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1  Provincial individual income and wealth distributions
1.1 Data collection and processing

This study utilizes micro-level household data from the China Family Panel Studies (CFPS), a
nationally representative longitudinal survey conducted by the Institute of Social Science Survey
(1SSS) at Peking University (https://www.isss.pku.edu.cn/cfps/). The CFPS provides
comprehensive data on Chinese households’ income, wealth, expenditure, and a range of
demographic, economic, and social characteristics. It has been widely used in empirical studies
on household economics, energy use, and carbon emissions in China'®, The CFPS is conducted
biennially and includes a sample size of approximately 16,000 households per wave. It covers 26
provincial-level administrative regions in China, excluding Qinghai, Inner Mongolia, Tibet, Ningxia,
Hainan, Hong Kong, Macao, and Taiwan.

Household income in CFPS is the sum of five major components: wage income, business
income, property income, transfer income, and other income. Household wealth is measured as
net household assets, calculated as the difference between total household assets and total
household liabilities. Total assets include land, housing, financial assets, productive fixed assets,
and durable consumer goods; liabilities include housing-related and non-housing-related debts.
All income and wealth indicators are reported in the current year’s prices. In this study, we adjust
these values to constant 2015 prices using the consumer price index (CPI) published by the
National Bureau of Statistics of China. Unless otherwise specified, all monetary values in the
remainder of this paper are expressed in real 2015 prices.

We used the 2018 wave of the CFPS dataset to fit the distribution functions of provincial-
level individual income and wealth for the year 2017. As the CFPS is designed at the household
level, we derived individual-level income and wealth by dividing the total household income and
wealth equally among all household members based on household size. To reduce the potential
bias caused by extreme outliers in the distribution fitting process, we followed the approach in
ref. ® and excluded the top 0.5% of the sample in terms of income or wealth.

Unlike income, household wealth may be negative. Therefore, the common assumption of
non-negative values, which is reasonable for income distribution modeling, may not be directly
applicable to wealth distribution fitting’. In this study, individual wealth plays an important role in
the allocation of regional investment-related carbon emission responsibility (as discussed in the
Supplementary Information Section 3). Specifically, individual wealth is used as the baseline
indicator in allocating the total investment-based emissions. This allocation must satisfy the
following rules: 1) Individuals with greater wealth should bear more investment-related carbon
responsibility than those with less wealth; 2) The allocated responsibility for everyone must be
non-negative; 3) The sum of all individual investment-related emissions should be equal to the

regional total investment-related emissions (mass conservation principle). However, when
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individual wealth values are negative (e.g., when household liabilities exceed assets), the
allocation model may yield negative emission responsibility values, violating the rules. To ensure
the logical validity and numerical stability of the model, we apply the following treatment to the
wealth data: 1) Set all negative wealth values to zero. This guarantees that all assigned
responsibilities remain non-negative, and assigns minimal responsibility to individuals with zero
or negative net wealth. In practice, negative wealth typically reflects high indebtedness and low
investment capacity; such individuals should reasonably bear minimal investment-based carbon
responsibility. 2) Shift all wealth values upward by a fixed amount (500 units) during the
distribution fitting process. This ensures all wealth values are positive and prevents
computational issues during logarithmic transformation. A modest positive shift also moves
values away from zero, avoiding numerical instability. The transformation preserves the relative
differences among individuals, maintaining fairness in the allocation process. 3) After distribution
fitting, shift the fitted wealth function back to its original position. This step restores the wealth
distribution to its pre-shift values, ensuring that the fitted distribution remains consistent with
the original data. Consequently, the final allocation results retain the same interpretability as if
no transformation had been applied.

1.2 Distribution function fitting

In modeling the income and wealth distributions of residents across Chinese provinces, we
first examine their fundamental statistical characteristics. Existing literature indicates that income
and wealth distributions generally exhibit pronounced skewness, heavy tails, and heterogeneity.
Income distributions are typically right-skewed, with most individuals concentrated in the low-
and middle-income brackets, while a small number of high-income earners disproportionately
raise the mean?. After logarithmic transformation, income distributions in many countries and
regions can be approximated by a normal distribution, although some degree of asymmetry may
still remain®. Wealth distributions are even more extreme than income: they tend to have longer
right tails and greater concentration, with a small proportion of high-net-worth individuals
holding a substantial share of total wealth. As a result, even the log-transformed wealth data
often exhibit significant skewness and fat tails®'°. Moreover, due to vast regional disparities in
socioeconomic development, income and wealth distributions vary greatly across provinces!?.
Given these complexities, relying on a single distribution model is insufficient to comprehensively
capture the diverse distributional features across provinces. Therefore, we adopt a comparative
modeling approach involving multiple classical empirical distributions, enabling us to select the
most appropriate functional form for each province and laying a robust foundation for further

comparative analysis.

1.2.1 Empirical distribution functions



Following prior studies'*Y’, we select eight empirical distribution functions that are widely
used in the modeling of income and wealth: the lognormal distribution, gamma distribution,
exponential distribution, skew-normal distribution, log-skew-normal distribution, Weibull
distribution, generalized Pareto distribution (GPD), and beta distribution. These distribution
families are applicable under different income or wealth distribution scenarios and can capture a
wide range of empirical shapes, including various degrees of skewness and tail behavior. This
multi-distribution strategy enhances the coverage and robustness of our model-fitting process.
The mathematical formulations and parameter definitions for each of these distributions are
presented below.

1) Lognormal distribution

The lognormal distribution is commonly used to describe personal income, particularly
suitable for modeling the distribution among middle- and low-income groups. Its underlying
assumption is that if the logarithm of a variable follows a normal distribution, then the variable
itself follows a lognormal distribution. This reflects a multiplicative process of income generation,
which aligns with many economic phenomena. It is a two-parameter distribution. The probability
density function (PDF) and cumulative distribution function (CDF) are given in formulas (1) and

(2), respectively:

(ipn0) = — e A 1)
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where u denotes the mean of the log-transformed data and determines the location of the
distribution, while ¢ > 0 is the standard deviation of the log-transformed data, governing the
spread and skewness. @(0O) is the cumulative distribution function of the standard normal

distribution.
2) Gamma distribution

The gamma distribution is widely used to model skewed, non-negative data, such as
individual income or expenditure. It is especially useful in describing distributions that exhibit a
peak and long right tail. The gamma distribution is a two-parameter function. Its PDF and CDF are

shown in formulas (3) and (4), respectively:
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where k is the shape parameter, which controls the skewness and peakedness of the
distribution, and 8 > 0 is the scale parameter, which controls the horizontal stretch of the
distribution. I'(k) denotes the gamma function, and y(k, x) is the lower incomplete gamma

function.
3) Exponential distribution

The exponential distribution is a special case of the gamma distribution with the shape
parameter k = 1. It models the time between events in a Poisson process and serves as a
baseline model for positively skewed data. This is a one-parameter distribution, and its PDF and

CDF are given in formulas (5) and (6):
fO;) =2, x>0 (5)
Fs)=1—e™ (6)
where A > 0 is the rate parameter, and 1/1 is the mean of the distribution.
4) Skew-Normal distribution

The skew-normal distribution extends the normal distribution by introducing a shape
parameter to allow skewness. It is suitable for modeling income or wealth data that is
approximately normal but exhibits asymmetry. This is a three-parameter distribution. The PDF is
given in formula (7), and the CDF is expressed in terms of the standard normal functions in

formula (8):
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where £ is the location parameter, w > 0 is the scale parameter, and « is the shape
parameter controlling the degree of skewness. ¢(0) and ®(0O) represent the standard normal

PDF and CDF, respectively.
5) Log-skew-normal distribution

This distribution is particularly effective for modeling wealth data, which tends to exhibit
more extreme skewness and heavy tails than income. Even after logarithmic transformation,
wealth may still be right-skewed. The log-skew-normal distribution is defined as the exponential
of a skew-normal variable and inherits its parameters. The PDF and CDF are given in formulas (9)

and (10):
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where y = exp(X), and X ~ Skew — Normal(§, w, &). The parameters retain their original
interpretations from the skew-normal distribution.

6) Weibull distribution

The Weibull distribution is flexible in modeling various types of skewed data and can
represent different shapes depending on the value of its parameters. It is frequently used for
modeling income with adjustable tail thickness. It is a two-parameter distribution, as shown in

formulas (11) and (12):
k k-1
oMk = XG) e G/ x>0 (11)

FOgh k) =1— e G/" (12)

where A > 0 is the scale parameter and k > 0 is the shape parameter, which determines the

skewness and kurtosis of the distribution.
7) Generalized pareto distribution (GPD)

The generalized Pareto distribution is widely used to model the tail behavior of wealth
distributions, particularly for capturing extreme values and heavy right tails. It is a three-

parameter distribution defined by formulas (13) and (14):

1 — oy -1/E-1
fatow ==(1+5—=) "~ , x=u (13)
— w1/
Feog o =1-(1+5—) (14)

where ¢ is the shape parameter controlling the tail heaviness, ¢ > 0 is the scale parameter,

and p is the location parameter indicating the minimum value.
8) Beta distribution

The beta distribution is defined on a finite interval [0, 1], making it especially suitable for
normalized income or wealth data. It can model both symmetric and skewed shapes. It is a two-

parameter distribution, with the PDF and CDF given in formulas (15) and (16):

x4 (1 — x)B-1

f(x;O(,B):T’B), 0<x<1 (15)
8



BB

F(X:(X.B)—m

(16)

where @ > 0 and B > 0 are the shape parameters, and B(a, 8) is the Beta function.

B, (a, B) isthe incomplete beta function evaluated at x.
1.2.2 Fitting method

We applied the maximum likelihood estimation (MLE) method to fit the eight candidate
distributions to each province’s data on residents’ income or wealth. For the skew-normal and
log-skew-normal distributions, which are not directly supported by standard statistical software,
we implemented custom probability density functions (PDFs) and manually specified initial
parameter values to ensure estimation accuracy and algorithm convergence. For the other

distributions, we utilized built-in MATLAB functions such as mle, wblfit, and expfit.

Regarding data preprocessing, we performed the procedures described in Supplementary
Information Section 1.1, including logarithmic transformations when necessary and normalization

to the [0, 1] interval for fitting the Beta distribution.
1.2.3 Selection of the optimal fitting distribution

After fitting all candidate models, we evaluated the goodness-of-fit using probability—
probability (P—P) plots. In a P—P plot, the theoretical CDF values are plotted on the x-axis, while
the empirical CDF values are plotted on the y-axis. If the model fits the data perfectly, all points
should lie along the 45° diagonal line. Compared to quantile—quantile (Q—Q) plots, which
emphasize tail fitting, P—P plots are more sensitive to the overall fit, especially around the median
region. Given that our goal is to capture the overall distribution shape of residents’ income and
wealth, rather than focusing solely on extreme values, using P—P plots as the primary criterion for
model selection is both reasonable and intuitive. Ultimately, for each province, we selected the
distribution whose P—P plot showed the closest alighment with the diagonal line as the best-

fitting model.

Taking Hunan province as an example, Fig. 1 and 2 display the P—P plots for the fitted income
and wealth distributions, respectively. It can be observed that the optimal income distribution is
the Gamma distribution, Gamma(k = 1.191, 8 = 17,194), and the optimal wealth
distribution is the Generalized Pareto Distribution, GPD(¢ = 0.172, ¢ = 152,885, u =
500). The fitted histograms and the corresponding probability density curves are shown in Fig. 3.
As evident, both income and wealth distributions in Hunan exhibit a pronounced right-skewed
pattern, though with different degrees of skewness. The wealth distribution has a longer tail,

indicating a higher level of inequality. Similar patterns are observed across all other provinces,



and the detailed fitting results are presented in Table 1.
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Fig. 3. Histogram and fitted curve of individual income and wealth distribution in Hunan province, 2017

Table 1. Optimal fitting results of provincial household income and wealth distributions

Province Optimal income distribution Optimal wealth distribution
Beijing* Lognormal(u = 10.759,0 = 0.824) GPD(¢ = 0.067,0 = 1,242,685,u = 500)
Tianjin Lognormal(u = 9.827,0 = 1.091) Lognormal(u = 12.285,0 = 1.096)
Hebei* Gamma(k = 1.192,6 = 10,774) GPD(¢ = 0.349,0 = 89,326,u = 500)
Log — Skew — Normal({ = 10.093,w
Shanxi* GPD(¢ = 0.265,0 = 67,012,u = 500)
= 1.493,a = —2.75)

Liaoning* GPD(¢ = —0.079,0 = 21,392,u = 48.25) GPD({ = 0.197,0 = 98,408, = 500)
Jilin* Gamma(k = 1.242,0 = 11,789) GPD(¢ = 0.169,0 = 74,511,u = 500)
Heilongjiang* Weibull(A = 21,418,k = 1.241) GPD(¢ = 0.148,0 = 69,429,u = 500)
Shanghai* Gamma(k = 2.419,6 = 18546) Gamma(k = 1.218,6 = 955,653)
Jiangsu* Gamma(k = 1.122,6 = 26,098) GPD(¢ = 0.202,0 = 267,532,y = 500)
Zhejiang* Weibull(A = 35,839,k = 1.365) GPD(¢ = 0.162,0 = 288,159,u = 500)
Anhui* Gamma(k = 1.28,0 = 14,115) Exponential(4 = 154,613)
Fujian* Weibull(A = 14,968,k = 1.061) GPD({ = 0.23,0 = 119,510,u = 500)
Jiangxi* Weibull(A = 14,639,k = 1.225) GPD({ = 0.115,0 = 99,767,u = 500)
Shandong* Gamma(k = 1.513,0 = 11,296) GPD({ = 0.221,0 = 137,151,u = 500)

Log — Skew — Normal(¢ = 12.166,w
Henan* Gamma(k = 1.2651,60 = 10,470)

= 1.663,a = —1.764)

Hubei* Gamma(k = 1.286,6 = 19,723) Lognormal(u = 11.906,0 = 1.157)
Hunan* Gamma(k = 1.191,0 = 17,194) GPD({ = 0.172,0 = 152,885,u = 500)
Guangdong* Gamma(k = 1.053,0 = 17,658) GPD({ = 0.444,0 = 112,985,u = 500)
Guangxi* Gamma(k = 1.239,6 = 8,292) GPD({ = 0.178,0 = 64,404, = 500)
Chongging* Gamma(k = 0.998,6 = 17,208) GPD(§ = 0.399,0 = 83,850,u = 500)
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Sichuan* Weibull(X = 11,249,k = 0.969) GPD(¢ = 0.316,0 = 58,894,u = 500)

Guizhou* Weibull(2 = 10,637,k = 0.991) GPD(¢ = 0.431,0 = 49,077, = 500)
Yunnan* Gamma(k = 0.988,0 = 12,194) GPD(¢ = 0.131,0 = 89,857, = 500)
Shaanxi* Gamma(k = 1.217,6 = 13,771) GPD(¢ = 0.195,0 = 100,860,u = 500)
Gansu* Gamma(k = 1.245,0 = 8,875) GPD(¢ = 0.367,0 = 49,964,u = 500)
Xinjiang* Gamma(k = 1.399,0 = 18,720) GPD(¢ = 0.202,0 = 140,936, = 500)

Notes: the “*” indicates provinces whose wealth data contained negative values and were thus shifted for processing. The
original values are restored when extracting the fitted data, so no information bias is introduced. For details of the processing
procedure, see Supplementary Information Section 1.1.

1.3 Estimation of income and wealth distributions for data-deficient provinces

As noted in Supplementary Information Section 1.1, the CFPS does not cover four
provinces—Inner Mongolia, Hainan, Qinghai, and Ningxia—in terms of individual-level income
and wealth data. To address this data gap, we identified the most similar provinces from the
remaining 26 regions with available data, and imputed the missing income and wealth
distributions based on those comparable provinces. We further tested the sensitivity of this proxy
selection by replacing the identified similar provinces with geographically neighboring provinces.

The results of this robustness test are presented in Supplementary Information Section 7.

Below, we describe the main procedure used to identify similar provinces and impute the
missing distributions. Specifically, we first identified the key factors that influence income and
wealth distribution across provinces. According to refs. 1824 inter-provincial variation in
household income and wealth is typically shaped by multiple dimensions, including the level of
economic development, industrial structure, rural-urban income gaps, education attainment,
government expenditure patterns, degree of marketization, and infrastructure quality. We
selected 10 representative indicators (listed in Table 2) to capture these dimensions. Using these
indicators, we conducted a clustering analysis to identify the provinces most similar to each data-
deficient province. Based on the assumption that provinces with similar socioeconomic profiles
exhibit comparable income and wealth distributions, we used the fitted distributions of the
matched provinces to infer the likely distributional forms in the missing regions. Furthermore, to
improve the alignment with observed conditions, we adjusted the inferred distributions to match

the actual average income and average wealth values reported for the missing provinces.

The data for all quantitative indicators in Table 2 refer to the year 2017. The per capita
capital stock is estimated using the perpetual inventory method and represents the material
capital stock of each province; the estimates are drawn from ref. 2°. Average years of schooling
refer to the mean years of education for the population aged 15 and above, while the proportion

of higher education corresponds to the number of individuals with tertiary education per 100,000
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people. Both education indicators are obtained from the Bulletin of the Seventh National

Population Census of China?®. All other indicators are sourced from the China Statistical Yearbook

(2018). The provincial data for all 10 indicators are provided in Supplementary Data 2.

Table 2. Determinants of household income and wealth distribution across provinces

Dimension Indicator Explanation
Level of

A basic indicator for measuring the level of regional economic
economic Per capita GDP (RMB/person)

development

Industrial

structure

Urban-rural

gap

Capital stock

Education

Policy factors

Degree of

marketization

Ratio of tertiary sector value
added to secondary sector
value added

Ratio of per capita disposable
income between urban and

rural residents

Urbanization rate

Per capita capital stock (RMB

10,000/person)

Average years of schooling

Share of population with

higher education

Share of public expenditures
on social protection,
healthcare, and education in
total government

expenditure

The proportion of self-
employed individuals and
private-sector workers

development.

Industrial structure has a significant impact on income and wealth
distribution. Empirical findings from refs. 2.2 suggest that the shift from

secondary to tertiary industries tends to exacerbate regional inequality.

The income disparity between urban and rural populations is a key factor

influencing the distribution of household income and wealth.

Reflects the extent of population concentration in urban areas,
influencing the distribution of household income and wealth.

Capital formation contributes to future investment activities, but its
impact on income and net wealth inequality remains ambiguous. On one
hand, regions with higher capital stock are better positioned to create
employment opportunities and raise household income. On the other
hand, the returns on capital tend to disproportionately benefit wealthier
groups, thereby exacerbating income and wealth disparities.

Higher educational attainment enhances workers’ ability to generate
income through improved skills and productivity.

The proportion of the population with higher education in a region
influences the formation of high-income groups.

Educational spending enhances human capital and reduces opportunity
disparities; healthcare spending alleviates the financial burden of illness
and lowers the risk of poverty caused by medical expenses; and social
security improves the income levels of low-income groups through direct
transfer payments. Together, these expenditures help narrow income
gaps and promote social equity.

The impact of marketization on income and wealth inequality is
multifaceted. On the one hand, the development of the non-public sector

during the marketization process has created a large number of
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relative to employees in  employment opportunities, reduced unemployment and poverty, and
state-owned or institutional contributed to narrowing the income gap. On the other hand, the
work units privatization of assets in a market economy may lead to uneven
distribution of income and net wealth, thereby further widening the gap
between the rich and the poor.
The development of transportation infrastructure contributes to
improving the welfare of all social groups. On the one hand, enhanced
infrastructure can provide more employment and development
Density of public roads per
Infrastructure opportunities for low- and middle-income or low-wealth populations. On
capita (km/10,000 persons)
the other hand, infrastructure often serves as a productive input that

complements private capital, potentially increasing returns for the

wealthy and thereby exacerbating inequality.

1.3.1 Hierarchical clustering

To estimate the income and wealth distributions of provinces with missing data, we first
identify provinces with similar characteristics from the set of provinces with available data. The
estimation is then based on the observed distributional features of these comparable provinces.
Given the large number of selected indicators—each with different units and scales—it is
challenging to directly compare the raw indicator values across provinces. Hierarchical clustering
is an unsupervised learning algorithm that generates a tree-like structure by recursively merging
(or splitting) data points based on their similarity. Therefore, we adopt a hierarchical clustering

approach to group provinces based on the 10 indicators in Table 2. The steps are as follows:
1) Data standardization

All indicators are standardized using Z-scores to eliminate the influence of differing units and

magnitudes. The standardization formula is given as:

X — U
Zy; ) (17)
9j

where X;; isthe original value of indicator j for province i, u; isthe mean value of indicator

j,and g; isthe standard deviation of indicator j.
2) Distance metric

To quantify the similarity between provinces, we use Euclidean distance as the distance

metric. The formula for Euclidean distance is as follows:
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where X; and X; represent the feature vectors of provinces i and j, respectively. X;;
denotes the value of indicator k in province i. n isthe total number of indicators. The
Euclidean distance reflects the overall difference between two provinces across multiple

indicators. A smaller distance indicates a higher degree of similarity between the provinces.
3) Linkage method

Hierarchical clustering requires the specification of a linkage method to define the distance
between two groups of data points. In this study, we adopt Ward’s method, which aims to
minimize the within-cluster sum of squares (WCSS) when merging clusters. Specifically, the core
idea of Ward’s method is to iteratively merge the pair of clusters that leads to the minimum

increase in within-cluster variance. The formula is as follows:
AWCSS = WCSS,,.,, — (WCSS, + WCSSg) (19)

where WCSS, and WCSSg are the within-cluster sum of squares for clusters A4 and B,
respectively. WCSS,,.,, is the within-cluster sum of squares after merging clusters 4 and B. The
advantage of the Ward method is that by minimizing the within-cluster variance after each
merge, the resulting clusters are more compact and can more accurately reflect the underlying

structure of the data. This is particularly important when dealing with high-dimensional data.
4) Dendrogram generation

To visually present the similarity and clustering structure among provinces, we used
MATLAB’s dendrogram function to generate a dendrogram (Fig. 4). The horizontal axis represents
the names of the provinces, while the vertical axis indicates the distance between merged
clusters (measured by Euclidean distance). The dendrogram illustrates the hierarchical

relationships between provinces, allowing for flexible grouping by selecting a cutoff height.
5) Determining the number of clusters

The number of clusters was determined based on the structure of the dendrogram
branches. Typically, a natural division can be found by cutting the dendrogram where a sudden
increase in linkage distance occurs. In this study, we divided the 30 provinces into five clusters by
truncating the dendrogram to ensure that provinces within each group share similar
characteristics across multiple socioeconomic and infrastructure indicators (Fig. 4). Cluster 1
consists of Guizhou, Yunnan, and Gansu; Cluster 2 includes Shanxi, Liaoning, Heilongjiang, Henan,
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Hunan, Sichuan, and Shaanxi; Cluster 3 covers Hebei, Jilin, Jiangsu, Zhejiang, Anhui, Fujian,
Jiangxi, Shandong, Hubei, Guangdong, Guangxi, Hainan, and Chongqing; Cluster 4 comprises
Inner Mongolia, Qinghai, Ningxia, and Xinjiang; and Cluster 5 includes Beijing, Tianjin, and

Shanghai.
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Fig. 4. Hierarchical clustering dendrogram
1.3.2 Identifying the most similar province

In hierarchical clustering, the target province is grouped with other provinces into the same
cluster. However, noticeable differences may still exist within the cluster. Therefore, we further
refine the matching process by identifying the most similar province based on intra-cluster

distance. The specific steps are as follows:
1) Intra-cluster filtering

Based on the target province’s cluster assignment from the hierarchical clustering results,

we extract all provinces within the same cluster.
2) Intra-cluster distance calculation

For all provinces within the same cluster, we compute the Euclidean distance between the
target province and each other province. The formula used is identical to the formula (18). Here,
X; is the standardized feature vector of the target province, and X; is the feature vector of

another province within the same cluster.
3)  Similarity ranking

The calculated distances are ranked in ascending order, with smaller values indicating
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greater similarity to the target province. We identify the three provinces with the smallest
distances as the “most similar provinces” to the target province. For Inner Mongolia, the three
most similar provinces were Ningxia (distance: 2.127), Xinjiang (2.383), and Qinghai (3.258).
However, since Ningxia is also a data-deficient province, Xinjiang was selected as the most similar
province. For Hainan, the closest provinces were Jilin (2.375), Hebei (2.492), and Jiangxi (2.521),
with Jilin chosen as the proxy. In the case of Qinghai, the most similar provinces were Inner
Mongolia (3.258), Xinjiang (3.407), and Ningxia (4.311); as Inner Mongolia also lacks data,
Xinjiang was again selected. Similarly, for Ningxia, the closest provinces were Xinjiang (1.992),
Inner Mongolia (2.127), and Qinghai (4.311), and Xinjiang was ultimately chosen due to data

availability.
1.3.3 Estimation of income and wealth distributions
1) Distribution based on similar provinces

The income and wealth distributions of the most similar provinces are used as the initial

distributional estimates for the provinces with missing data.
2) Per capita income adjustment

To align the distribution with the actual income level of the target province, a linear
adjustment is applied based on the ratio of average income between the target province and the

matched similar province. Specifically, the adjustment is performed using the following formulas:

Xtarget

Xadjusted = Xsimilar - ——— (2 0)
Xsimilar
Xtarget

Wadjusted = Wsimilar * (2 1)
Xsimilar

where Xgjusted @Nd Wagjusted represent the adjusted income and wealth values for the target
province. Xgmilar and Wygjustea denote the original income and wealth values from the matched
similar province. Xgrger and Xgmilar are the average per capita incomes of the target and similar

provinces, respectively.

2 Provincial carbon footprints

2.1 Extended multi-regional input—output model

In this study, we apply an environmentally extended multi-regional input—output (EE-MRIO)
model to calculate the consumption-based carbon emissions (or carbon footprints, CFs) for each
Chinese province. The MRIO framework enables a detailed depiction of production activities
within regions, interregional transfers, and final consumption flows. It is widely used to quantify

regional CFs due to its ability to capture supply chain linkages across regions.
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Under a non-competitive MRIO framework, the fundamental linear equation for a given

x" = ZA”xS + Ey” (22)
N N

where x7 is a column vector representing the total output in region r; A™ = (airjs) is the

region r is expressed as:

input coefficient matrix, where each element a;; = Zl-rf/xf, with z;7 denoting the interregional
monetary flow from sector i inregion r to sector j inregion s, and xjs being the total
output of sector j inregion r.Theterm y™ represents the final consumption of goods and
services produced in region r and consumed in region s. In particular, y'" refers to the goods
and services that are produced and finally consumed within region 7. The final demand vector y
includes rural household consumption, urban household consumption, government expenditure,

capital formation, and changes in inventories.

Assuming there are m regions and each region contains n sectors, formula (22) can be

expanded into the following form:

x1 Al A2 L Alm [l ylS
2 21 22 ... 2m 2 2s
Cl=]AT AT AT 23)
xm Aml Am2 Amm xm s yms
which can be simplified and expressed in the following compact form:
X=AX+Y (24)

Based on formula (24), we have X = (I — A)~'Y, where I is the identity matrix with the

same dimensions as matrix A. This formulation can be further simplified as:
X=1LY (25)

where L is the Leontief inverse matrix, representing the total output response of all sectors—
both direct and indirect—resulting from a unit change in final demand. The matrix L can be

expanded as follows:

-1

A11 A12 A1m L11 L12 le
21 22 2m 21 22 2m
L=11- A: A: . A: = L: L: . L: (26)

In general, provincial CFs consist of the following components: emissions from goods and
services produced and consumed locally, embodied emissions in goods and services imported
from other provinces, and direct emissions from household energy use?3°, To calculate
provincial CFs, we employ the EE-MRIO model. The EE-MRIO model builds upon the standard
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MRIO framework by introducing a matrix E that contains sector-specific emission intensities for
each province. It allows for quantifying both the direct and indirect carbon emissions across

provinces and sectors driven by changes in final demand. The structure of matrix E is as follows:

EY 0o - 0
2 ..
g=|% B 0 27)
0 o .- EM
in which,
el 0 -« 0
T
Er— 0 6:2 O (28)
0 O eh

is a diagonal matrix composed of the carbon emission intensities of different sectors in region r
(i.e., direct carbon emissions per unit of output). e/ represents the direct carbon emissions per

unit output of sector i inregion r.

The MRIO model enables the quantification of monetary flows between sectors across
different regions. Accordingly, in the EE-MRIO model, carbon emission transfers corresponding to

these monetary flows can be calculated using the following formula:

[ CT11 CT12 CTlm

21 22 2m
CT = C?j CT? CT.

i T'ml T'm2 T.mm

o e ¢ "o my (29

EY 0 - O0][L* 112 L1y y y

0 EZ 0 L21 L22 L2m y21 y22 yZm
where CT™ represents the embodied carbon emissions in goods and services imported by

province s from province r. Specifically, CT"™ denotes the embodied carbon emissions from

goods and services that are both produced and consumed within province r. Accordingly, the CF

of province r can be calculated using the following formula:

CF™

= Z CTS" + CT™ + CE};

S,S#T

(30)

where CE} denotes the direct carbon emissions from household energy consumption in

province r. This activity does not generate value-added and thus cannot be captured within the

EE-MRIO model, yet it results in carbon emissions. Therefore, it is incorporated into formula (30)

to account for this portion of emissions (by attributing it to the “household consumption”

component of final demand).
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2.2 Data sources

China’s MRIO tables are not updated on an annual basis, with the most recent version

available for the year 2017. We obtained the 2012 and 2017 MRIO tables of China from the China

Emission Accounts and Datasets (CEADs) database3!, which consist of 42 industrial sectors and 31

provinces. In addition, constructing the carbon emission intensity matrix E requires province-

level carbon emission inventories by sector. We also obtained historical carbon emission

inventories for 42 sectors across all provinces from CEADs>2, It is important to note that the

sector classifications in the emission inventories differ slightly from those in the 2012 and 2017

MRIO tables. Therefore, we aggregated all sectors into 8 broader categories, as shown in Table 3.

Table 3. Sector aggregation

CEADs carbon emission
CEADs 2012 MRIO table CEADs 2017 MRIO table This paper
inventories
1. Farming, Forestry, Animal 1. Agriculture, Forestry,
1. Agriculture, Forestry,
Husbandry, Fishery and Water Animal Husbandry and 1. Agriculture
Animal Husbandry and Fishery
Conservancy Fishery

2. Coal Mining and Dressing
3. Petroleum and Natural Gas
Extraction

4. Ferrous Metals Mining and
Dressing

5. Nonferrous Metals Mining
and Dressing

6. Nonmetal Minerals Mining
and Dressing

7. Other Minerals Mining and

Dressing

2. Mining and washing of
coal

3. Extraction of
petroleum and natural gas

4. Mining and processing
of metal ores

5. Mining and processing

of nonmetal and other ores

2. Mining and washing of
coal
3. Extraction of petroleum

and natural gas

4. Mining and processing of
metal ores
5. Mining and processing of

nonmetal and other ores

2. Mining
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8. Logging and Transport of
Wood and Bamboo

9. Food Processing

10. Food Production

11. Beverage Production

12. Tobacco Processing

13.  Textile Industry

14. Garments and Other Fiber
Products

15. Leather, Furs, Down and
Related Products
16. Timber Processing,
Bamboo, Cane, Palm Fiber &
Straw Products

17.  Furniture Manufacturing
18. Papermaking and Paper
Products

19. Printing  and Record
Medium Reproduction

20. Cultural, Educational and

Sports Articles

6. Food and tobacco
processing

7. Textile industry

8. Manufacture of
leather, fur, feather and
related products

9. Processing of timber
and furniture

10.  Manufacture of paper,
printing and articles for
culture, education and sport

activity

6. Food and tobacco
processing

7. Textile industry

8. Manufacture of leather,

fur, feather and related products
9. Processing of timber and
furniture

10. Manufacture of paper,
printing and articles for culture,

education and sport activity

3. Light

Industry
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21. Petroleum Processing and
Coking
22. Raw Chemical

Materials

and Chemical Products

23.  Medical and
Pharmaceutical Products

24.  Chemical Fiber

25.  Rubber Products

26.  Plastic Products

27. Nonmetal Mineral

Products

28. Smelting and Pressing of
Ferrous Metals

29. Smelting and Pressing of
Nonferrous Metals

30. Metal Products

31. Ordinary Machinery

32. Equipment for Special
Purposes

33. Transportation Equipment

34. Electric Equipment and
Machinery
35.  Electronic and

Telecommunications Equipment
36. Instruments, Meters,
Cultural and Office Machinery

37. Other Manufacturing

Industry

38. Scrap and waste

11.  Processing of
petroleum, coking,
processing of nuclear fuel
12. Manufacture of
chemical products
13. Manuf. of non -
metallic mineral products
14. Smelting and
processing of metals

15.  Manufacture of metal
products

16.  Manufacture of
general-purpose machinery
17. Manufacture of
special purpose machinery

18. Manufacture of

transport equipment

19. Manufacture of
electrical machinery and
equipment

20. Manufacture of

communication equipment,

computers and other
electronic equipment
21. Manufacture of

measuring instruments
22.  Other manufacturing
23. Comprehensive use of

waste resources

11.  Processing of petroleum,
coking, processing of nuclear fuel
12. Manufacture of chemical
products

13.  Manuf. of non -metallic
mineral products

14. Smelting and processing

of metals

15. Manufacture of metal
products

16. Manufacture of general-
purpose machinery

17. Manufacture of special

purpose machinery

18. Manufacture of transport
equipment

19. Manufacture of electrical
machinery and equipment

20. Manufacture of
communication equipment,
computers and other electronic
equipment

21.  Manufacture of measuring
instruments

22.  Other manufacturing and

waste resources

4. Heavy

Industry
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39. Production and Supply of
Electric Power, Steam and Hot

Water

24.  Production and
distribution of electric power

and heat power

23.  Production and
distribution of electric power and

heat power

5. Production

and  Supply of
Electricity and
Steam

40. Production and Supply of
Gas
41.  Production and Supply of

Tap Water

25.  Production and
distribution of gas
26. Production and

distribution of tap water

24.  Production and
distribution of gas
25.  Production and

distribution of tap water

6. Production

and Distribution of

Gas and Water

42.  Construction

27.  Construction

26. Construction

7. Construction
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43.  Transportation, Storage,

Post and Telecommunication
Services
44. Wholesale, Retail Trade
and Catering Services

45.  Others

28. Repair of metal
products, machinery and
equipment

29. Wholesale and retail
trades

30. Transport, storage,
and postal services

31. Accommodation and
catering

32. Information transfer,
software and information
technology services
33.  Finance

34. Real estate
35. Leasing and
commercial services

36. Scientific research and
polytechnic services

37. Administration of
water, environment, and
public facilities

38. Resident, repair and
other services

39.  Education

40. Health care and social
work

41. Culture, sports, and
entertainment

42.  Public administration,

social insurance, and social

organizations

27. Repair of metal products,

machinery and equipment

28. Wholesale and retail
trades

29. Transport, storage, and
postal services

30. Accommodation and
catering

31. Information transfer,
software and information

technology services

32.  Finance

33. Real estate

34. Leasing and commercial
services

35.  Scientific research

36. Polytechnic services

37. Administration of water,
environment, and public facilities
38. Resident, repair and other
services

39.  Education

40. Health care and social
work

41. Culture, sports, and
entertainment
42.  Public

administration,

social insurance, and social

organizations

8. Service

Industry
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46. Urban
N/A N/A N/A
47.  Rural

Note: in the CEADs carbon emission inventories, "Urban" and "Rural" represent the direct carbon emissions from household
energy consumption in urban and rural areas, respectively. These activities do not generate value-added and therefore cannot
be captured by the EE-MRIO model. However, they are important sources of CFs at the provincial level. As a result, they are
temporarily excluded from the input-output calculations, but as shown in formula (30), they are included when calculating the

provincial CFs (by attributing it to the “household consumption” component of final demand).

2.3 Results

Based on the methodology described above, we calculated the consumption-based carbon
emissions (CFs) for each Chinese province for the years 2017 and 2012. The provincial CFs were
further disaggregated by final demand categories into household consumption CF (HCCF),
government consumption CF (GCCF), and capital formation CF (CFCF) (Fig. 5). In particular, HCCF
accounts not only for the indirect emissions estimated through the EE-MRIO model but also for
the direct emissions from household energy use as reported in carbon emission inventories. Due

to data limitations, CFs associated with international exports were not included in the analysis.
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Fig. 5. Composition of consumption-based carbon emissions (CFs) for each province in 2017 and 2012

Note: HCCF refers to household consumption CF, GCCF refers to government consumption CF, and CFCF refers to capital

formation CF.

3  Individual carbon footprints

By integrating the fitted provincial-level individual income and wealth distributions derived
from micro-level household surveys with the province-level CFs data obtained from the macro-
level EE-MRIO model, we enable an effective downscaling of CFs from the provincial scale to the
individual scale. This process is crucial for understanding the distribution of carbon responsibility

across different income groups. Ref. 33 proposed a systematic method to allocate national-level
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CFs to the individual level, which has been successfully applied to over 100 countries worldwide.
This method establishes a mapping between macro-level CF data and micro-level income or
wealth distributions based on the elasticity of CFs with respect to income or wealth. It enables
the disaggregation of household consumption CF, government consumption CF, and capital
formation CF from the national level to individuals across different income brackets. The core

logic and technical pathway of this method are also applicable at the provincial level in China.

For analytical purposes, individuals in each province are grouped into 100,000 income
percentiles, with individuals within each percentile treated as homogeneous. Accordingly, for any

given province, the CF composition of individuals in percentile i can be expressed as follows:
CF{* = CF{™ + CF?*" + CF/™ (31)

where CFf°, CFf™, CF™, CFigov represent the per capita total CF, household consumption
CF, capital formation CF, and government consumption CF, respectively, for percentile i.In the
following sections, we develop downscaling models corresponding to each of these three CF

components.
3.1 Household consumption carbon footprint

The sum of household consumption CFs across all individuals in a province should be equal
to the province-level household consumption CF. Meanwhile, individual household CFs are
primarily influenced by their income levels—meaning that differences in CFs across income
groups are largely driven by income disparities™. Accordingly, for a given province, the

downscaling model for household consumption CF can be formulated as follows:

CFl(IOI’lS — kCOHSC‘FCOl’lS . Yla
CFZCOKIS —_ kCOl’lSCFCOnS . Yza

CF;{:]onS — kco;SCFconS . YNa (32)

§ N CFSons — N . CFcons
i
i=1

where CF" denotes the per capita household consumption CF of the province, Y; is the
average income of individuals in income percentile i, a represents the income elasticity of

household consumption CF, and N is the number of percentile groups, i.e., 100,000.

It can be observed that an individual’s household consumption CF is determined not only by
the province’s overall household consumption CF, but also by the income elasticity of household
CF, denoted as a. Previous studies have shown that « typically ranges between 0.6 and 1.0,
indicating that an additional unit of income generates less carbon emissions for the rich than for

the poor3334, This implies a trade-off between poverty alleviation (or reducing income inequality)
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and climate mitigation. According to findings from refs. 3335, the value of a varies across regions

and tends to be higher in more developed areas compared to less developed ones.

To reflect interprovincial differences, this study estimates province-specific elasticity
coefficients between income and household consumption CF based on observed data. First, we
calculate the growth rates of per capita income and per capita household consumption CF for
each province. These growth rates are then used to derive initial elasticity estimates. To ensure
consistency with the empirically supported range (0.6—1.0), the initial elasticity values are
mapped onto this interval to obtain the final province-specific elasticity coefficients. This method
provides a reasonable adjustment of provincial elasticity estimates based on limited empirical
data and helps reveal region-specific carbon emission patterns across different levels of economic
development. It also offers both empirical support and a theoretical basis for formulating

targeted regional carbon mitigation policies. Details are provided as follows:

First, the initial elasticity estimate for province i is calculated using the following formula:

(HCCFi,2017 — HCCFi,zou)
initial _

HCCF; 012
a = - 33
: (Yi,2017 — i,2012) (33)

Yi,2012

where HCCF; 5017 and HCCF; 541, represent the per capita household consumption CFs of
province i in 2017 and 2012, respectively, and Y; 5517 and Y;,41, denote the per capita
income of province i in 2017 and 2012, respectively. The provincial per capita income data are

obtained from the national and provincial statistical yearbooks.

Then, after estimating the initial elasticity values for all provinces, the elasticity coefficient
for province i is obtained by mapping its initial elasticity estimate into the theoretical range of

0.6 to 1.0, as shown in the following formula:

a,jnitial _ a,initial
_ i min
a;=06+04Xx ginitial _  initial (34)
max min
where aMitial gng ginitial genote the minimum and maximum values, respectively, of the

initial elasticity estimates across all provinces.

Fig. 6 presents the estimated income elasticity coefficients of household consumption CF for
each province. In addition, the same estimation method was applied at the national level,
yielding an elasticity value of 0.76, which is consistent with the estimates reported in refs. 333637,
We take the estimated provincial income elasticity coefficients as the baseline scenario. In
Supplementary Information Section 7, we also calculate the provincial CF results under extreme
scenarios, where the elasticity coefficients are uniformly set to the upper and lower bounds of
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their typical range (0.6 and 1.0, respectively).
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Fig. 6. Income elasticity of household consumption CF (HCCF) across provinces (from 2012 to 2017)

Note: the red dashed line indicates the national-level elasticity value (0.76).

3.2 Government consumption carbon footprint

Unlike household consumption CFs, provincial-level government consumption CFs in this
study are equally distributed among all individuals within each province. This approach has been
adopted in global inequality studies3*8, based on the implicit assumption that government
expenditures primarily serve the general population, and thus the associated emissions should be
equally borne by everyone. This assumption is generally regarded as both reasonable and

conservative in international research.

Although some scholars have pointed out that public service provision in China is
characterized by significant inequality®®*—suggesting that government consumption emissions
should not be equally allocated—Fig. 5 shows that government consumption emissions account
for only a small share of total CFts in China. Therefore, adopting alternative allocation approaches
would have only a limited impact on the overall carbon inequality results and would not

significantly alter the main conclusions.

Therefore, for a given province, the government consumption CF of individuals in income

percentile i is calculated as follows:

gov _
CFE®Y = CFeov (35)
where CF8°Y denotes the per capita government consumption CF of the province.

3.3 Capital formation carbon footprint

The allocation of provincial capital formation CFs to individuals follows a similar approach to
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that of household consumption CFs, but uses wealth rather than income as the allocation basis,

as shown in the following formula:

CFlinV = kinvepinv, Wlﬁ
CFZinv = kinvepinv, Wzﬁ

) CF]{]nV — kin\;CFinv . WNB (36)

E "R = N e
2
i=1

where CF™V denotes the per capita household consumption CF of the province, W; is the
average wealth of individuals in income percentile i,  represents the wealth elasticity of

capital formation CF.

For the elasticity coefficient f3, we set its value to 1, assuming that the capital formation CF
borne by individuals within a province is proportional to their wealth. This assumption is
supported by several empirical studies. Ref. %, based on analyses of France and Germany, found
elasticity values of approximately 1.1 and 0.95, respectively, indicating that wealth and the capital
formation CF are roughly linearly related in magnitude. Ref. 33 further argued that in most
countries lacking micro-level asset-based carbon data, assuming unit elasticity is an acceptable
and widely adopted approach in studies on cross-national carbon inequality and responsibility
allocation. We take § =1 as the baseline scenario. In Supplementary Information Section 7, we

also calculate individual CF results under extreme scenarios (8 = 0.9 and 1.1).

The average wealth W; of individuals in income percentile i cannot be directly derived
from the fitted provincial income and wealth distribution functions, as individuals in income
percentile i do not necessarily fall into the same wealth percentile. Micro-level data from
provincial household surveys reveal a highly complex and nonlinear relationship between income
and wealth. First, income and wealth distributions differ substantially: income typically exhibits a
right-skewed distribution, whereas wealth is even more heavily right-skewed. Second, the
dependence between income and wealth is nonlinear; individuals with similar income levels may
possess vastly different levels of wealth, and the structure of wealth distribution varies across
income groups. This is understandable—for instance, some high-income individuals may not have
accumulated substantial wealth, while certain low-income individuals may own considerable
assets. Therefore, assuming a one-to-one correspondence between income and wealth
percentiles (e.g., equating the bottom 1% in income with the bottom 1% in wealth) leads to
significant distortion and fails to reflect the actual statistical patterns observed in the data. To
address this issue, we propose a percentile-based method for estimating the joint distribution of

income and wealth. The steps are as follows:
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1) Fitting the empirical wealth distribution function

This step has already been completed in Supplementary Information Section 1. Here, we
denote the optimal cumulative distribution function of wealth as F,, (w). This distribution
captures the marginal characteristics of the wealth data and serves as the basis for estimating

individual wealth values in the subsequent steps.
2. Exploring the relationship between income and wealth based on their joint distribution

A Copula model is used to fit the joint distribution of income percentiles and wealth
percentiles, capturing the nonlinear dependence between the two variables. The conditional
distribution derived from the joint distribution is used to estimate the correspondence between
income percentiles and wealth percentiles. Based on this, wealth percentile values are generated

for each sample within different income groups. The details are as follows:

First, we introduce the Copula model. Copula is a method used to construct multivariate
joint distributions by separating marginal distributions from their dependence structure. Its core

idea is expressed as:
Clu,v)=PU <Su,V<v) (37)

where U = Fy(x) and V = F,(y) are marginal distributions standardized to the interval [0, 1],
and C(u,v) isthe Copula function that describes the dependence structure between U and
V. This approach is particularly well-suited for modeling the complex and nonlinear relationship
between income and wealth because it allows for the combination of arbitrary marginal
distributions Fy(x) and Fy,(y), preserving the original distributional characteristics of each
variable, while separately constructing the dependence structure C(u,v), thereby enabling the

capture of nonlinear relationships.

Then, we proceed with model selection and fitting. Before that, the sample income and

wealth data are first transformed into percentile values:

rank(income) rank(wealth)
U=Fy(x) = — V=R =— (38)

where U = Fy(x) and V = F,(y) are the normalized percentile values of income and wealth,
respectively. Here, rank(income) and rank(wealth) denote the rank orders of income and
wealth within the sample, and n is the total number of observations. This transformation maps
the original data to the [0, 1] interval, producing uniform marginal distributions required for

Copula fitting.

After transforming the data into percentile form, we proceed to select the most appropriate
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Copula type. We fit several commonly used Copula families, including Gaussian, t, Clayton, and
Gumbel Copulas, and identify the best-fitting model based on the Akaike information criterion

(AIC), as defined by the following formula:
AIC = -2 - loglik + 2 : num_params (39)

where loglik denotes the log-likelihood of the fitted Copula model, and num_params is the
number of estimated parameters. The Copula model with the lowest AIC value is considered the

best-fitting model.

Then, based on the fitted Copula model, joint distribution samples (U;, V;) of income and
wealth percentiles can be generated to capture the complex correspondence between income

percentiles and wealth percentiles.

Furthermore, we can proceed to estimate the wealth percentiles corresponding to each
income percentile. For each fixed income percentile u, multiple corresponding wealth
percentiles v are generated based on the conditional distribution. The conditional distribution

of a Copula is given by the following formula:

aC(u,v) y0C(u,1)
ou Jdu

Criu=u() = (40)

where Cyjy=y,(v) denotes the conditional distribution function of V given U = u. The

ac(u, . - . .
numerator ;—Zv) represents the partial derivative of the Copula function with respect to u,

ac(u,1)

capturing the cumulative dependence up to percentile v. The denominator serves as a

normalization term, ensuring that the conditional distribution integrates to 1 over the range of
v. This formulation allows us to generate conditional samples of wealth percentiles for a given
income percentile using the estimated Copula function. The specific form of the conditional
distribution varies depending on the type of Copula used. For example, for the Gaussian Copula,

the conditional mean and variance are given by:

p=p-zy, o*=1-p? (41)

where z, = ®1(u) isthe inverse of the standard normal distribution, and p is the

dependence parameter.

Finally, the generated wealth percentile v is substituted into the inverse of the fitted

empirical wealth distribution function F,,(w) to obtain the corresponding wealth value:

w = Fy'(v) (42)
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The above describes our proposed percentile-based method for estimating the joint
distribution of income and wealth. This percentile-mapping approach offers two key advantages.
First, it ensures consistency: the estimated wealth values preserve the original wealth distribution
in the sample. Second, it retains the complexity of the relationship between income and wealth:
the mapping between income percentiles and wealth percentiles is derived from the joint
distribution observed in the original micro-level data, accurately reflecting the nonlinear

dependence between the two variables.
4 Individual carbon footprints in 2030 under the BAU scenario

In the preceding sections, the calculation of individual CFs for each province in 2017
included emissions from household consumption, government consumption, and capital
formation. Emissions from exports were excluded due to the lack of province-level data. We
calculated the share of these three sectors in China’s total carbon emissions in 2017 and found
that they accounted for 80.66% of the national total. This indicates that the individual CFs we
computed cover the majority of total emissions. Therefore, we reasonably upscale the individual
carbon footprints by a factor corresponding to this proportion (80.66%) to match the national
total emissions. This adjustment ensures consistency between the aggregated individual
footprints and the national inventory, which is necessary for estimating provincial mitigation

efforts, which must be assessed relative to the national total carbon emissions.

Furthermore, we assume that under the business-as-usual (BAU) scenario, China’s national
carbon intensity in 2030 will remain at its current level, and the distribution of individual carbon
footprints within each province will also remain unchanged. Based on these assumptions, we
estimate the individual CFs for each province in 2030 under the BAU scenario, which will serve as

the reference line for evaluating future provincial mitigation efforts.
1) Provincial population and CF projections for 2030

For provincial population projections, this study first refers to the medium-growth scenario
of China’s population growth rate from the United Nations” World Population Prospects to
estimate China’s total population in 2030%1. Based on this estimate, we assume that each
province’s share of the national population in 2024 remains constant through 2030, allowing us
to derive provincial population estimates for 2030. Population data are obtained from the China

Statistical Yearbook.

For provincial CF projections, we assume that each province’s share of national CF in 2017
remains unchanged. Under this assumption, provincial CFs in 2030 can be derived from the

projected national total. In the BAU scenario, China's carbon intensity in 2030 is assumed to
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remain at the 2024 level; therefore, national carbon emissions in 2030 are determined by the

projected GDP.

Considering recent economic slowdowns due to weak domestic demand and external trade
pressures, China’s current GDP growth rate has stabilized around 5%. The average annual growth
rate over the next five years is expected to range between 3% and 5%. To reflect this uncertainty,
we define three GDP growth scenarios: a high-growth scenario (annual average of 4.5% from
2025 to 2030), a medium-growth scenario (4.0%), and a low-growth scenario (3.5%). Based on
these assumptions, we calculate the projected national and provincial BAU carbon emissions in
2030 under each growth scenario (Table 4). The GDP data are sourced from the China Statistical

Yearbook.
2) Individual CF for 2030 under the BAU scenario

Based on the assumption that the distribution of individual CFs within each province in 2030
under the BAU scenario remains consistent with that of 2017, and combined with the projected
population and total CF values for each province in 2030, we can calculate the provincial-level

individual CFs under the BAU scenario.

Table 4. Projected national and provincial CFs in 2030 under the BAU Scenario

Low GDP growth Medium GDP growth High GDP growth
CFin 2017
Region scenario scenario scenario
(Mt)
(Mt) (Mt) (Mt)
Beijing 244.6 318.2 327.6 337.1
Tianjin 118.2 153.8 158.3 162.9
Hebei 685.9 892.3 918.4 945.3
Shanxi 334.2 434.8 447.5 460.6
Inner Mongolia 336.9 438.2 451.1 464.3
Liaoning 357.1 464.5 478.2 492.1
Jilin 203.7 265.0 272.8 280.7
Heilongjiang 267.2 347.5 357.7 368.2
Shanghai 210.6 273.9 281.9 290.2
Jiangsu 627.6 816.4 840.3 864.9
Zhejiang 417.7 543.3 559.2 575.6
Anhui 360.1 468.5 482.2 496.3
Fujian 191.9 249.6 256.9 264.4
Jiangxi 252.2 328.1 337.7 347.5
Shandong 720.0 936.6 964.1 992.3
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Henan 748.9 974.2 1002.8 1032.0

Hubei 457.5 595.2 612.6 630.5
Hunan 466.5 606.9 624.7 642.9
Guangdong 743.2 966.7 995.1 1024.1
Guangxi 255.8 332.7 3425 352.5
Hainan 52.4 68.2 70.2 72.3
Chongging 247.0 321.2 330.7 340.3
Sichuan 402.8 524.0 539.3 555.1
Guizhou 216.0 281.0 289.3 297.7
Yunnan 329.1 428.1 440.7 453.6
Shaanxi 302.7 393.8 405.3 417.2
Gansu 115.5 150.2 154.6 159.2
Qinghai 65.7 85.4 87.9 90.5
Ningxia 118.5 154.1 158.6 163.3
Xinjiang 318.0 4136 425.7 438.2
China 10167.7 13226.0 13614.0 14011.5

Note: all the CF values have been upscaled from 80.66% to 100% of total emissions.

5 China’s national carbon emissions target for 2030

In 2020, China announced an updated and enhanced NDC, committing to reduce carbon
intensity by more than 65% from the 2005 level by 2030. Based on this target, and using the GDP
growth scenarios defined in Supplementary Information Section 4, we derive the corresponding

national total carbon emissions targets.

To account for uncertainties in the level of target achievement, we define three mitigation
scenarios: low, medium, and high, corresponding to carbon intensity reduction rates of 60%, 65%,
and 70%, respectively. Combining the three GDP growth scenarios (low, medium, and high) with
the three mitigation scenarios yields a matrix of nine national carbon emissions target scenarios:
LL (low GDP growth + low mitigation), LM (low GDP growth + medium mitigation), LH (low GDP
growth + high mitigation), ML (medium GDP growth + low mitigation), MM (medium GDP growth
+ medium mitigation), MH (medium GDP growth + high mitigation), HL (high GDP growth + low
mitigation), HM (high GDP growth + medium mitigation), and HH (high GDP growth + high

mitigation).

Table 5 presents the total national carbon emissions targets associated with each of these
scenarios. As shown, the LH scenario represents the most stringent climate target, allowing
emissions of only 8.43 billion tons of CO, by 2030. In contrast, the HL scenario is the most lenient,

allowing emissions up to 11.9 billion tons of CO,. This study focuses on the MM scenario, where
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the national carbon emissions target is 10.12 billion tons, as the central case for analyzing
provincial mitigation efforts. Results under the other scenarios are also calculated and serve as

benchmarks for comparison with the MM scenario.

Table 5. National carbon emissions targets under different GDP growth and mitigation scenarios

GDP growth scenario Mitigation scenario Emission target (Mt)
Low Low 11234.9

Low Medium 9830.5

Low High 8426.2

Medium Low 11564.5

Medium Medium 10118.9

Medium High 8673.4

High Low 11902.1

High Medium 10414.4

High High 8926.6

Note: the low, medium, and high GDP growth scenarios correspond to national average annual GDP growth rates of 3.5%,
4.0%, and 4.5% from 2025 to 2030, respectively. The low, medium, and high mitigation scenarios correspond to reductions in
carbon intensity by 60%, 65%, and 70% by 2030 relative to 2005 levels.

6 Individual carbon footprints based on decent living standards (DLS)

Unlike most existing studies that focus solely on carbon emissions related to household
consumption, this study defines an individual’s CF as the sum of emissions associated with three
final demand components: household consumption, government consumption, and capital
formation. Traditional estimations of decent living standards (DLS)-based emissions typically
concentrate on essential household consumption categories—such as food, clothing, housing,

transport, education, health, water, and cooking—while neglecting the latter two sources.

Building on household consumption-based DLS CFs, this study further incorporates
minimum emission thresholds from government consumption and capital formation to construct
a comprehensive, full-scope DLS CF floor covering all three final demand components.
Specifically, we calculate household DLS-related CFs based on provincial-level energy demands for
key consumption categories. For capital formation, we set the 25th percentile of individual
capital-related CFs within each province as the minimum level of investment required to support
a decent life. Given the relatively small share of government consumption, we assume that
maintaining current levels of per capita government consumption CFs is sufficient to meet basic
public service needs. The resulting individual-level DLS CF comprises these three components and

serves as a floor reference for subsequent effort-sharing analysis.
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Household consumption-related DLS CFs in this study are calculated based on estimated DLS
energy demand and the carbon intensity per unit of energy use. Regarding DLS energy demand,
ref. 4 developed an evaluation system covering both direct and indirect energy consumption, and
estimated per capita DLS energy use at the provincial level for 2017. Specifically, their study
builds upon the general DLS framework proposed by ref. 3°, while adapting it to China’s national
context by incorporating regional development levels, cultural norms, and lifestyle patterns. The
framework defines DLS thresholds for eight consumption categories: food, clothing, housing,
transport, education, health, water, and cooking. For example, the food intake standard is
adjusted based on the Dietary Reference Intakes for Chinese Residents (2013 Edition); heating
standards in the housing category reflect the temperature differences between northern and
southern regions; and the transport category assumes that private urban travel is replaced by
public transportation under DLS conditions. Furthermore, ref. 42 applied the EE-MRIO model to
quantify provincial DLS energy consumption under the specified thresholds. This includes both
direct and indirect energy use. Direct energy consumption covers three categories: transport,
housing, and cooking, while indirect energy consumption spans all eight categories mentioned

above. The detailed calculation process is provided in Table 6.

For the carbon emission factor per unit of energy consumption, we use the most recent
(2021) provincial-level data on energy consumption and carbon emissions in China to calculate
province-specific emission coefficients. The relevant data are obtained from the China Energy
Statistical Yearbook. By combining the estimated DLS energy demand with these carbon intensity
factors, we derive the per capita household consumption DLS CFs for each province. Finally, by
summing up the household consumption, government consumption, and capital formation
components of DLS-related CFs, we obtain the individual DLS CF for each province. In addition, to
test robustness, we adjust the capital formation component of individual DLS CF from the 25th
percentile to the 40th and 10th percentiles of the provincial individual capital-related CF
distribution, constructing the upper and lower bounds of the individual DLS CF. The values and

variation range of individual DLS CF under these scenarios are shown in Fig. 7.

Table 6. Provincial DLS energy estimation method

) Energy ) )
Category DLS material threshold ) Calculation logic
ype
Daily caloric intake per ® Using the EE-MRIO to extract the indirect energy use
person is set based on the associated with household consumption in the “Food
Dietary Reference Intakes for and Tobacco” sector.
Chinese Residents, . ® (Calculating the energy intensity per kcal = total indirect
Food . . Indirect .
differentiated by gender and energy / actual total caloric intake (kJ/kcal).
age. Provincial annual caloric ® Multiplying this intensity by the DLS-based -caloric
demand is calculated based demand for each province to estimate food-related
on the population structure. indirect energy consumption under DLS.
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Annual clothing weight is set

for men, women, and

children based on

Using EE-MRIO to obtain the indirect energy embodied
in the “Textile, Garment, and Leather Products” sectors
due to household consumption.

Clothing . Indirect ® Calculating the unit energy intensity per gram = total
temperature zones, ensuring . . .
. . X energy / total national clothing weight consumed.
adequate insulation during . . . . )
®  Multiplying this by the clothing weight defined under DLS
the coldest months. . . .
for each province to obtain DLS clothing energy use.
® Direct energy: replacing urban private transport with
public modes. Applying energy use coefficients
In DLS scenario, urban (MJ/passenger-km) for different transport modes from
residents use only public national/international data. Multiplying by travel
transport; rural residents use Direct + distance by mode to compute direct transport energy
irec
Transportation a combination of public and Indirect use.
ndirec
private transport. Total travel Indirect energy: using EE-MRIO to extract household-
distance (passenger-km) is induced energy use from the “Transport, Storage, and
assumed the same asin 2017. Postal Services” sector. Computing energy intensity per
passenger-km and multiply by DLS travel demand to
obtain indirect energy.
Each household is assumed X . .
® Direct energy: for each climate zone, representative
to own one 1.5 horsepower " . . i
L K cities are selected to estimate daily household cooling
energy-efficient air L .
i . . load. Multiplying cooling energy per household by
. conditioner. Cooling is . . .
Housing . Direct + number of households in each province.
. activated when the outdoor . X L . .
Cooling . Indirect ® Indirect energy: multiplying DLS cooling electricity
temperature exceeds 26°C. L .
L demand by the unit indirect energy coefficient of the
Operating time is 8 hours per " . " .
Electricity and Heat Supply” sector derived from EE-
day on weekdays and 10
MRIO.
hours on weekends.
Central heating is applied in . . . .
. ® Direct energy: estimating heating demand by region
northern urban areas; air . i
. using standard indoor temperature thresholds and
conditioners are used for - o
. L . heating days. Considering energy sources (coal,
Housing heating in southern and rural  Direct + e . o
K . . . electricity, heat), efficiency, and distribution losses.
Heating regions. Heating area and Indirect i o .
X Indirect energy: multiplying DLS coal, electricity, and
duration are set based on . . L
i . heat consumption by their respective indirect energy
climate zones and housing . . .
intensities derived from EE-MRIO sectors.
standards.
Lighting is considered for
living rooms and bedrooms ® Direct energy: multiplying room lighting area by power
only. Lighting power is set density and estimated lighting time per day. Multiplying
. based on area (in square . by number of households to obtain total electricity use
Housing o Direct + o
o meters) and standard lighting . for lighting.
Lighting ) Indirect . o - -
power density  (W/m?). ® |ndirect energy: multiplying DLS lighting electricity
Lighting duration is consumption by the electricity sector’s indirect energy
determined by daylight intensity from EE-MRIO.
hours.
® Direct energy: multiplying number of devices by annual
Each household owns one . . . . .
. electricity consumption per device unit. Estimating at
) refrigerator (0.33 kWh/day), ) . ) . )
Housing Direct + provincial level using population and household size.
) one TV (3 kWh/year), and . . L . -
Appliances . Indirect ® Indirect energy: multiplying DLS appliance electricity
each person owns one mobile . e L
consumption by the electricity sector’s indirect energy
phone (0.2 kWh/year). .
coefficient from EE-MRIO.
® Using EE-MRIO to extract the indirect energy use
Each person consumes 100 i . L !
. associated with household consumption in the “Water
liters of water per day, . .\
. . . ) Production and Supply” sector.
Water consistent with the national Indirect

standard for basic residential
water supply.

Computing per-liter indirect energy intensity = total
sector energy consumption/ total actual water supplied
nationally (kJ/L).
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Multiplying by DLS water demand per province to get
indirect energy use.

Annual per capita

expenditure is set at

Using EE-MRIO to extract the indirect energy use induced
by household consumption in the “Health and Social

Work” sector.

Health Care ¥4614.96, equivalent to the Indirect ® Computing per-yuan energy intensity based on the
median value for basic health national actual health expenditure (kJ/CNY).
coverage. ® Multiplying this by DLS-based per capita health
expenditure to obtain DLS energy use for health services.
. . ® Due to lack of a dedicated “Education” sector in EE-
DLS requires completion of X
. MRIO, use “Other Services” as a proxy.
nine-year compulsory o . .
. . K ® Extracting indirect energy use associated with household
X education, with  primary . . X
Education . Indirect education consumption.
school expenditure set at . . .
o ® Computing energy intensity per yuan from “Other
¥6939.79 and junior o X L
Services” sector in EE-MRIO and multiplying by DLS
secondary at ¥10409.68. . i X
educational spending to estimate energy use.
Only electricity and gas are
allowed as fuels. Their ® Direct energy: calculating cooking fuel required =
proportion is determined by thermal demand / fuel efficiency (75% for electricity, 60%
actual provincial fuel use Direct for gas).
irect +
Cooking patterns. Cooking energy Indirect Indirect energy: multiplying DLS cooking electricity and
ndirec
demand is set equal to the gas consumption by the indirect energy intensities of the
actual thermal need, with “Electricity and Heat Supply” and “Coal Mining and
fuel switching and efficiency Processing” sectors in EE-MRIO.
adjustments.
Source: ref. 42,
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Fig. 7. Individual carbon footprint for DLS

7 Robust tests

First, for the estimation of provincial individual income and wealth distributions, four provinces—Inner

Mongolia, Ningxia, Qinghai, and Hainan—Ilack sufficient data and were thus estimated using a cluster analysis to

identify the most similar provinces, which were then used as proxies for estimation (Supplementary Information

1.3). Similarly, refs. 4344 faced the same issue and addressed it by assuming that data-deficient provinces share

income distribution patterns with neighboring provinces, directly adopting the latter as proxies. Compared to this

straightforward approach, our cluster-based proxy selection is arguably more systematic and scientifically
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justified. Nevertheless, to test the robustness of our method, we also employed neighboring provinces as
alternative proxies, following the same adjustment procedure with our cluster-based approach: the matched
distributions were linearly scaled to align with the observed average income and wealth levels of the target
provinces. We then recalculated the individual CFs for different income groups under these alternative

assumptions and compared the results with our original estimates.

Specifically, Shanxi—a neighboring coal-producing province—was used as a proxy for Inner Mongolia; Gansu
was selected for both Ningxia and Qinghai, given their geographic proximity and similar economic development
levels; and Guangxi, a neighboring province with a more similar economic development level, was used for
Hainan. The recalculated individual CFs for each income group are presented in Fig. 8. The results show no
substantial differences across the income groups, indicating that alternative choices of proxies have minimal

impact on our findings and thereby supporting the robustness of the adopted method.

Second, in estimating individual CFs, income and wealth elasticity coefficients serve as key parameters
linking individual income and wealth to household consumption and investment CFs, and it is necessary to assess
the sensitivity of the results to their values. For income elasticity (@), we assigned province-specific values based
on empirical data and theoretical ranges provided in previous studies (refs. 333%: 0.6 to 1.0), as described in
Supplementary Information Section 3.1. Here, we consider two extreme scenarios where «a is set to the lower
and upper bounds of its typical range (0.6 and 1.0) and recalculate individual CFs accordingly. As shown in Table 7,
increasing a amplifies carbon inequality: individual CFs moderately increase for the top 1%, slightly increase for
the next 9%, remain largely unchanged for the middle 40%, and slightly decrease for the bottom 50%. In other
words, for the vast majority of individuals across all provinces, CFs are not highly sensitive to variations in «,

indicating that the estimated provincial CFs are robust to the choice of income elasticity estimation.

For wealth elasticity (), we set the baseline value at 1.0, following the approach in ref. 33, due to the lack
of empirical evidence at the Chinese provincial level (Supplementary Information Section 3.3). To assess the
robustness of our results to this assumption, we follow ref. 33 by introducing two extreme scenarios for : an
upper bound of 1.1 and a lower bound of 0.9. We then examine the impact of these scenarios on individual CFs
across income groups in each province. Similar to «, anincreasein 8 leads to higher individual CFs for the top
1% and the next 9% income groups, while the middle 40% remains largely unaffected and the bottom 50%
experiences a slight decrease (Table 8). This is expected, as a higher f implies a more unequal allocation of
capital-related emissions across income groups—assigning more responsibility to high-income individuals and less
to low-income individuals, with middle-income groups relatively unaffected. Importantly, the variations in
individual CFs under these extreme elasticity assumptions are minor across all provinces and income groups.
These changes do not materially alter the overall patterns of carbon inequality or the main conclusions of this

study.

Third, in the construction of individual DLS CFs, the capital formation component was previously set as the
25th percentile of the individual capital-related CF distribution within each province. To test the robustness of this

assumption, we apply a +15 percentile point variation, constructing lower- and upper-bound scenarios
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corresponding to the 10th and 40th percentiles, respectively. Based on these extreme cases, we recalculate the
individual DLS CF values (Fig. 7). At the national level, this adjustment does not affect the overall climate target, as
the target itself does not rely on the specific definition of individual DLS CF. However, it does cause slight
variations in the individual CF ceilings (Fig. 9). Under the baseline DLS CF scenario, the individual CF ceilings for
the low, medium, and high mitigation scenarios are 16.4 tCO,, 11.2 tCO,, and 8.3 tCO,, respectively (as shown in
Fig. 4 of the main text). When applying the lower-bound scenario (10th percentile), the ceilings become 16.5
tCO,, 11.3 tCO,, and 8.3 tCO,, respectively; under the upper-bound scenario (40th percentile), they become 16.1
tCO,, 11.1 tCO,, and 8.2 tCO,. These results indicate that even under extreme assumptions, the variation in
individual DLS CF has only a limited effect on national-level mitigation indicators. At the provincial level, the
estimated mitigation efforts under the baseline, lower-bound, and upper-bound DLS CF scenarios are shown in
Fig. 5e-h of the main text, Fig. 10, and Fig. 11, respectively. The results show that across all mitigation scenarios
(low, medium, and high), provincial emission reductions, reduction contributions, and reduction rates exhibit
minimal changes. Combined with the earlier finding that whether or not DLS CF is considered to have negligible

impact on national and provincial climate targets, these results are fully in line with expectations.

Finally, since China’s climate targets are defined in terms of carbon intensity rather than absolute emission
levels, uncertainty in GDP growth directly affects the actual mitigation effort. The preceding analysis is based on
the medium GDP growth scenario, which assumes an average annual growth rate of 4% from 2025 to 2030. To
assess the impact of GDP fluctuations, we further calculate the national and provincial emission reduction rates
under the low (3.5%) and high (4.5%) GDP growth scenarios. The associated uncertainty ranges are illustrated by
error bars in Fig. 12. The results show that changes in GDP growth scenarios have a relatively small effect on
emission reduction rates, and this pattern holds consistently across all mitigation scenarios. In contrast, variations
in mitigation scenarios—i.e., different carbon intensity reduction targets—have a significant impact on emission
reduction rates. This indicates that policy ambition itself is the primary driver of differences in mitigation
intensity. Therefore, at both the national and provincial levels, the design of climate targets has a much greater

influence on reduction rates than the uncertainty in economic growth trajectories.
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8 Additional tables and figures
a Inner Mongolia b
Cluster-based proxy Neighboring-based proxy
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Fig. 8. Per capita carbon footprints by income group in data-deficient provinces under different proxy approaches

Note: a, Per capita carbon footprints by income group for Inner Mongolia under different proxy approaches. The cluster-based

and neighboring-based proxies are Xinjiang and Shanxi, respectively. b, Per capita carbon footprints by income group for

Ningxia. The cluster-based and neighboring-based proxies are Xinjiang and Gansu, respectively. c, Per capita carbon footprints

by income group for Qinghai. The cluster-based and neighboring-based proxies are Xinjiang and Gansu, respectively. d, Per

capita carbon footprints by income group for Hainan. The cluster-based and neighboring-based proxies are Jilin and Guangxi,

respectively.
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Fig. 9. National population in 2030 (1.38 billion), sorted by decreasing individual carbon footprint under the lower-bound (a)

and upper-bound (b) scenario for individual DLS CF

Note: The cyan and orange curves represent the BAU and 65% mitigation scenarios in 2030, respectively, with national
emissions of 13.61 GtCO, and 10.12 GtCO,. The black dashed line shows the 2017 baseline (10.2 GtCO,). The shaded areas
indicate the total CFs to be reduced (cyan) or increased (orange) relative to the 65% target. The upper and lower grey horizontal

dashed lines represent the individual CF ceilings under the 60% and 70% mitigation scenarios, respectively.
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Fig.10. Provincial mitigation efforts in 2030 under the lower-bound scenario for individual DLS CF

Note: a, Emission reductions (bars, Mt) and reduction rates (dots, %) across provinces under different mitigation scenarios, with

provinces ordered from left to right by emission reductions in the medium scenario. Dashed lines represent national reduction

rates under each scenario. Reduction rate is calculated as the emission reduction divided by the province’s BAU emissions. b—d,

Emission reduction contributions across provinces under the low, medium, and high reduction scenarios. The color of each

sector represents the province’s emission reduction rate. The full names of acronyms are as follows: BJ: Beijing, TJ: Tianjin, HE:

Hebei, SX: Shanxi, NM: Inner Mongolia, LN: Liaoning, JL: Jilin, HL: Heilongjiang, SH: Shanghai, JS: Jiangsu, ZJ: Zhejiang, AH: Anhui,

FJ: Fujian, JX: Jiangxi, SD: Shandong, HA: Henan, HB: Hubei, HN: Hunan, GD: Guangdong, GX: Guangxi, HI: Hainan, CQ:

Chongging, SC: Sichuan, GZ: Guizhou, YN: Yunnan, SN: Shaanxi, GS: Gansu, QH: Qinghai, NX: Ningxia, XJ: Xinjiang, North China:

NC, Northeast China: NEC, East China: EC, Central China: CC, South China: SC, Southwest China: SWC, Northwest China: NWC.
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Fig.11. Provincial mitigation efforts in 2030 under the upper-bound scenario for individual DLS CF

Note: a, Emission reductions (bars, Mt) and reduction rates (dots, %) across provinces under different mitigation scenarios, with

provinces ordered from left to right by emission reductions in the medium scenario. Dashed lines represent national reduction

rates under each scenario. Reduction rate is calculated as the emission reduction divided by the province’s BAU emissions. b—d,

Emission reduction contributions across provinces under the low, medium, and high reduction scenarios. The color of each

sector represents the province’s emission reduction rate. The full names of acronyms are as follows: BJ: Beijing, TJ: Tianjin, HE:

Hebei, SX: Shanxi, NM: Inner Mongolia, LN: Liaoning, JL: Jilin, HL: Heilongjiang, SH: Shanghai, JS: Jiangsu, ZJ: Zhejiang, AH: Anhui,

FJ: Fujian, JX: Jiangxi, SD: Shandong, HA: Henan, HB: Hubei, HN: Hunan, GD: Guangdong, GX: Guangxi, HI: Hainan, CQ:

Chongging, SC: Sichuan, GZ: Guizhou, YN: Yunnan, SN: Shaanxi, GS: Gansu, QH: Qinghai, NX: Ningxia, XJ: Xinjiang, North China:

NC, Northeast China: NEC, East China: EC, Central China: CC, South China: SC, Southwest China: SWC, Northwest China: NWC.
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Fig. 12. Emission reduction rates across China and its provinces under different mitigation scenarios

Note: each bar represents the emission reduction rate under the medium GDP growth scenario (average annual growth of 4%
from 2025 to 2030). The error bars indicate the uncertainty range resulting from GDP growth variations: the upper and lower

bounds correspond to the high (4.5%) and low (3.5%) GDP growth scenarios, respectively.
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Table 7. Provincial per-capita carbon footprint by income group in 2017 under different income elasticity scenarios

Per-capita carbon footprint (tCO2)

Province Scenario
Top 1% Next 9% Middle 40% Bottom 50%
a = 0.72 (Baseline) 32.2 18.7 10.6 5.5
Beijing a=06 28.7 17.7 10.6 5.8
a=1 43.5 214 10.6 4.8
a = 0.65 (Baseline) 35 16.3 7.8 3.7
Tianjin a=0.6 335 15.9 7.8 3.8
a=1 49.2 18.7 7.5 3.2
a = 0.8 (Baseline) 39.1 17.7 8.7 4
Hebei a=0.6 36.3 16.6 8.7 4.3
a=1 42.6 18.9 8.7 3.7
a = 0.8 (Baseline) 34 17.7 8.9 4.3
Shanxi a=0.6 30.7 16.4 8.9 4.7
a=1 37.9 19 8.9 4
a = 0.76 (Baseline) 49.5 26.1 12.8 6.4
Inner Mongolia a=20.6 46.4 24.8 12.7 6.8
a=1 55.1 28.1 12.9 5.9
a = 0.92 (Baseline) 31 17.1 8.1 3.2
Liaoning a=0.6 25.4 14.7 8 3.8
a=1 32.8 17.7 8.1 3
a = 0.64 (Baseline) 22.3 13.7 7.7 3.9
Jilin a=0.6 221 13.5 7.7 4
a=1 25.7 14.9 7.8 3.6
a = 0.72 (Baseline) 22.6 13.4 7.5 3.8
Heilongjiang a=0.6 21.3 12.8 7.4 4
a=1 26.1 14.8 7.5 35
a = 0.6 (Baseline) 14.8 11.4 8 5
Shanghai a=0.6 14.8 11.4 8 5
a=1 19.3 13.3 8.2 4.4
a = 0.76 (Baseline) 20.9 12.9 7.2 3.5
Jiangsu a=0.6 18.8 12 7.2 3.7
a=1 24.6 14.2 7.2 3.2
a = 0.69 (Baseline) 14.4 9.6 6.4 3.8
Zhejiang
a=0.6 13.8 9.3 6.3 3.9
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a=1 17.1 10.7 6.5 3.5
a = 0.83 (Baseline) 14.9 9.5 5.6 3.1
Anhui a=0.6 12.7 8.6 5.5 34
a=1 16.9 10.2 5.6 3
a = 0.64 (Baseline) 12.2 7.5 4.4 2.5
Fujian a=0.6 11.9 7.4 4.4 2.5
a=1 15.1 8.6 4.4 2.2
a = 0.77 (Baseline) 16.4 9.6 5.3 2.8
Jiangxi a=0.6 15.2 9.1 5.2 2.9
a=1 18.2 10.3 5.3 2.6
a = 0.8 (Baseline) 21.1 12.5 6.9 3.4
Shandong a=0.6 18.7 11.5 6.8 3.7
a=1 24.2 13.6 6.9 3.2
a = 0.82 (Baseline) 21.5 12.6 7.1 3.9
Henan a=0.6 19.4 11.7 7.1 4.1
a=1 23.5 13.3 7.1 3.7
a = 0.7 (Baseline) 36.4 15.7 7.1 3.3
Hubei a=0.6 35.5 15.3 7.1 34
a=1 39.6 16.9 7.1 3
a = 0.9 (Baseline) 25.2 13.8 6.7 3
Hunan a=0.6 21.7 12.5 6.6 3.4
a=1 26.7 14.3 6.7 2.9
a = 0.66 (Baseline) 34.2 12.1 5.6 2.5
Guangdong a=0.6 335 11.8 5.6 2.6
a=1 38.9 13.8 5.6 2.1
a = 0.75 (Baseline) 15.7 8.7 4.9 2.6
Guangxi a=0.6 14.6 8.2 4.8 2.8
a=1 17.9 9.4 4.9 2.5
a = 0.77 (Baseline) 14.9 9.2 5.2 2.6
Hainan a=0.6 135 8.7 5.2 2.7
a=1 17.1 10 5.2 24
a = 0.8 (Baseline) 39.9 16.2 7.1 33
Chongging a=0.6 375 15.2 7.1 3.5
a=1 429 17.1 7.1 31
a = 0.75 (Baseline) 18.9 9.1 4.6 2.1
Sichuan
a=0.6 17.6 8.5 4.6 2.3

47



a=1 21.5 9.9 4.6 19
a = 0.73 (Baseline) 24.9 11.2 5.1 2.6
Guizhou a=0.6 23.6 10.7 5 2.7
a=1 28.2 12.3 5 24
a = 0.74 (Baseline) 19.4 11.6 6.5 3.7
Yunnan a=0.6 18.2 11.2 6.4 3.8
a=1 22 125 6.4 3.5
a = 0.75 (Baseline) 22 13.2 7.5 3.7
Shaanxi a=0.6 20.5 12.6 7.4 3.9
a=1 25.1 14.3 7.5 3.5
a = 0.78 (Baseline) 14.9 8.3 4.3 2.2
Gansu a=0.6 13.4 7.6 4.3 2.3
a=1 17.2 9.1 4.3 2
a = 0.76 (Baseline) 42.3 21.4 10.2 5.2
Qinghai a=0.6 40.6 20.7 10.1 5.5
a=1 45.6 22.6 10.2 4.9
a =1 (Baseline) 69.2 34.8 15.6 7
Ningxia a=0.6 59.3 31 15.4 8
a=1 69.2 34.8 15.6 7
a = 0.84 (Baseline) 48.3 24.7 11.7 5.9
Xinjiang a=0.6 44.8 233 11.6 6.3
a=1 511 25.6 11.7 5.7
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Table 8. Provincial per-capita carbon footprint by income group in 2017 under different wealth elasticity scenarios

Per-capita carbon footprint (tCO>)

Province Scenario
Top 1% Next 9% Middle 40% Bottom 50%
Baseline 32.2 18.7 10.6 5.5
Beijing B =09 30.9 18.3 10.6 5.6
B=11 335 19.1 10.6 5.4
Baseline 35 16.3 7.8 3.7
Tianjin B =09 31.9 15.7 7.8 3.8
p=11 384 16.9 7.7 3.5
Baseline 39.1 17.7 8.7 4
Hebei B =09 35.1 17 8.8 4.2
p=11 43.7 18.3 8.7 3.8
Baseline 34 17.7 8.9 43
Shanxi B =09 31.3 17.1 9 4.5
p=11 37.2 18.3 8.9 4.2
Baseline 49.5 26.1 12.8 6.4
Inner Mongolia B =09 44.9 25.1 12.9 6.6
p=11 54.5 27.1 12.7 6.2
Baseline 31 17.1 8.1 3.2
Liaoning B =09 29.1 16.7 8.2 3.3
p=11 331 17.5 8.1 3.1
Baseline 22.3 13.7 7.7 3.9
Jilin B =09 20.6 13.1 7.7 4.1
p=11 24.2 14.2 7.7 3.8
Baseline 22.6 13.4 7.5 3.8
Heilongjiang B =09 21 13 7.5 3.9
p=11 24.3 13.8 7.4 3.8
Baseline 14.8 11.4 8 5
Shanghai B =09 14.4 11.2 8 5.1
p=11 15.2 11.6 8 5
Baseline 20.9 12.9 7.2 35
Jiangsu B =09 19.7 12.6 7.2 3.6
p=11 223 13.2 7.2 3.4
Baseline 14.4 9.6 6.4 3.8
Zhejiang
B =09 13.7 9.4 6.4 3.9
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p=11 15.1 9.8 6.4 3.8
Baseline 14.9 9.5 5.6 3.1
Anhui B =09 14.4 9.3 5.6 3.2
p=11 15.5 9.7 5.6 3.1
Baseline 12.2 7.5 4.4 2.5
Fujian B =09 11.4 7.3 4.4 2.5
p=11 13 7.7 4.4 2.4
Baseline 16.4 9.6 53 2.8
Jiangxi B =09 15.2 9.3 5.3 2.8
p=11 17.6 9.9 5.2 2.7
Baseline 211 12.5 6.9 34
Shandong B =09 19.9 12.2 6.9 3.5
p=11 225 12.9 6.8 33
Baseline 21.5 12.6 7.1 3.9
Henan B =09 20.1 12.2 7.2 4
p=11 229 13 7.1 3.8
Baseline 36.4 15.7 7.1 33
Hubei B =09 31.7 15 7.2 3.5
p=11 41.6 16.5 7 3.1
Baseline 25.2 13.8 6.7 3
Hunan B =09 23.4 13.4 6.7 31
B=11 27.2 14.3 6.7 2.9
Baseline 34.2 12.1 5.6 2.5
Guangdong B =09 29.4 11.7 5.7 2.6
p=11 39.7 12.5 5.5 2.4
Baseline 15.7 8.7 4.9 2.6
Guangxi B =09 14.5 8.4 4.9 2.7
p=11 17.1 8.9 4.9 2.6
Baseline 14.9 9.2 5.2 2.6
Hainan B =09 14.1 9 5.2 2.6
p=11 15.8 9.5 5.2 25
Baseline 39.9 16.2 7.1 3.3
Chongging B =09 34.6 15.5 7.2 34
p=11 46.1 16.8 7 3.1
Baseline 18.9 9.1 4.6 2.1
Sichuan
B =09 17.1 8.8 4.7 2.2
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p=11 21 9.4 4.6 2
Baseline 24.9 11.2 5.1 2.6
Guizhou B =09 22 10.7 5.1 2.7
p=11 28.3 11.7 5 25
Baseline 19.4 11.6 6.5 3.7
Yunnan B =09 18.1 11.2 6.5 3.8
p=11 20.8 12 6.4 3.6
Baseline 22 13.2 7.5 3.7
Shaanxi B =09 20.5 12.8 7.5 3.8
p=11 23.6 13.7 7.5 3.6
Baseline 14.9 83 4.3 2.2
Gansu B =09 13.9 8 43 2.2
p=11 16.1 8.5 4.3 21
Baseline 42.3 21.4 10.2 5.2
Qinghai B =09 37.8 20.4 10.3 5.4
B=11 47.3 224 10.1 5
Baseline 69.2 34.8 15.6 7
Ningxia B =09 63.2 335 15.7 7.3
p=11 76 36.2 15.5 6.7
Baseline 48.3 24.7 11.7 5.9
Xinjiang B =09 43.5 23.6 11.8 6.1
p=11 53.6 25.7 11.6 5.7

Note: the baseline scenario represents f§ = 1, is the basis for the empirical analysis in this study.
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