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1 General model

1.1 The basic selection process

We study two-player symmetric games which are associated with a set (or space) of strategies,
S. If player 1 uses strategy A ∈ S and player 2 uses strategy B ∈ S, then player 1 is awarded
payoff πAB, and player 2 is awarded payoff πBA.

We study evolutionary processes (or tournaments) on the strategy space S. A process is
indexed by discrete time steps. At each time step, there is a resident strategy A, which is the
current state. A challenger strategy B is drawn from S at random. The payoff matrix between
resident and challenger, [(πAA, πAB), (πBA, πBB)], can be written in shorthand as [(a, b), (c, d)].
That is,

a := πAA, b := πAB, c := πBA, d := πBB (1)

Our selection process stipulates that A remains as the resident if and only if

U(a, b, c, d) > 0 (2)

Otherwise, if U(a, b, c, d) ≤ 0, then A is discarded and B becomes the new resident state. The
procedure is repeated over many time steps. U is an arbitrary fixed function of four variables,
which we assume to be continuous. We refer to U as the decision function of the selection
process. In the following, we will blur the distinction between the process and the corresponding
decision function.

We note that for generic processes, games and strategy spaces, perfect equality U(a, b, c, d) =

0 occurs with probability zero.

1.2 Memory-1 strategies of direct reciprocity

As an interesting application of the selection process described above, we take the space S to
be a space of strategies from the setting of direct reciprocity. More specifically, we consider
strategies for repeated 2× 2 symmetric games. The payoff matrix for such a game is of the form

C D

C R S

D T P

(3)

Without loss of generality we label the actions ‘C’ and ‘D’ such that the payoff to two ‘C’
players is greater than the payoff to two ‘D’ players: R ≥ P . In fact, we will assume R > P ,
unless we explicitly say otherwise. We sometimes study many different payoff matrices at once
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— each is specified by a four-tuple G = (R, S, T, P ). We follow the literature on the evolution
of cooperation, and refer to the action ‘C’ as ‘cooperate’ and ‘D’ as ‘defect.’

In each round of the repeated game, the average of the two players’ payoffs is either R (if
both played C); P (if neither played C); or (S + T )/2 (if exactly one played C). Therefore, the
maximum possible per-round average payoff to two players in the repeated game is

πM := max{R,P, (S + T )/2} = max{R, (S + T )/2} (4)

The minimum possible per-round average payoff to two players in the repeated game is

πm := min{R,P, (S + T )/2} = min{P, (S + T )/2} (5)

There are many strategy spaces of direct reciprocity which we could consider. Memory-n
strategies are strategies which choose the next move based on the outcome of the previous n

rounds. The outcome of each round is an element of {CC, CD, DC, DD}. This means there
are 4n possible outcomes for a sequence of n consecutive rounds. For each such outcome, a
memory-n strategy specifies a probability for playing C. The space Mn of memory-n strategies
is 4n-dimensional. The simplest of these spaces is given by memory-0 (M0) strategies. An M0

strategy specifies a constant probability p for playing C in the next round.
In this paper, we focus on the space of memory-1 (M1) strategies (Nowak & Sigmund 1990,

1992). In the last section, we prove that almost all our results carry over to memory-n (Mn)
strategies for n > 1. An M1 strategy p = (pCC, pCD, pDC, pDD) is given by four probabilities pij
— the probability to play C next if the focal player played i in the last round and the co-player
played j. Usually we use the shorthand p = (p1, p2, p3, p4).

There is a good reason for choosing M1 as the strategy space when studying direct reciprocity.
Regardless of the game parameters R, S, T, P , there is always an M1 strategy p such that if both
players use p, they each earn long-run average payoff πM . For example, if πM = R, then
p = (1, 1, 1, 1) suffices. This is the strategy that always plays C. If πM = (S + T )/2, then
p = (1/2, 0, 1, 1/2) suffices. This is a strategy for which the two players jointly play CD and
DC in alternating rounds, each player earning πM = (S + T )/2 per-round on average.

By contrast, no M0 strategy can achieve CD and DC outcomes in alternating rounds. Conse-
quently, if πM = (S + T )/2 > R, there is no M0 strategy p for which the two players earn πM

per-round on average. This means that M1 is the smallest space Mn for which there is always
a strategy which achieves the maximum possible self-payoff (average per-round payoff against
itself in the repeated game). We are interested in finding evolutionary selection processes U

for which the long term average payoff achieves the maximum value. This is a good reason to
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consider the space of M1 strategies.
If the focal player uses an M1 strategy p and the co-player uses an M1 strategy q, then the

outcome of the game may change randomly from round to round: indeed, there is an induced
Markov chain, M(p,q), on the set of round outcomes {CC, CD, DC, DD}. A stationary dis-
tribution of the Markov chain describes the long-run average frequencies of the four outcomes.
This means that a stationary distribution can be used to calculate the long-run average per-round
payoff of p against q, which we write as πpq. However, if the stationary distribution of the
Markov chain is not unique, then the payoff πpq is not uniquely defined. In that case, it depends
on the starting moves of both players.

In an attempt to avoid some thorny technicalities in the future, we make the following defini-
tion:

Definition 1. A memory-1 strategy p is called eligible if the Markov chain M(p,p) admits a

unique stationary distribution.

Proposition 2. If p is eligible, then πpp is uniquely defined for any (R, S, T, P ). Likewise, πpq

and πqp are uniquely defined for any interior memory-1 strategy q, and any (R, S, T, P ). These

payoffs are given by the formula (6) of Press-Dyson.

Proof. The first statement is true by the definition of πpp. The second statement is true for the
following reason. Since M(p,p) has a unique stationary distribution, it has a unique closed
irreducible set of states. (A closed irreducible set is a collection of states such that there is a
positive probability of eventual transition between any two states in the set, and zero probability
of eventual transition from a state inside the set to a state outside of the set.) Let q be an interior
memory-1 strategy. Then every transition which occurs with positive probability in the Markov
chain M(p,p), also occurs with positive probability in the Markov chain M(p,q). So M(p,q)

also has a unique closed irreducible set of states, and hence a unique stationary distribution.

Proposition 3. Every memory-1 strategy p = (p1, p2, p3, p4) is an eligible strategy, except for

the following five strategy types, which are not:

1. the square p = (1, p2, p3, 0)

2. the square p = (p1, 1, 0, p4)

3. the line p = (1, 0, 1, p4)

4. the line p = (p1, 0, 1, 0)

5. the point p = (0, 0, 1, 1)
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Proof. The condition of being eligible says that the chain M(p,p) has a unique stationary dis-
tribution. It is a well-known fact that a finite Markov chain has a unique stationary distribution if
and only if it has a unique closed irreducible set of states. The closed irreducible sets are deter-
mined by the signs of all of the state transitions (either positive or zero). In turn, these signs are
determined by whether each pi is 0, 1, or somewhere in the open interval (0, 1). In other words,
there are three relevant possibilities for each of p1, p2, p3, p4. In total the number of strategy types
needing to be considered is 34 = 81. One can check by hand that the possibilities listed above
are the ones which do not give rise to a unique closed irreducible set.

From now on we generally assume that a resident M1 strategy for a selection process is
an eligible strategy, unless specified otherwise. This usually guarantees that payoffs are well-
defined.

For interior strategies p and q, which are defined by pi, qj ∈ (0, 1) for all i, j, the payoff πpq

is given by the formula (Press & Dyson 2012)

πpq =
detM(R, S, T, P )

detM(1, 1, 1, 1)
, (6)

M(v1, v2, v3, v4) =


−1 + p1q1 −1 + p1 −1 + q1 v1

p2q3 −1 + p2 q3 v2

p3q2 p3 −1 + q2 v3

p4q4 p4 q4 v4

 (7)

This formula also works in many cases where p or q are boundary strategies, which have pi

or qj in {0, 1} for some i or j. For instance, the formula is valid for any eligible strategy p and
interior strategy q.

The value of πpp will simply be referred to as the payoff of p. It is the average payoff received
by each player when both use the strategy p.

1.3 Stable states

The lifetime of a resident state in a selection process is the number of rounds before it is success-
fully replaced by a random challenger. The expected lifetime ℓU(A) of a resident state A can be
calculated as follows:

ℓU(A) := (1− |{B : U(a, b, c, d) > 0}|)−1

Here | | represents the Lebesgue measure, and the set {B : U(a, b, c, d) > 0} is the set of
challenger strategies which cannot replace A.
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Definition 4. A resident state A is called a stable state for the process U if ℓU(A) = ∞.

A stable state A has an infinitely long expected lifetime. This occurs when the probability of
a random challenger being able to replace A is zero. Notice that to determine whether a state is
stable, it suffices to examine only interior strategies B (since boundary strategies have measure
zero).

Our goal in defining stable states is that by acquiring analytical knowledge of these states we
can come to understand the results of simulations of the selection process on the space M1.

Proposition 5. Let A be a stable state for the process U . Then all states sufficiently close to A

have a long expected lifetime.

Proof. First, note that the set of all eligible states is open. So the expected lifetime ℓU is well-
defined in a sufficiently small neighborhood of A.

Since A is stable, ℓU(A) = ∞. Equivalently, the set X = {B : U(a, b, c, d) > 0} of
challengers which cannot replace A, is an open set of measure 1.

Let L > 0 be arbitrary. Pick a compact set K ⊆ X , with measure at least 1 − 1/L. Since
K ⊆ X is compact and U is continuous, minB∈K U(a, b, c, d) > 0.

Now consider another resident strategy A′, and define the shorthand

a′ := πA′A′ , b′ := πA′B, c
′ := πBA′ , d′ := πBB

If A′ is sufficiently close to A, then minB∈K U(a′, b′, c′, d′) > 0. In that case

ℓU(A
′) := (1− |{B : U(a′, b′, c′, d′) > 0}|)−1 ≥ (1− |K|)−1 = L

So all strategies sufficiently close to A have lifetime at least L. Here L was arbitrary.

1.4 Stable states in a simple invasion process

In this section we give an extended example. Consider the selection process U(a, b, c, d) > a−c.
Here the resident, A, remains if the invasion fitness of the mutant, B, which is c−a := πBA−πAA,
is negative. We call U the invasion process.

If A is a strict Nash equilibrium, then πAA > πBA for all strategies B other than A. Thus,
a strict Nash equilibrium is a stable state in the invasion process. No challenger strategy B

can replace A. When asking for a strict NE in the space M1 we are asking for too much. These
strategies do not typically exist, because one can find a strategy B with πAA = πBA. For instance,
if A is the M1 strategy generous-tit-for-tat (1, 1/4, 1, 1/4), in a standard donation game with cost-

6



to-benefit ratio of 1/2, then πAA ≥ πBA for all B where the payoffs are well-defined. But if B is
ALLC = (1, 1, 1, 1) then B attains equality πAA = πBA.

If A is a Nash equilibrium, then πAA ≥ πBA for all strategies B. When asking for a NE in
the space M1 we are not asking for enough. For example, some NE strategies are equalizers1,2:
πAA = πBA for all B. If a resident strategy A is an equalizer, then we can say nothing about the
expected lifetime of resident strategies which are very close to A.

Therefore, strict Nash equilibrium and Nash equilibrium strategies are not perfectly suited to
understanding simulations of the invasion process on M1. However, the notion of a stable state is
very similar to both of these concepts. It helps shed light on simulations by virtue of Proposition
5.

1.5 Parity and positivity

It is natural to consider selection processes U(a, b, c, d) which implement a symmetric compari-
son between resident A and challenger B. The decision function U can be thought of as making
a decision between the two strategies (based on the sign of U(a, b, c, d)) with a certain intensity
(based on the magnitude of U(a, b, c, d)). A reasonable symmetry condition is that the decision
and intensity is the same regardless of which strategy is in the role of resident and which is in the
role of mutant. We call this condition parity:

U(d, c, b, a) = −U(a, b, c, d) (8)

If we want to design a selection process which selects for high payoff, a second basic condi-
tion we should impose is that having a larger payoff a = πAA should contribute positively to the
selection of the resident. We call this condition positivity: formally, it means that U is strictly
monotonically increasing in the first variable.

Unexpectedly, the two conditions of parity and positivity are already enough to result in
effective selection for high payoff. Our simulations have shown examples of this curious fact. It
is also predicted by the following two propositions.

Proposition 6 (Parity and positivity). Let U be a selection process which satisfies both parity

and positivity. If this process is applied to the space M1 for any game (R, S, T, P ), then every

stable state A of the process has maximum payoff πM .

Proof. By positivity, U is strictly monotonically increasing in the first variable. But by parity,
that implies U is strictly monotonically decreasing in the fourth variable.

Case 1: πM = R. Let A be an eligible memory-1 strategy and let
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B(ϵ) = (1− ϵ2, ϵ, 1− ϵ, ϵ) (9)

One can use the payoff formula (6) to compute πBB and check that

lim
ϵ→0

πBB = R = πM (10)

In the same way it may be checked that the quantity x = limϵ→0 πAB exists and is equal to
limϵ→0 πBA. So, by continuity of U ,

lim
ϵ→0

U(a, b, c, d) = U(a, x, x, πM)

Parity implies that U(a, x, x, πM) = −U(πM , x, x, a). We have observed that U is increasing in
the first variable and decreasing in the fourth. It follows that if a < πM , then U(a, x, x, πM) < 0.
We can also say that U(a, b, c, d) < 0 for sufficiently small ϵ. So the selection process stipulates
that resident A is replaced by challenger B, if ϵ is small enough. By continuity, there are also
strategies nearby to B(ϵ) which can replace A. So A cannot be a stable state unless πAA =: a =

πM

Case 2: πM = (S + T )/2. The same argument works, except that we use B(ϵ) = (1− ϵ, ϵ2, 1−
ϵ2, ϵ).

Proposition 6 asserts that every stable state has maximum payoff. However, we would also
like to know that such stable states exist at all.

Proposition 7. Let U be a selection process which satisfies both parity and positivity. If this

process is applied to the space M1 for any game (R, S, T, P ), then the process has a stable state.

Remark. Technically this proof will show that there is a family of states (with maximum pay-
off) which approach lifetime +∞ in the limit. The limiting state itself is not eligible, because
approaching it from different directions gives different payoff results. Nevertheless, it can be
considered a kind of extended stable state, when approached from a specified direction.

Proof. To check that a state A is stable, it suffices to show that U(a, b, c, d) > 0 for all chal-
lengers B which are interior strategies.

Case 1: πM = R. Let A(ϵ) = (1, ϵ, 1, ϵ). One can use the payoff formula (6) to compute πAA

and check that
lim
ϵ→0

πAA = R = πM (11)
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Similarly, one can check that for every interior strategy B, the limit x = limϵ→0 πAB exists and
is equal to limϵ→0 πBA. It follows by continuity of U that

lim
ϵ→0

U(a, b, c, d) = U(πM , x, x, d)

Since B is an interior strategy, πBB =: d < πM . Now, by the logic in the proof of Proposition 6,
we can conclude that U(a, b, c, d) > 0 for all sufficiently small ϵ. So we will say that (1, ϵ, 1, ϵ)
is a stable state, where ϵ is infinitesimally small.

Case 2: πM = (S + T )/2. The same argument carries over, except that we use A(ϵ) = (1 −
ϵ, 0, 1, ϵ).

General selection processes exhibit various asymmetries, and usually do not satisfy parity.
For instance, a decision function

U(a, b, c, d) = exp(a+ 2b− 4c+ d)− 1, (12)

does not.
One of our goals is to show that if the selection process U exhibits a certain degree of parity

violation, then there must exist a game (R, S, T, P ) for which the stable states A do not achieve
payoff πM (or else do not exist).

For simplicity we will only consider selection processes which satisfy the following:

Definition 8. A selection process is centered if

U(π, π, π, π) = 0, (13)

for all π ∈ R. In other words, the decision function reaches the point of indifference (0) if the

variables a, b, c, d are all equal to each other.

Every function which satisfies parity is centered. The example (12) above is also centered.
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2 Linear decision functions

A linear decision function U is one of the form

Ux(a, b, c, d) := x1a+ x2b+ x3c+ x4d (14)

Here the vector x = (x1, x2, x3, x4) determines the decision function and the corresponding
selection process. For example, the invasion process U(a, b, c, d) = a − c which we have pre-
viously discussed is specified by x = (1, 0,−1, 0). This process replaces the resident whenever
the challenger has a positive invasion fitness.

There is also a “risk-dominance process” which is defined by x = (1, 1,−1,−1). This
process selects the strategy which is risk-dominant: that is, A is selected if and only if a + b >

c + d. A third process is the so-called “nirvana” process which is defined by x = (1, 0, 0,−1).
This process simply selects the strategy which has a higher payoff: A if a > d, and B otherwise.

A linear process Ux is centered according to Definition 8, if and only if it has x1 + x2 + x3 +

x4 = 0. In this case, it has a further additive invariance property: for any constant K, we have

Ux(a, b, c, d) = Ux(a+K, b+K, c+K, d+K) (15)

From now on, when we write Ux, we assume that x1 + x2 + x3 + x4 = 0 unless specified
otherwise.

The function Ux satisfies positivity if and only if x1 > 0. In this case, we can normalize x so
that x1 = 1.

The resulting family of selection processes have linear decision function Ux where x =

x(α, β) is the four-tuple defined by

x(α, β) := (1, α,−β,−1− α + β) (16)

These decision functions are parameterized by α and β. We will sometimes refer to this as the
αβ-plane of linear processes. We will devote substantial attention to understanding this subset
of selection processes. First, we identify some important representatives:

1. The decision function U(0,0)(a, b, c, d) = a− d defines the “nirvana” process.

2. The decision function U(1,1)(a, b, c, d) = b− c defines a process in which the resident and
challenger strive for a higher payoff against the other. We call this the ‘direct competition’
process.

3. The decision function U(0,1)(a, b, c, d) = a− c defines the invasion process.
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4. The decision function U(1,1)(a, b, c, d) = a+ b− c− d defines the risk-dominance process.

The linear selection processes which satisfy both parity and positivity are the ones of the
form U(α,α). As a corollary of Propositions 6-7, we can say

Proposition 9. Let α ∈ R. If the selection process U(α,α) is applied to the space M1, then:

1. Every stable state has maximum payoff πM .

2. There is a stable state.

In other words, when α = β, the selection process U(α,β) always favors maximum payoff.
These processes lie on the diagonal of the αβ-plane.

2.1 Constrained parity violation

The parity condition for a process U can be framed as

U(a, b, c, d) + U(d, c, b, a) = 0 (17)

For the process U(α,β), this condition becomes

a+αb− βc+ (−1−α+ β)d+ d+αc− βb+ (−1−α+ β)a = (β −α)(a− b− c+ d) (18)

So the quantity β − α is a measure of the parity violation of a process U(α,β).
From simulations, we have actually observed that there is a band 0 ≤ β − α < 1 of con-

strained parity violation, for which the selection process U(α,β) always favors states with max-
imum payoff πM . We refer to this as the L-band, since it appears to the left of (or above) the
diagonal.

Every process in the L-band has an interpretation as follows:

1. The resident is assigned a linear “score” SA = a+ g1b+ g2c, where g1, g2 ∈ R. This score
depends on a, b, c, and consequently depends on the challenger B.

2. The challenger is assigned a score SB = (1−2h)d+(g1+h)c+(g2+h)b. In other words,
the challenger’s score has the same functional form as the resident’s score, but subject to a
small deformation parameterized by h. Here 0 ≤ h ≤ 1

2
.
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3. The decision function U(a, b, c, d) = SA − SB is a comparison of scores. We have

U(a, b, c, d) = SA − SB

= a+ g1b+ g2c− (1− 2h)d− (g1 + h)c− (g2 + h)b

= a+ (g1 − g2 − h)b+ (g2 − g1 − h)c+ (−1 + 2h)d

= U(α,β)(a, b, c, d)

where α = g1− g2−h and β = g1− g2+h. Note that β−α = 2h ∈ [0, 1]. So, by picking
g1 − g2 and h appropriately, we can generate an arbitrary decision function U(α,β) which is
in the desired band.

The stochastic behavior of such processes is difficult to predict theoretically, but we have a
result which seems to provide some explanation for simulation results.

Proposition 10. Let α, β ∈ R with 0 ≤ β − α ≤ 1. The selection process U(α,β), applied to the

space M1, admits a stable state with payoff πM .

Proof. Case 1: πM = R. Let A(ϵ) = (1, ϵ, 1, ϵ) be a resident memory-1 strategy. Let B be a fixed
interior challenger strategy. We mentioned in the proof of Proposition 6 that πAA = R = πM

and that limϵ→0 πAB = limϵ→0 πBA =: x. We claim that x < πM . The reason is that πAB + πBA

is the sum of the two players’ per-round average payoffs, which must be at most the maximum
per-round total payoff 2R = 2πM . If x = πM , then the sum of the two players’ per-round
average payoffs is equal to the maximum per-round total payoff 2R in the limit ϵ → 0. This is
only possible if both players always play C in the limit ϵ → 0; that will not happen, since B is a
fixed interior strategy. Now we have

lim
ϵ→0

U(α,β)(a, b, c, d) = lim
ϵ→0

(a+ αb− βc+ (−1 + α− β)d)

= (πM − πBB) + (α− β)(x− πBB)

Now if β − α = 0, then the limit is πM − πBB > 0. On the other hand if β − α = 1, then the
limit is πM −x > 0. It follows by linearity that if β−α ∈ [0, 1], the limit is positive. This shows
that A = (1, ϵ, 1, ϵ) is a stable state if ϵ is considered to be infinitesimal.
Case 2: πM = (S + T )/2. The proof is nearly identical to the proof of Case 1, but with A(ϵ) =

(1− ϵ, 0, 1, ϵ) instead.

The proposition above establishes interesting behavior in L-band: the selection process can
find stable states with maximum self-payoff πM .
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Above and below this band, we do not have the same behavior. The goal of the next section
is to examine these regimes.

2.2 Larger parity violation

In the next two propositions, we first consider a fixed process with decision function U(α,−α).
This process lies inside of the L-band if −1

2
≤ α ≤ 0, and outside of the L-band if α < −1

2
or

α > 0.

Proposition 11. Suppose α > 0. There exists a game (R, S, T, P ) for which the selection pro-

cess with decision function U(α,−α) has no stable state.

Proof. Suppose the process has a stable state A. In that case, let B be an arbitrary interior
memory-1 strategy. Since A is a stable state, we have

0 < U(α,−α)(a, b, c, d) = a+ α(b+ c) + (−1− 2α)d

= (a− d) + α(b+ c− 2d)

We claim that a := πAA is equal to πM .
Case 1: πM = R. Suppose B(ϵ) = (1− ϵ2, ϵ, 1− ϵ, ϵ). As we mentioned in the proof of Propo-
sition 6, limϵ→0 πBB = R = πM , and one can check that limϵ→0 πBA = limϵ→0 πAB := x for any
eligible memory-1 strategy A. Furthermore, we must have x ≤ πM since πM is the largest total
payoff to both players which is achievable in a single round. So then,

0 ≤ lim
ϵ→0

U(α,−α)(a, b, c, d) = (a− πM) + 2α(x− πM) ≤ a− πM

It follows that a = πM . We conclude that every stable state has payoff πM .
Case 2: πM = (S + T )/2. The conclusion is the same as for Case 1. The proof is the same
except that we must use B(ϵ) = (1− ϵ, ϵ2, 1− ϵ2, ϵ).

In either case, every stable state achieves self-payoff πM .
But now, consider the game (R, S, T, P ) = (1, 0, 4, 0), that is, the game with payoff matrix

C D

C 1 0

D 4 0

(19)

The maximum payoff is πM = 2. The states which have this payoff are of the form p =

(p1, 0, 1, p4). They are called self-alternators or just alternators3, since they alternate between
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the outcomes CD and DC when playing against themselves. Let A be an eligible alternator
strategy. Consider the challenger strategy

B(ϵ) =

(
1

2
, 1− ϵ, ϵ,

1

2

)
(20)

It is easy to compute that

lim
ϵ→0

U(α,−α)(a, b, c, d) = lim
ϵ→0

(a− d+ α(b+ c− d)) = −2α

Since α > 0, the limit is negative. This shows that for some small ϵ > 0, the challenger B(ϵ) can
replace the resident A. So no such resident A can be a stable state.

Proposition 12. Let α < −1
2
. There exists a game (R, S, T, P ) for which the process with

decision function U(α,−α) has no stable state with payoff πM .

Proof. Consider the game (19) as above. The only strategies with payoff πM are alternators
(p1, 0, 1, p4). Let A be such a strategy. Let B(ϵ) = (ϵ2, ϵ, 1 − ϵ2, ϵ2) be a challenger strategy
which depends on ϵ > 0. One can check, as in the proof of Proposition 11, that

lim
ϵ→0

U(α,−α)(a, b, c, d) = lim
ϵ→0

(a− d+ α(b+ c− d)) = 2 + 4α

When α < −1
2
, it follows that there is some small ϵ > 0 so that the challenger B(ϵ) can replace

the resident A. No such resident A can be a stable state.

We have shown that for processes of the form U(α,−α), with α > 0 or α < −1
2
, we do not

always have stable states with payoff πM .
The final subsection, Reduction, describes a construction which relates some linear selection

processes to others. This construction implies that any selection process U(α,β) is equivalent, up
to modifying (R, S, T, P ), to the selection process U(α′,−α′) for α′ = −(β − α)/2. Note that
U(α,β) is outside the band, if α′ > 0 or α′ < −1

2
. We have already studied such process U(α′,−α′)

in the preceding propositions. So we can conclude that every linear process U(α,β) which is
outside the band, has the following property: there is a game (R, S, T, P ) for which there is no
stable state with payoff πM . In other words, we should not expect processes outside of the band
to always select states with maximum payoff.

This means we can characterize the L-band 0 ≤ β − α ≤ 1 in the αβ-plane as follows:

Proposition 13. The process with decision function U(α,β) has the following property, if any only

if 0 ≤ β − α ≤ 1: for any game (R, S, T, P ), there exists a stable state with payoff πM .
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The selection processes in the αβ-plane satisfy positivity, because the coefficient of a in
U(α,β)(a, b, c, d) is positive and in fact normalized to +1. For these processes, the payoff a :=

πAA contributes positively to the resident’s chance of prevailing against a challenger.
There is another class of linear decision functions for which the coefficient of a is negative,

and normalized to −1. We also wish to study these decision functions, especially if they exhibit
the same behavior which characterizes the L-band.

First, consider a process Ux with x = (−1, x2, x3, 1− x2 − x3). That is,

Ux(a, b, c, d) = −a+ x2b+ x3c+ (1− x2 − x3)d (21)

We claim that this process does not always have a stable state with payoff πM .
Case 1: x2 + x3 = 0. Suppose, for an arbitrary game (R, S, T, P ), there is a resident strategy

A with payoff πM , which is a stable state. Define a challenger strategy B(ϵ) = (1−ϵ, ϵ2, 1−ϵ, ϵ2).
One can compute, using the payoff formula, that limϵ→0 πBB = P < πM . Furthermore, one can
verify the existence and equality of limits limϵ→0 πBA = limϵ→0 πAB =: x. So now

lim
ϵ→0

Ux(a, b, c, d) = lim
ϵ→0

(−a+ x2b+ x3c+ (1− x2 − x3)d)

= −πM + (x2 + x3)x+ (1− x2 − x3)P

= −πM + P < 0

So A is not a stable state, which is a contradiction.
Case 2: x2 + x3 ̸= 0.
Suppose, for an arbitrary game (R, S, T, P ), there is a resident strategy A with payoff πM ,

which is a stable state. Stability means that for almost every challenger strategy B, we have

0 < Ux(a, b, c, d) = −a+ x2b+ x3c+ (1− x2 − x3)d

= −πM + x2b+ x3c+ (1− x2 − x3)d

By definition, d := πBB ≤ πM . Let ϵ > 0. By adding (1+ ϵ)(πM − d) ≥ 0 to the right hand side
of the inequality, we have

0 < ϵπM + x2b+ x3c+ (−ϵ− x2 − x3)d

0 < πM + (x2/ϵ)b+ (x3/ϵ)c+ (−1− (x2/ϵ)− (x3/ϵ))d

Equivalently, 0 < U(α,β)(a, b, c, d), where α = x2/ϵ and β = −x3/ϵ. So A is a stable state
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for U(α,β). Note that by choosing ϵ small, we can assume β − α = −(x2 + x3)/ϵ does not
lie in the interval [0, 1] for some ϵ. By Proposition 13, there is some game for which U(α,β) has
no stable state with self-payoff πM . But we have shown that there is such a state A, contradiction.

This establishes the claim. Now we move on to processes with linear decision function of the
form

Ux(a, b, c, d) = x2b+ x3c+ (1− x2 − x3)d (22)

In case x2 + x3 ̸= 0, the same approach as in Case 2 will work (using ϵ(πM − d) rather than
(1 + ϵ)(πM − d)). In case x2 + x3 = 0, there are three cases up to scaling: x = (0, 0, 0, 0),
x = (0, 1,−1, 0), and x = (0,−1, 1, 0).

The process Ux with x = (0, 0, 0, 0) has no stable state. The two remaining possibilities —
x = (0, 1,−1, 0) and x = (0,−1, 1, 0) — correspond, roughly speaking, to limits of processes
U(α,α) in the two directions α → ±∞. Their behavior is somewhat singular and we do not
characterize them directly here.

2.3 Comparison with M0 strategies

To contextualize the significance of the L-band, it is instructive to compare the space M1 of
memory-1 strategies to the simpler space M0 of memory-0 strategies. Recall that M0 strategies
give a single probability p for cooperating in each round.

When we apply a linear selection process to the space M0, it is impossible to guarantee the
existence of a stable state with payoff πM . In fact, as we have previously discussed, there are
some games for which no M0 state at all has payoff πM .

We could instead ask whether there is a stable state A which has the maximum feasible payoff
within the space M0. For convenience, consider a game (R, S, T, P ) = (1, u, 1 + v, 0).

Proposition 14. The maximum feasible payoff for an M0 strategy in the game (1, u, 1 + v, 0) is
1 if u+ v ≤ 1

(1 + u+ v)2

4(u+ v)
if u+ v ≥ 1

(23)

It turns out we have the following negative result.

Proposition 15. Consider the nirvana selection process U(0,0)(a, b, c, d) = a−d on the space M0

of memory-0 strategies. This process satisfies the following property: for any game (R, S, T, P )

with R > P , there is a stable state A such that the self-payoff πAA is at a maximum in M0. There
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is no other decision function U(α,β) which has the same property.

Proof. It is clear by construction that for the nirvana process U(0,0)(a, b, c, d) = a− d, a state A

is stable if any only if the self-payoff πAA is at a maximum in M0.
Consider the process Ux with x(α, β). The space of strategies is p ∈ [0, 1]. We focus our

attention on the subspace of games G = (1, u, 1 + v, 0). With a small amount of algebra, we
can establish the following:

• If (u + v)(1 + α − β) ≤ 0, then the algebraic condition for p = 0 to be the unique stable
state is

αu− βv + 1− β < 0;

βu− αv + 1− β ≤ 0. (24)

• If (u + v)(1 + α − β) > 0, then the algebraic condition for p = 0 to be the unique stable
state is

−(1− β)u− (1 + α)v + 1− β < 0;

(1 + α)u+ (1− β)v + 1− β ≤ 0. (25)

Solutions (u, v) to equations (24) and (25) exist for α ̸= −β. Since p = 0 does not have the
maximum payoff (p = 1 has higher payoff), we have shown that stable states with maximum
payoff do not exist for α ̸= −β for some games G = (1, u, 1 + v, 0).

We consider the case α = −β separately. If β−α > 2 or α < −1, then one can check that for
any game (1, u, 1+ v, 0) for which u+ v = 0, the unique stable state is p = 0. If 1 < β−α ≤ 2,
then one can check that any game with u+v > 1 has no stable states. If 0 < β−α ≤ 1, then one
can check that for any game with u+v > 1, there is some unique stable state p ∈ (0, 1). Such an
intermediate strategy does not maximize payoff. If β−α < 0, then, for all games (1, u, 1+ v, 0)

with u + v sufficiently small, one can check that there is no stable state. When β − α = 0 and
α = −β, we recover the nirvana process.

2.4 Equal gains from switching

We return to selection processes on the space M1 of memory-1 strategies. Our simulations
indicate that when α = −β > 0, the process with linear decision function U(α,β) tends toward
states with maximum self-payoff πM when the game satisfies equal gains from switching: that
is, R + P = S + T 4. We can in fact prove the following proposition.
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Proposition 16. Suppose R + P = S + T . Let α > 0. Then the process U(α,−α), on the space

M1, has a stable state p = (1, 1, 1, 1) with payoff πM . Furthermore, every stable state has payoff

πM .

Proof. Note the decision function

U(α,−α)(a, b, c, d) = a+ αb+ αc+ (−1− 2α)d

= (a− d) + α(b+ c− 2d)

We have already shown, in the first part of the proof of Proposition 11, that every stable state has
payoff πM . (This also holds in the space Mn of memory-n strategies.)

Now we claim that p = (1, 1, 1, 1) is stable. First, note that πM = R. The reason is that, by
equal gains from switching, (S + T )/2 = (R+P )/2 < R, so πM := max{R, (S + T )/2} = R.
So self-cooperators such as p have payoff πM . For a resident A := p and an interior strategy B,
we have

U(α,−α)(a, b, c, d) = (a− d) + α(b+ c− 2d)

= πM − d︸ ︷︷ ︸
>0

+α(b+ c− 2d)

We claim that b + c− 2d > 0. Without loss of generality we can scale the game parameters
R, S, T, P and add a single constant to all of them. Thus we can assume (R, S, T, P ) = (1, u, 1−
u, 0) for some u, v ∈ R. Moreover, one can check that the quantity b+c−2d is only a function of
three variables R, S + T, P . So again without loss of generality, we can assume (R, S, T, P ) =

(1, 0, 1, 0). Now we simply check numerically that b + c − 2d > 0 for this game when A is the
strategy p = (1, 1, 1, 1) and B = (q1, q2, q3, q4) varies over (0, 1)4. (Note that a randomly chosen
challenger strategy B is an interior strategy, i.e. lies in (0, 1)4, with probability 1.)

2.5 Reduction

The space of centered linear processes Ux can be fully understood by studying a one dimensional
family of processes x and four sporadic cases.

Until now we have assumed that the game (R, S, T, P ) satisfies R > P . In this subsection,
we allow R, S, T, P to be arbitrary real numbers.

Proposition 17. Each process Ux for a given game (R, S, T, P ) is equivalent — up to a simple
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mathematical transformation — to some process Ux′ for a game (R′, S ′, T ′, P ′), where x′ is

chosen from the list:

1. (1, 0, z,−1− 2z), z ̸= 0

2. (1, 1,−1,−1)

3. (0, 0, 0, 0)

4. (0, 1,−1, 0)

5. (0, 0, 1,−1)

Remark. Case 1 above is the generic case.

Proof. Consider a process Ux and a game (R, S, T, P ). We carry out the reduction in steps.

Step 1: Note that if λ > 0 is some constant, then replacing x with λx does not affect the
process. Similarly, replacing x with −x, and replacing (R, S, T, P ) with (−R,−S,−T,−P )

leads to an equivalent decision function or process.
By applying those two operations, it suffices to study the cases x = (0, 0, 0, 0), (0, 1,−1, 0), (0, x2, 1−

x2,−1), and (1, x2, x3,−1− x2 − x3) for all games (R, S, T, P ).

Step 2 (Optional): Define p′ = (p′1, p
′
2, p

′
3, p

′
4) := (1−p4, 1−p3, 1−p2, 1−p1). It is impossible

to distinguish between the transformed versions p′ of the states p visited by the selection process
Ux for game (P, T, S,R); and the actual states p visited by the selection process Ux for the game
(R, S, T, P ). The two lead to the same distribution over sequences of memory-1 strategies. This
is easy to see by simply computing the decision function in both scenarios.

By applying this transformation if desired, we can assume that R ≥ P .

Step 3: One of the cases we must consider, by virtue of Step 1, is x = (0, x2, 1 − x2,−1).
However, if we replace (R, S, T, P ) with (R, S ′, T ′, P ) defined by(

S ′

T ′

)
:=

(
1− x2 x2

x2 1− x2

)(
S

T

)
,

and we replace x with (0, 0, 1,−1), then one can check the new decision function is the same as
before.

Likewise, another case we must consider is x = (1, x2, x3, 1 − x2 − x3). There are two
subcases. First, suppose x2 + x3 = 0. Then if we replace (R, S, T, P ) with (R, S ′, T ′, P ) where
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S ′ = x2S, T
′ = x2T , and replace x with (1, 1,−1,−1), then one can check the new decision

function is the same as before.
Second, suppose x2 + x3 ̸= 0. Then if we replace (R, S, T, P ) with (R, S ′, T ′, P ) where(

S ′

T ′

)
:=

1

x2 + x3

(
x3 x2

x2 x3

)(
S

T

)
,

and we replace x with (1, 0, x2+x3,−1−x2−x3), then one can check the new decision function
is the same as before.

We have shown that every decision function, which depends on x, (R, S, T, P ), leads to a
selection process which can be understood as a simple mathematical transformation of a process
where R ≥ P (if Step 2 is applied) and where x is one of the five possibilities listed in the
proposition statement.

We can summarize the outcome of the above proposition as follows: let x = (x1, x2, x3, x4)

be a linear process and G = (R, S, T, P ) be a game.

1. If x1 ̸= 0 and x2 + x3 ̸= 0 (the generic case), then an equivalent process and game is

x′ =
(
1, 0,

x2 + x3

x1

,
x4

x1

)
, G′ = sgn(x1)

(
R,

x2T + x3S

x2 + x3

,
x2S + x3T

x2 + x3

, P
)

2. If x1 ̸= 0 and x2 = −x3, then an equivalent process and game is

x′ = (1, 1,−1,−1), G′ = sgn(x1)
(
R,

x2

x1

S,
x2

x1

T, P
)

3. If x1 = x4 = x2 = 0, then the process and game are

x′ = x = (0, 0, 0, 0), G′ = G = (R, S, T, P )

4. If x1 = x4 = 0 and x2 ̸= 0, then an equivalent process and game are

x′ = (0, 1,−1, 0), G′ = sgn(x2)(R, S, T, P )

5. If x1 = 0 and x4 ̸= 0, then an equivalent process and game is

x′ = (0, 0, 1,−1), G′ = sgn(x4)
(
R, S − x2

x4

(T − S), T − x2

x4

(S − T ), P
)
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Next we present a proposition describing a relationship between the process Ux and the asso-
ciated process U−x. In the main text, we primarily study games with payoff matrix (R, S, T, P ) =

(1, u, 1 + v, 0), where u, v ∈ R. After a certain number t of rounds, we plot the average payoff
πt of the resident strategies visited. However, we typically normalize by transforming the payoff
as

π′
t =

πt − πm

πM − πm

(26)

The resulting value is a number between 0 and 1.

Proposition 18. Let πt be the expected value of (26) for the process Ux and game (1, u, 1+v, 0).

Then the expected value of (26) for the process U−x and the game (1,−v, 1− u, 0) is 1− πt.

Proof. There is a simple relationship between the selection processes with decision functions
Ux and U−x. For convenience, call these Process 1 and Process 2, respectively. The decision
function for Process 1 in game (1, u, 1 + v, 0) is identical to the decision function for Process 2
in the negated game (−1,−u,−1− v, 0).

However, the game (−1,−u,−1 − v, 0) is the same as the game (0,−1 − v,−u,−1) up to
switching the labels of the actions C and D. By adding a constant 1 to all entries, we can further
transform the game to (1,−v, 1 − u, 0). It is a simple matter to check that πt transforms into
1− πt under the operations above.

2.6 Sufficient conditions for linearity

In this section, we show that any decision function U(a, b, c, d) obeying three simple axioms
is equivalent to a linear decision function. By “equivalent” we mean in the sense that the two
decision functions have the same sign everywhere. Thus, the selection processes for the two
functions are exactly the same.

A key feature of linear of linear decision functions is closure under addition of payoffs.
Adding two sets of payoffs can be thought of as playing two games in parallel. If resident A
defeats challenger B in game G and in game G′ separately, then A also defeats B if G and G′

are played at the same time and the payoffs summed. (And vice versa if A is defeated by B in
game G and G′.)

Proposition 19 (Conditions for linearity). A continuous decision function U(a, b, c, d) is equiv-

alent to a centered linear decision function (14) if U satisfies the following two axioms:

Axiom 1 (Addition of games) For any pair of strategies A and B, if A is selected in game
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G = (R, S, T, P ) and in game G′ = (R′, S ′, T ′, P ′), then A is selected in the game

G+G′ = (R +R′, S + S ′, T + T ′, P + P ′) (likewise if B is selected);

Axiom 2 (Weakly centered) U(π, π, π, π) = 0 for some π ̸= 0

Proof. Let A be the strategy (1, 1, 1, 1) and B be the strategy (0, 0, 0, 0). For the game G =

(R, S, T, P ), we have (a, b, c, d) = (R, S, T, P ). In other words, by choosing the game we
can arrange for (a, b, c, d) to be an arbitrary given four-tuple. Then Axiom 1 implies that if
U(a, b, c, d) > 0 and U(a′, b′, c′, d′) > 0, then U(a + a′, b + b′, c + c′, d + d′) > 0 (likewise for
U ≤ 0).

It can also be deduced from Axiom 1, that if U(a, b, c, d) > 0, then U(λa, λb, λc, λd) > 0 for
λ positive and rational. (Likewise for ≤ 0.) By continuity of U , the set of payoffs on which the
challenger is selected,

Ωc = {(a, b, c, d) : U(a, b, c, d) ≤ 0}, (27)

is closed. Thus Ωc is closed under scaling by any nonnegative real λ. If Ωc contains only the
origin together with rays (λa, λb, λc, λd), then its complement also consists only of rays. The
complement of Ωc is the set of payoffs Ωr = {(a, b, c, d) : U(a, b, c, d) > 0} on which the
resident is selected. Thus Ωr is also closed under scaling by any positive and real λ. By axiom
1, both Ωc and Ωr are convex. The only way to partition Rn into two disjoint convex sets is via
a hyperplane, by the Separating Hyperplane Theorem. Such a hyperplane must pass the origin
(0, 0, 0, 0) since both convex sets contains rays (λa, λb, λc, λd). If the hyperplane is given by
x1a + x2b + x3c + x4d = 0, then the decision function U(a, b, c, d) is equivalent to the linear
function x1a+x2b+x3c+x4d. Axiom 2 ensures that x1+x2+x3+x4 = 0, so that the selection
function is centered.

In particular, Axiom 1 is implied by closure under addition of arguments: if U(a, b, c, d) > 0

and U(a′, b′, c′, d′) > 0, then U(a+ a′, b+ b′, c+ c′, d+ d′) > 0 (likewise for ≤ 0).

3 Extensions

3.1 Differentiable decision functions

We have already devoted some time to discussing symmetric decision functions as in Proposi-
tions 6-7. In this section, we examine other decision functions which are not necessarily linear.

Suppose U(a, b, c, d) is a continuously differentiable decision function for a selection process
which is centered in the sense of Definition 8. When the values a, b, c, d are small, U(a, b, c, d)

can be approximated by its first order Taylor expansion. More precisely, fix some π and (R, S, T, P )
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and consider a game with payoff matrix

C D

C π + δR π + δS

D π + δT π + δP,

(28)

where δ > 0 is small. This is a slight perturbation from a game of constant (strategy-independent)
payoff π. The parameters a, b, c, d, which are convex combinations of the entries of the payoff
matrix, have magnitudes π +O(δ). Let U1, U2, U3, U4 be the derivatives of U in each argument,
respectively, evaluated at the point (π, π, π, π). Since U is centered we have

0 =
d

dπ
U(π, π, π, π) = U1 + U2 + U3 + U4 (29)

for all π. The differentiability of U implies

U(a, b, c, d) = U(π, π, π, π) + U1(a− π) + U2(b− π) + U3(c− π) + U4(d− π) + o(δ)

= U1a+ U2b+ U3c+ U4d + o(δ), (30)

where we have used equation (29) and U(π, π, π, π) vanishing for all π. To leading order O(1)

and ignoring terms of order o(δ), the decision function U(a, b, c, d) ≃ U1a+U2b+U3c+U4d is
linear. We refer to its linearization as U ′(a, b, c, d) = U1a+ U2b+ U3c+ U4d.

Suppose for some π, the derivatives U1, U2, U3, U4 taken at (π, π, π, π) has U1 < 0, then
the linear decision function U ′ is a process of the form (21). If U1 > 0, but U2 + U3 > 0 or
U2 + U3 < −U1 then the decision function U ′ is a process beyond the L-band in the αβ-plane
(16). In each case by the analysis of linear decision functions, there is some game (R, S, T, P )

and thus the game,
C D

C π + δR π + δS

D π + δT π + δP,

(31)

for which the linear selection process U ′ has no stable state with payoff πM . Linear selection
processes are invariant under scaling by δ and adding π.

Thus for some π, if the decision function U(a, b, c, d) has the derivatives U1, U2, U3, U4 taken
at (π, π, π, π) obeying any of the following conditions

1. U1 < 0;

2. U1 > 0 and U2 + U3 > 0;
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3. U1 > 0 and U2 + U3 < −U1,

then for the game (31), the process U(a, b, c, d) has no stable state with maximal payoff πM .

Remark. The functions described in Proposition 6 have U1 > 0 and U2 + U3 = 0.

Now let f(x) be a strictly increasing function with f(0) = 0. Consider the selection process
with decision function

U(a, b, c, d) = f(a) + α f(b)− β f(c) + (−1− α + β) f(d) (32)

The process is easily seen to be centered. Furthermore, we can assume f(0) = 0 without loss
of generality. A process with f(0) ̸= 0 is equivalent to the process with f̃(x) = f(x) − f(0),
satisfying f̃(0) = 0.

Proposition 20. Suppose 0 ≤ β−α ≤ 1. Then the selection process (32) has a stable state with

payoff πM .

Proof. The proof is more or less identical to the proof of Proposition 10.

Conversely, if it is not the case that 0 ≤ β−α ≤ 1, then we do not expect the process to have
the property in Proposition 20.

The reason is that when R, S, T, P are small, then a, b, c, d are correspondingly small. So the
decision function U behaves similarly to its first order expansion, which is a scaled version of
U ′(a, b, c, d) = a+αb−βc+(−1−α+β)d. We have studied these processes above, and found
that such a process always has a stable state with payoff πM , if and only if 0 ≤ β − α ≤ 1.

3.2 Longer memory

Realistically, players may use strategies which are more complicated than the M1 strategies
which we have studied above. It is interesting to ask which of our results also apply to selection
processes on the space Mn of memory-n strategies, where n > 1.

We note that Propositions 6-7, as well as 9-10, also hold for the space Mn. The proofs are
more or less the same. However, note that instead of computing the M1 payoff function 6 and
taking limits by hand, one needs to argue differently to establish some of the equalities of limits
which we claim in the proofs. (One method is to use the following tool: Press and Dyson show1

that every memory-n strategy, when playing against a memory-1 strategy, achieves the same
outcome as an equivalent memory-1 strategy.)

We also examine whether it is possible to generalize Propositions 11-12. A generalization
of these propositions would claim that each process outside of the band does not always have a
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stable state with payoff πM . In the next proposition, we show this is true for processes below the
band, i.e. with decision function U(α,β) and β − α < 0.

Proposition 21. Let α − β > 0 and n ≥ 1. There exists a game (R, S, T, P ) for which the

selection process with decision function U(α,β), applied to the space Mn, has no stable state with

payoff πM .

Proof. For games with R > (S + T )/2, we have πM = R. The states with payoff πM must
cooperate whenever the previous n rounds consist solely of cooperation from both players. (Oth-
erwise, such a strategy could not sustain full cooperation when playing against itself.)

The game played between two Mn strategies gives rise to a Markov chain on the set of pos-
sible outcomes for n consecutive rounds of the game. If A is eligible in the sense of Definition
1, then the Markov chain which arises when A plays against itself, has a unique stationary dis-
tribution. This stationary distribution is supported on the unique outcome of full cooperation,
since the strategy cooperates against itself. If the last n rounds consist of full defection, then
A cooperates with some strictly positive probability ϵ. (Otherwise, full defection would be an-
other stationary distribution of the Markov chain.) Now consider the decision function U(α,−α).
Suppose we have a game with the following payoff matrix:

C D

C 1 −S

D −S 0,

(33)

For A with given ϵ > 0, we construct a memory-n challenger strategy B with the following three
properties:

(i) When B plays against itself, the outcome is solely defection;

(ii) If only D is played in the last n−1 rounds, challenger B will play C with probability 1−ϵ.

(iii) For all other n-round outcomes, let p be the probability that A plays C. Then B plays
D with probability p. This implies that the actions taken by A and B are opposites with
probability

p2 + (1− p)2 ≥ 1/2. (34)

A and B are mutually defective with probability

p(1− p) <
1

4
. (35)

25



Now suppose A and B play against each other in the repeated game. We study the frequency of
mutual defection in a single round. Let A and B start the game by assuming a history of only
defection. To escape from a memory-n history of defection, one player must play a C. But B
can’t play C by property (i), and A takes on average 1/ϵ rounds to play a C. This means it takes
on average 1/ϵ rounds for A and B to escape from a history of n rounds of mutual defection.
Now suppose the previous round contains at least one instance of C. Until n consecutive rounds
consist of mutual defection, each new round will be mutual defection with probability at most
1/4. It takes on average at least 4n−1 rounds for n − 1 consecutive mutual defection to occur.
But by property (ii) of the strategy B, it in fact takes on average at least 4n−1 × 1/ϵ rounds
to achieve n consecutive rounds of mutual defection. So, starting at a memory-n history of n
consecutive rounds of mutual defection, with probability 1 − ϵ the updated history is the same,
and with probability ϵ, the updated history is different. The average number of rounds it takes to
return to this memory-n history is at least (1 − ϵ) · 1 + ϵ · (4n−1/ϵ) ≥ 4n−1. Since the average
return time for this memory-n history is bounded below — uniformly in ϵ — it follows that the
average frequency of this memory-n history is bounded above by a constant less than one —
also uniformly in ϵ. But then the frequency of mutual defection DD in a single round is likewise
bounded above by some constant less than one, uniformly in ϵ.

The combined frequencies of outcomes CD and DC have

vDC + vCD ≥ 1− vDD > 0, (36)

Now consider the selection process U(α,β) with α − β > 0. We have that a := πAA = 1 and
d := πBB = 0. The decision function becomes

U(α,β)(a, b, c, d) = a+ αb− βc− (1 + α− β)d = 1 + αb− βc. (37)

We substitute in b = c = vCC−SvCD−SvDC. By choosing S appropriately, we can arrange that
the challenger B replaces the resident A under the selection process U(α,β). we have

U(α,β)(a, b, c, d) = (1 + (α− β)vCC)− S(α− β)(vCD + vDC) (38)

Since vCD + vDC is bounded below by some positive constant independent of ϵ, the quantity
above is negative for large and positive S. Therefore, for the selection process U(α,−α), any state
A with payoff πM can be replaced by some challenger (and by continuity, at least a small locus
of challengers).

Linear processes above the band, i.e. with decision function U(α,β) and β − α > 1, remain to
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be studied. In the next proposition, we study those which have β − α > 2. By Proposition 17, it
suffices to study processes U(α,−α), with α < −1.

Proposition 22. Let α < −1. The selection process with decision function U(α,−α), applied to

the space Mn, has no stable state with payoff πM .

Proof sketch. Suppose A is a state with payoff πM . For a challenger strategy B = A + ϵ, for
some small displacement vector ϵ, we have

πBB = πAA + γ + o(ϵ) (39)

Here γ is the first-order change in payoff as we move from A to B. Since πM is the maximum
payoff, we can assume that γ < 0.

Note that we also have b := πAB = πAA + λ+ o(ϵ) and c := πBA = πAA + κ+ o(ϵ), where
λ+ κ = γ.

Now we evaluate the process U(α,−α) with α < −1 for resident A and challenger B:

U(α,−α)(a, b, c, d) = πAA + απAB + απBA − (1 + 2α)πBB

= α(λ+ κ)− (1 + 2α)γ + o(ϵ) (40)

= −(1 + α)γ + o(ϵ) (41)

This is negative for small ϵ. We conclude that the resident A can be replaced by some nearby
challenger strategy B = A+ ϵ.

The proposition above implies (together with Proposition 17) that for processes with β −
α > 2, all states with maximum payoff πM can be invaded by a local challenger with less than
maximal payoff. We now prove a related and strong result: any process with β > 1 and α = 0 has
no stable state with maximum payoff, for a wide class of Prisoner’s dilemma games. Applying
Proposition 17 again, all processes with β − α > 1 have no stable state with maximal payoff for
a variety of games.

A game with the following payoff matrix is an example of a Prisoner’s dilemma, in the sense
that D is a strictly dominant action:

C D

C 1 −S

D S + 2 + 2∆ 0,

(42)

for S > 0 and 0 < ∆ < β − 1.
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We have the following proposition.

Proposition 23. Let S be positive and 0 < ∆ < β − 1. Fix a payoff matrix G = (1,−S, S +

2 + 2∆, 0). When α = 0 and β > 1, the process U(α,β), applied to the space Mn, has no stable

state with payoff πM .

Proof. For game (42), the strategies A with maximum payoff πM = 1 + ∆ are alternators. Let
ϵ1 be the probability that A defects given n consecutive previous rounds of CC. Let ϵ2 be the
probability that A cooperates given n consecutive previous rounds of DD. Both ϵ1 and ϵ2 are
strictly positive, if A is an eligible strategy. Consider a challenger strategy B which satisfies the
following properties:

(i) When B plays itself, the only outcome is mutual defection.

(ii) For all other n-round outcomes, B defects with probability η(ϵ1, ϵ2) as a function of ϵ1, ϵ2.

We explain, informally, how η will be chosen for given ϵ. First, pick η small enough such that B
cooperates almost always when playing against A. One may worry that B and A may get stuck in
mutual defection due to (i). But given a mutually defective history, A and B will get out of mutual
defection since ϵ2 > 0. We pick η so small that once they get out of mutual defection, it takes
them a very long time to get back to (n consecutive rounds of) mutual defection. In computing
long-run average frequencies of the outcomes CC, CD, DC, DD, we can then essentially neglect
the rounds of mutual defection that extend beyond n consecutive rounds, as they make only a
small contribution. In the other rounds, B behaves as an M0 strategy that plays D with probability
η, and the frequencies vCC and vDC of the outcomes CC and DC satisfy

vCC + vDC = 1− η. (43)

Second, we pick η < κ(ϵ1) and η < 1 − (1 + ∆)/β for reasons that will be clear momentarily.
Here κ(ϵ1) is a function defined in the next paragraph. We have used the assumption ∆ < β− 1.

When A plays against B, we have argued that vCC + vDC = 1− η (ignoring a small contri-
bution from some rounds of mutual defection).

We claim that the frequency vDC is bounded below by some constant κ(ϵ1) which is a func-
tion of ϵ1. Divide the whole history of A playing against B into intervals of length about n+1/ϵ1.
Since η is so small, we can ignore the rounds in which strategy B defects. Each interval on aver-
age has at least one round of DC: this is because if A has cooperated for n rounds against a fully
cooperative opponent, then A is likely to defect once in the next 1/ϵ1 rounds, by the definition of
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ϵ1. So the frequency vDC of the outcome DC has a lower bound of approximately

1

n+ 1/ϵ1
=

ϵ1
nϵ1 + 1

:= κ(ϵ1). (44)

Additionally, the frequency of CD is bounded above by the probability of B defecting, i.e. η.

Since η is chosen smaller than κ(ϵ1), we have

vDC − vCD > 0. (45)

Now we are ready to evaluate the process U(α,β) with α = 0 and β > 1 on resident A and
challenger B. We have a = 1 + ∆, d = 0, and c = vCC − SvCD + (S + 2 + 2∆)vDC Evaluate
the process U(α,β) with α = 0 and β > 1:

U(α,β)(a, b, c, d) = 1 + ∆− β(vCC − SvCD + (S + 2 + 2∆)vDC)

< 1 + ∆− β(vCC + vDC)− βS(vDC − vCD)

< 1 + ∆− β(1− η) < 0, (46)

where we have plugged in equation (43) and (45), dropping the term involving S. This finishes
the proof that A with maximal payoff πM = 1+∆ can be invaded by a defector B whose payoff
is zero.

We note that ALLD can neutrally replace the strategy B after B takes over A.
If a process U(α,β) with α = 0, β = β0 > 1 does not have a stable state with maximum payoff

for the game (42) for any particular S > 0 and 0 < ∆ < β0 − 1, then Proposition 17 implies that
an arbitrary process U(α,β) with β − α = β0 > 1 has the same problem for the game

C D

C 1 −β+α
β0

S − α
β0
(2 + 2∆)

D β+α
β0

S + β
β0
(2 + 2∆) 0.

(47)

We observe that all games of type (47) have u + v > 1. We call a game with u + v > 1 an
alternation-optimal game. This is because the payoffs two two players who alternate between CD
and DC outcomes earn higher payoffs than two players who mutually cooperate. Combining the
results above together with Proposition 21, we have the following Proposition that characterizes
the processes U(α,β) for all α and β:
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Proposition 24. Suppose the decision function U(α,β) is applied to the space Mn. For this

process:

(i) every stable state achieves maximum payoff πM , for any game, if β = α;

(ii) there is a stable state achieving maximum payoff πM , for any game, if 0 ≤ β − α ≤ 1;

(iii) there is a family of Prisoner’s dilemmas which are alternation-optimal, for which there is

no stable state achieving maximum payoff, if β − α > 1 and β + α > 0;

(iv) there is a family of harmony games, which are alternation-optimal, for which there is no

stable state achieving maximum payoff, if β − α > 1 and β + α < 0;

(v) there is a family of snowdrift games, which are alternation-optimal, for which there is no

stable state achieving maximum payoff, if β − α > 1, α < 0 and β > 0;

(vi) there is a family of stag hunt games for which there is no stable state achieving maximum

payoff, if β − α < 0.

The reverse processes of the processes U(α,β) have the form Ux with x = (−1, α, −β, 1 −
α + β). The following proposition characterizes them for all α and β.

Proposition 25. Suppose the decision function Ux with x = (−1, α, −β, 1−α+β), is applied

to the space Mn. For this process:

(i) there is a family of Prisoner’s dilemmas, which are alternation-optimal, for which there is

no stable state achieving maximum payoff, if β − α > 0 and β + α > 0;

(ii) there is a family of harmony games, which are alternation-optimal, for which there is no

stable state achieving maximum payoff, if β − α > 0 and β + α < 0;

(iii) there is a family of snowdrift games, which are alternation-optimal, for which there is no

stable state achieving maximum payoff, if α < 0 and β > 0;

(iv) there is a family of stag hunt games for which there is no stable state achieving maximum

payoff, if β − α < 0.

All of the statements in Propositions 24 and 25 contribute to the explanation of the results we
observe in the simulations. For memory-1 and memory-2, we observe successful resident states
with low payoff in prisoner dilemmas which are alternation-optimal, precisely for processes β −
α > 1 and β + α > 0. We observe the same for harmony games which are alternation-optimal,
precisely for β − α > 1 and β + α < 0.
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