#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
Supplementary Code S1
Title: MediaPipe-based sprint timing with virtual line-crossing at 5 m, 10 m, and 20 m

Description

This script computes sprint times from a single lateral video using MediaPipe Pose.
It draws virtual start / 5 m / 10 m / 20 m lines in the image coordinate system,
detects line-crossing events of anatomical landmarks, and outputs split times.

Key features

- Virtual line-crossing for start, 5 m, 10 m, and 20 m
- Landmark smoothing (3-frame moving average by default)
- Robust crossing detection with sub-frame refinement using linear interpolation
- Outputs per-trial times to CSV and prints a summary
- Optional visualization frames with overlay for QA

Requirements

- Python >= 3.10
- mediapipe >= 0.10
- opencv-python >= 4.7
- numpy >= 1.23
- pandas >= 1.5

Usage

python Supplementary_Code_SprintTiming.py \
 --video sprint_trial.mp4 \
 --fps 60 \
 --start-x 1200 \
 --m5-x 1800 \
 --m10-x 2400 \
 --m20-x 3000 \
 --lead-ankle left \
 --smooth 3 \
 --out sprint_times.csv
"""

import argparse
import csv
import cv2
import numpy as np
import mediapipe as mp

MediaPipe landmark indices
LEFT_ANKLE, RIGHT_ANKLE = 27, 28
LEFT_HIP, RIGHT_HIP = 23, 24

def moving_average(series, k=3):
 if k <= 1:
 return series
 out, buf = [], []
 for val in series:
 buf.append(val)
 if len(buf) > k:
 buf.pop(0)
 out.append(sum(buf) / len(buf))
 return out

def interpolate_crossing(prev_x, curr_x, line_x):
 denom = (curr_x - prev_x)
 if abs(denom) < 1e-9:
 return 1.0
 frac = (line_x - prev_x) / denom
 return np.clip(frac, 0.0, 1.0)

def detect_crossing(xs, line_x, direction="left_to_right"):
 for t in range(1, len(xs)):
 prev_x, curr_x = xs[t-1], xs[t]
 if direction == "left_to_right":
 crossed = (prev_x > line_x) and (curr_x <= line_x)
 else:
 crossed = (prev_x < line_x) and (curr_x >= line_x)
 if crossed:
 frac = interpolate_crossing(prev_x, curr_x, line_x)
 return t, frac
 return None

def extract_landmarks(results, w, h):
 if not results.pose_landmarks:
 return {}
 lm = results.pose_landmarks.landmark
 return {
 LEFT_ANKLE: (lm[LEFT_ANKLE].x * w, lm[LEFT_ANKLE].y * h),
 RIGHT_ANKLE: (lm[RIGHT_ANKLE].x * w, lm[RIGHT_ANKLE].y * h),
 LEFT_HIP: (lm[LEFT_HIP].x * w, lm[LEFT_HIP].y * h),
 RIGHT_HIP: (lm[RIGHT_HIP].x * w, lm[RIGHT_HIP].y * h),
 }

def choose_lead_ankle(lead):
 lead = lead.lower()
 return LEFT_ANKLE if lead in ("left", "l") else RIGHT_ANKLE

def run(video_path, fps_nominal, lines, lead_ankle="left", smooth_k=3, direction="left_to_right", out_csv="sprint_times.csv"):
 cap = cv2.VideoCapture(video_path)
 fps = cap.get(cv2.CAP_PROP_FPS) or fps_nominal
 w, h = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

 pose = mp.solutions.pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)

 ankle_xs, hip_xs = [], []
 lead_idx = choose_lead_ankle(lead_ankle)

 while True:
 ok, frame = cap.read()
 if not ok:
 break
 rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
 results = pose.process(rgb)
 lm = extract_landmarks(results, w, h)
 if lm:
 ankle_xs.append(lm[lead_idx][0])
 hip_xs.append((lm[LEFT_HIP][0] + lm[RIGHT_HIP][0]) / 2)

 ankle_xs = moving_average(ankle_xs, smooth_k)
 hip_xs = moving_average(hip_xs, smooth_k)

 crossings = {}
 for key, series, line in [("start", ankle_xs, lines["start"]),
 ("5m", hip_xs, lines["m5"]),
 ("10m", hip_xs, lines["m10"]),
 ("20m", hip_xs, lines["m20"])]:
 idx = detect_crossing(series, line, direction)
 if idx:
 frame, frac = idx
 crossings[key] = (frame - 1 + frac) / fps

 if "start" in crossings and "20m" in crossings:
 crossings["total"] = crossings["20m"] - crossings["start"]

 with open(out_csv, "w", newline="") as f:
 writer = csv.writer(f)
 writer.writerow(["Split", "Time (s)"])
 for k, v in crossings.items():
 writer.writerow([k, f"{v:.3f}"])

 return crossings

if __name__ == "__main__":
 parser = argparse.ArgumentParser()
 parser.add_argument("--video", required=True)
 parser.add_argument("--fps", type=float, default=60.0)
 parser.add_argument("--start-x", type=float, required=True)
 parser.add_argument("--m5-x", type=float, required=True)
 parser.add_argument("--m10-x", type=float, required=True)
 parser.add_argument("--m20-x", type=float, required=True)
 parser.add_argument("--lead-ankle", type=str, default="left")
 parser.add_argument("--smooth", type=int, default=3)
 parser.add_argument("--out", type=str, default="sprint_times.csv")
 args = parser.parse_args()

 lines = {"start": args.start_x, "m5": args.m5_x, "m10": args.m10_x, "m20": args.m20_x}
 out = run(args.video, args.fps, lines, lead_ankle=args.lead_ankle, smooth_k=args.smooth, out_csv=args.out)
 print("Detected splits:", out)
