2213
Wind Capacity Factor	98.8	99.1	99.4	dynamic	2214
					2215
					2216
					2217
					2218
					2219
					2220
					2221
					2222
					2223
					2224
					2225
					2226
					2227
					2228
					2229
					2230
					2231
					2232
					2233
					2234
					2235
					2236
					2237
					2238
					2239
					2240
					2241
					2242
					2243
					2244
					2245
					2246
					2247
					2248
					2249
					2250
					2251
					2252
					2253
					2254

2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300

Supplementary Table 2: Structural characteristics of identified extreme events across indicators. Reported values include minimum, mean, and maximum for frequency, duration, build-up, recovery, and coverage relative to annual *Consumer Cost* and annual *Unmet Energy Demand*. Results are given separately for each indicator.

Characteristic	Unmet Energy Demand		Consumer Cost		Positive Residual Energy Demand		Heating Demand		Wind Capacity Factor		Units	
	Min.	Mean	Max	Min.	Mean	Max	Min.	Mean	Max	Min.	Mean	
Frequency	0.0	3.5	21.0	1.0	3.7	9.1	1.6	12.0	27.6	0.0	6.1	34.8
Duration	1.7	45.6	921.8	1.7	43.1	261.2	1.7	124	152.3	1.7	20.4	458.1
Build-Up	0.6	22.0	566.7	0.6	21.0	193.5	0.6	42	99.0	0.6	8.8	179.7
Recovery	1.1	23.6	366.0	1.1	22.1	119.8	1.1	8.2	112.7	1.1	11.6	330.5
Consumer Cost Coverage	0.2	9.1	39.2	7.2	9.6	14.2	1.0	8.7	21.4	0.1	7.1	23.9
Unmet Energy Demand Coverage	0.1	8.7	86.1	0.1	2.2	14.2	0.0	0.6	11.6	0.0	0.9	21.8
Count	216	216	229	229	229	229	741	742	377	378	184	397
	Winter · Total		Winter · Total		Winter · Total		Winter · Total		Winter · Total		##	

Supplementary Table 3: Evaluation metrics for each stress indicator using event-based identification. Metrics include precision, recall, F1-score, and temporal overlap, each reported as minimum, mean, and maximum values. Results are shown separately for timestep matching, event matching, and maximum event matching.

Indicator	Precision			Recall			F1-Score			Overlap		
	min	mean	max	min	mean	max	min	mean	max	min	mean	max
Timestep Matching												
Consumer Cost	26.6	43.6	56.5	32.4	48.9	71.1	38.7	44.7	48.6	32.4	48.9	71.1
Positive Residual Energy Demand	25.2	44.4	68.2	19.9	40.0	61.7	30.8	40.2	42.8	19.9	40.0	61.7
Heating Demand	9.4	21.6	34.0	69.7	82.0	89.0	16.9	33.6	45.7	69.7	82.0	89.0
Wind Capacity Factor	6.0	9.1	11.1	5.4	9.4	15.6	7.3	9.0	10.2	5.4	9.4	15.6
Event Matching												
Consumer Cost	21.3	43.2	53.8	33.2	49.8	71.4	32.8	44.8	48.8	56.6	68.0	85.2
Positive Residual Energy Demand	18.0	38.1	65.6	19.8	42.7	73.9	29.0	37.6	42.0	24.3	35.4	58.9
Heating Demand	2.0	6.2	11.2	73.5	83.6	90.1	3.8	11.5	19.5	81.4	87.4	95.9
Wind Capacity Factor	5.2	7.8	9.6	6.2	10.4	16.1	6.5	8.8	10.3	39.0	45.2	56.9
Maximum Event Matching												
Consumer Cost	16.1	35.0	41.9	48.2	53.8	68.3	26.1	41.7	45.6	70.2	83.6	94.9
Positive Residual Energy Demand	24.2	37.0	42.4	7.1	20.9	36.6	12.2	25.6	35.4	16.1	37.9	65.9
Heating Demand	6.5	22.9	36.1	50.9	53.3	57.1	11.5	31.2	43.1	88.5	97.5	100.0
Wind Capacity Factor	4.9	8.3	11.7	1.8	4.8	12.2	2.9	5.7	9.9	30.4	40.8	60.3
Units	%			%			%			%		

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

Supplementary Table 4: Parameter settings for automated threshold selection.

The table specifies the bootstrap setup, candidate threshold range, and statistical tests used to identify robust and statistically indistinguishable thresholds.

Parameter	Value	Description
$CI_{1\sigma}$	[0.16, 0.84]	Bootstrap confidence interval
Δ_τ	0.001	Increments between candidate thresholds
k	2500	Number of bootstrap replicates
m	500	Number of quantile levels per bootstrap replicate
$N_e(\tau)$	62	Minimum number of exceedances (distinct extreme events)
$\bar{p}_{AD}(\tau)$	0.05	Anderson–Darling test significance level
q_{min}	95 th	Minimum admissible percentile for candidate thresholds

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392