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1 Provincial individual income and wealth distributions 

1.1 Data collection and processing 

This study utilizes micro-level household data from the China Family Panel Studies (CFPS), a 

nationally representative longitudinal survey conducted by the Institute of Social Science Survey 

(ISSS) at Peking University (https://www.isss.pku.edu.cn/cfps/). The CFPS provides 

comprehensive data on Chinese households’ income, wealth, expenditure, and a range of 

demographic, economic, and social characteristics. It has been widely used in empirical studies 

on household economics, energy use, and carbon emissions in China1-6. The CFPS is conducted 

biennially and includes a sample size of approximately 16,000 households per wave. It covers 26 

provincial-level administrative regions in China, excluding Qinghai, Inner Mongolia, Tibet, Ningxia, 

Hainan, Hong Kong, Macao, and Taiwan. 

Household income in CFPS is the sum of five major components: wage income, business 

income, property income, transfer income, and other income. Household wealth is measured as 

net household assets, calculated as the difference between total household assets and total 

household liabilities. Total assets include land, housing, financial assets, productive fixed assets, 

and durable consumer goods; liabilities include housing-related and non-housing-related debts. 

All income and wealth indicators are reported in the current year’s prices. In this study, we adjust 

these values to constant 2015 prices using the consumer price index (CPI) published by the 

National Bureau of Statistics of China. Unless otherwise specified, all monetary values in the 

remainder of this paper are expressed in real 2015 prices. 

We used the 2018 wave of the CFPS dataset to fit the distribution functions of provincial-

level individual income and wealth for the year 2017. As the CFPS is designed at the household 

level, we derived individual-level income and wealth by dividing the total household income and 

wealth equally among all household members based on household size. To reduce the potential 

bias caused by extreme outliers in the distribution fitting process, we followed the approach in 

ref. 6 and excluded the top 0.5% of the sample in terms of income or wealth. 

Unlike income, household wealth may be negative. Therefore, the common assumption of 

non-negative values, which is reasonable for income distribution modeling, may not be directly 

applicable to wealth distribution fitting7. In this study, individual wealth plays an important role in 

the allocation of regional investment-related carbon emission responsibility (as discussed in the 

Supplementary Information Section 3). Specifically, individual wealth is used as the baseline 

indicator in allocating the total investment-based emissions. This allocation must satisfy the 

following rules: 1) Individuals with greater wealth should bear more investment-related carbon 

responsibility than those with less wealth; 2) The allocated responsibility for everyone must be 

non-negative; 3) The sum of all individual investment-related emissions should be equal to the 

regional total investment-related emissions (mass conservation principle). However, when 
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individual wealth values are negative (e.g., when household liabilities exceed assets), the 

allocation model may yield negative emission responsibility values, violating the rules. To ensure 

the logical validity and numerical stability of the model, we apply the following treatment to the 

wealth data: 1) Set all negative wealth values to zero. This guarantees that all assigned 

responsibilities remain non-negative, and assigns minimal responsibility to individuals with zero 

or negative net wealth. In practice, negative wealth typically reflects high indebtedness and low 

investment capacity; such individuals should reasonably bear minimal investment-based carbon 

responsibility. 2) Shift all wealth values upward by a fixed amount (500 units) during the 

distribution fitting process. This ensures all wealth values are positive and prevents 

computational issues during logarithmic transformation. A modest positive shift also moves 

values away from zero, avoiding numerical instability. The transformation preserves the relative 

differences among individuals, maintaining fairness in the allocation process. 3) After distribution 

fitting, shift the fitted wealth function back to its original position. This step restores the wealth 

distribution to its pre-shift values, ensuring that the fitted distribution remains consistent with 

the original data. Consequently, the final allocation results retain the same interpretability as if 

no transformation had been applied. 

1.2 Distribution function fitting 

In modeling the income and wealth distributions of residents across Chinese provinces, we 

first examine their fundamental statistical characteristics. Existing literature indicates that income 

and wealth distributions generally exhibit pronounced skewness, heavy tails, and heterogeneity. 

Income distributions are typically right-skewed, with most individuals concentrated in the low- 

and middle-income brackets, while a small number of high-income earners disproportionately 

raise the mean8. After logarithmic transformation, income distributions in many countries and 

regions can be approximated by a normal distribution, although some degree of asymmetry may 

still remain9. Wealth distributions are even more extreme than income: they tend to have longer 

right tails and greater concentration, with a small proportion of high-net-worth individuals 

holding a substantial share of total wealth. As a result, even the log-transformed wealth data 

often exhibit significant skewness and fat tails8,10. Moreover, due to vast regional disparities in 

socioeconomic development, income and wealth distributions vary greatly across provinces11. 

Given these complexities, relying on a single distribution model is insufficient to comprehensively 

capture the diverse distributional features across provinces. Therefore, we adopt a comparative 

modeling approach involving multiple classical empirical distributions, enabling us to select the 

most appropriate functional form for each province and laying a robust foundation for further 

comparative analysis. 

1.2.1 Empirical distribution functions 
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Following prior studies12-17, we select eight empirical distribution functions that are widely 

used in the modeling of income and wealth: the lognormal distribution, gamma distribution, 

exponential distribution, skew-normal distribution, log-skew-normal distribution, Weibull 

distribution, generalized Pareto distribution (GPD), and beta distribution. These distribution 

families are applicable under different income or wealth distribution scenarios and can capture a 

wide range of empirical shapes, including various degrees of skewness and tail behavior. This 

multi-distribution strategy enhances the coverage and robustness of our model-fitting process. 

The mathematical formulations and parameter definitions for each of these distributions are 

presented below. 

1) Lognormal distribution 

The lognormal distribution is commonly used to describe personal income, particularly 

suitable for modeling the distribution among middle- and low-income groups. Its underlying 

assumption is that if the logarithm of a variable follows a normal distribution, then the variable 

itself follows a lognormal distribution. This reflects a multiplicative process of income generation, 

which aligns with many economic phenomena. It is a two-parameter distribution. The probability 

density function (PDF) and cumulative distribution function (CDF) are given in formulas (1) and 

(2), respectively: 

𝑓(𝑥; 𝜇, 𝜎) =
1

𝑥𝜎√2𝜋
𝑒
−
(𝑙𝑛 𝑥−𝜇)2

2𝜎2 ,  𝑥 > 0 (1) 

𝐹(𝑥; 𝜇, 𝜎) = 𝛷 (
𝑙𝑛 𝑥 − 𝜇

𝜎
) (2) 

where 𝜇 denotes the mean of the log−transformed data and determines the location of the 

distribution, while 𝜎 > 0 is the standard deviation of the log-transformed data, governing the 

spread and skewness. 𝛷(□) is the cumulative distribution function of the standard normal 

distribution. 

2) Gamma distribution 

The gamma distribution is widely used to model skewed, non-negative data, such as 

individual income or expenditure. It is especially useful in describing distributions that exhibit a 

peak and long right tail. The gamma distribution is a two-parameter function. Its PDF and CDF are 

shown in formulas (3) and (4), respectively: 

𝑓(𝑥; 𝑘, 𝜃) =
1

𝛤(𝑘)𝜃𝑘
𝑥𝑘−1𝑒−𝑥/𝜃 ,  𝑥 > 0 (3) 

𝐹(𝑥; 𝑘, 𝜃) =
𝛾(𝑘, 𝑥/𝜃)

𝛤(𝑘)
(4) 
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where 𝑘 is the shape parameter, which controls the skewness and peakedness of the 

distribution, and 𝜃 > 0 is the scale parameter, which controls the horizontal stretch of the 

distribution. 𝛤(𝑘) denotes the gamma function, and 𝛾(𝑘, 𝑥) is the lower incomplete gamma 

function. 

3) Exponential distribution 

The exponential distribution is a special case of the gamma distribution with the shape 

parameter 𝑘 = 1. It models the time between events in a Poisson process and serves as a 

baseline model for positively skewed data. This is a one-parameter distribution, and its PDF and 

CDF are given in formulas (5) and (6): 

𝑓(𝑥; 𝜆) = 𝜆𝑒−𝜆𝑥,  𝑥 ≥ 0 (5) 

𝐹(𝑥; 𝜆) = 1 − 𝑒−𝜆𝑥 (6) 

where 𝜆 > 0 is the rate parameter, and 1/𝜆 is the mean of the distribution. 

4) Skew-Normal distribution 

The skew-normal distribution extends the normal distribution by introducing a shape 

parameter to allow skewness. It is suitable for modeling income or wealth data that is 

approximately normal but exhibits asymmetry. This is a three-parameter distribution. The PDF is 

given in formula (7), and the CDF is expressed in terms of the standard normal functions in 

formula (8): 

𝑓(𝑥; 𝜉, 𝜔, 𝛼) =
2

𝜔
𝜙 (
𝑥 − 𝜉

𝜔
)Φ(𝛼 ⋅

𝑥 − 𝜉

𝜔
) (7) 

𝐹(𝑥; ξ, ω, α) = ∫ 𝑓(𝑡; ξ, ω, α)
𝑥

−∞

 𝑑𝑡 (8) 

where 𝜉 is the location parameter, 𝜔 > 0 is the scale parameter, and 𝛼 is the shape 

parameter controlling the degree of skewness. 𝜙(□) and Φ(□) represent the standard normal 

PDF and CDF, respectively. 

5) Log-skew-normal distribution 

This distribution is particularly effective for modeling wealth data, which tends to exhibit 

more extreme skewness and heavy tails than income. Even after logarithmic transformation, 

wealth may still be right-skewed. The log-skew-normal distribution is defined as the exponential 

of a skew-normal variable and inherits its parameters. The PDF and CDF are given in formulas (9) 

and (10): 
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𝑓(𝑦; ξ, ω, α) =
2

𝑦ω
ϕ(

ln𝑦 − ξ

ω
)Φ(α ⋅

ln 𝑦 − ξ

ω
) ,  𝑦 > 0 (9) 

𝐹(𝑦; ξ, ω, α) = ∫ 𝑓(𝑡; ξ, ω, α)
𝑦

0

 𝑑𝑡 (10) 

where 𝑦 =  𝑒𝑥𝑝(𝑋), and 𝑋 ~ 𝑆𝑘𝑒𝑤 − 𝑁𝑜𝑟𝑚𝑎𝑙(𝜉,𝜔, 𝛼). The parameters retain their original 

interpretations from the skew-normal distribution. 

6) Weibull distribution 

The Weibull distribution is flexible in modeling various types of skewed data and can 

represent different shapes depending on the value of its parameters. It is frequently used for 

modeling income with adjustable tail thickness. It is a two-parameter distribution, as shown in 

formulas (11) and (12): 

𝑓(𝑥; λ, 𝑘) =
𝑘

λ
(
𝑥

λ
)
𝑘−1

𝑒−(𝑥/λ)
𝑘
,  𝑥 ≥ 0 (11) 

𝐹(𝑥; λ, 𝑘) = 1 − 𝑒−(𝑥/λ)
𝑘

(12) 

where 𝜆 > 0 is the scale parameter and 𝑘 > 0 is the shape parameter, which determines the 

skewness and kurtosis of the distribution. 

7) Generalized pareto distribution (GPD) 

The generalized Pareto distribution is widely used to model the tail behavior of wealth 

distributions, particularly for capturing extreme values and heavy right tails. It is a three-

parameter distribution defined by formulas (13) and (14): 

𝑓(𝑥; ξ, σ, μ) =
1

σ
(1 + ξ

𝑥 − μ

σ
)
−1/ξ−1

,  𝑥 ≥ μ (13) 

𝐹(𝑥; ξ, σ, μ) = 1 − (1 + ξ
𝑥 − μ

σ
)
−1/ξ

(14) 

where 𝜉 is the shape parameter controlling the tail heaviness, 𝜎 > 0 is the scale parameter, 

and 𝜇 is the location parameter indicating the minimum value. 

8) Beta distribution 

The beta distribution is defined on a finite interval [0, 1], making it especially suitable for 

normalized income or wealth data. It can model both symmetric and skewed shapes. It is a two-

parameter distribution, with the PDF and CDF given in formulas (15) and (16): 

𝑓(𝑥; α, β) =
𝑥α−1(1 − 𝑥)β−1

𝐵(α, β)
,  0 < 𝑥 < 1 (15) 
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𝐹(𝑥; α, β) =
𝐵𝑥(α, β)

𝐵(α, β)
(16) 

where 𝛼 > 0 and 𝛽 > 0 are the shape parameters, and 𝐵(𝛼, 𝛽) is the Beta function. 

𝐵𝑥(𝛼, 𝛽) is the incomplete beta function evaluated at 𝑥. 

1.2.2 Fitting method 

We applied the maximum likelihood estimation (MLE) method to fit the eight candidate 

distributions to each province’s data on residents’ income or wealth. For the skew-normal and 

log-skew-normal distributions, which are not directly supported by standard statistical software, 

we implemented custom probability density functions (PDFs) and manually specified initial 

parameter values to ensure estimation accuracy and algorithm convergence. For the other 

distributions, we utilized built-in MATLAB functions such as mle, wblfit, and expfit. 

Regarding data preprocessing, we performed the procedures described in Supplementary 

Information Section 1.1, including logarithmic transformations when necessary and normalization 

to the [0, 1] interval for fitting the Beta distribution. 

1.2.3 Selection of the optimal fitting distribution 

After fitting all candidate models, we evaluated the goodness-of-fit using probability–

probability (P–P) plots. In a P–P plot, the theoretical CDF values are plotted on the x-axis, while 

the empirical CDF values are plotted on the y-axis. If the model fits the data perfectly, all points 

should lie along the 45° diagonal line. Compared to quantile–quantile (Q–Q) plots, which 

emphasize tail fitting, P–P plots are more sensitive to the overall fit, especially around the median 

region. Given that our goal is to capture the overall distribution shape of residents’ income and 

wealth, rather than focusing solely on extreme values, using P–P plots as the primary criterion for 

model selection is both reasonable and intuitive. Ultimately, for each province, we selected the 

distribution whose P–P plot showed the closest alignment with the diagonal line as the best-

fitting model. 

Taking Hunan province as an example, Fig. 1 and 2 display the P–P plots for the fitted income 

and wealth distributions, respectively. It can be observed that the optimal income distribution is 

the Gamma distribution, Gamma(𝑘 =  1.191, 𝜃 =  17,194), and the optimal wealth 

distribution is the Generalized Pareto Distribution, GPD(𝜉 =  0.172, 𝜎 =  152,885, 𝜇 =

 500). The fitted histograms and the corresponding probability density curves are shown in Fig. 3. 

As evident, both income and wealth distributions in Hunan exhibit a pronounced right-skewed 

pattern, though with different degrees of skewness. The wealth distribution has a longer tail, 

indicating a higher level of inequality. Similar patterns are observed across all other provinces, 
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and the detailed fitting results are presented in Table 1. 

 

Fig. 1. P–P plot of individual income distribution in Hunan province, 2017 

 

Fig. 2. P–P plot of individual wealth distribution in Hunan province, 2017 
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Fig. 3. Histogram and fitted curve of individual income and wealth distribution in Hunan province, 2017 

Table 1. Optimal fitting results of provincial household income and wealth distributions 

Province Optimal income distribution Optimal wealth distribution 

Beijing* Lognormal(𝜇 =  10.759, 𝜎 =  0.824) GPD(𝜉 =  0.067,𝜎 =  1,242,685, 𝜇 =  500) 

Tianjin Lognormal(𝜇 =  9.827, 𝜎 =  1.091) Lognormal(𝜇 =  12.285, 𝜎 =  1.096) 

Hebei* Gamma(𝑘 =  1.192,𝜃 =  10,774) GPD(𝜉 =  0.349,𝜎 =  89,326, 𝜇 =  500) 

Shanxi* 
Log − Skew− Normal(𝜉 =  10.093,𝜔 

=  1.493, 𝛼 =  −2.75) 
GPD(𝜉 =  0.265,𝜎 =  67,012, 𝜇 =  500) 

Liaoning* GPD(𝜉 =  −0.079, 𝜎 =  21,392, 𝜇 =  48.25) GPD(𝜉 =  0.197,𝜎 =  98,408, 𝜇 =  500) 

Jilin* Gamma(𝑘 =  1.242,𝜃 =  11,789) GPD(𝜉 =  0.169,𝜎 =  74,511, 𝜇 =  500) 

Heilongjiang* Weibull(𝜆 =  21,418, 𝑘 =  1.241) GPD(𝜉 =  0.148,𝜎 =  69,429, 𝜇 =  500) 

Shanghai* Gamma(𝑘 =  2.419,𝜃 =  18546) Gamma(𝑘 =  1.218,𝜃 =  955,653) 

Jiangsu* Gamma(𝑘 =  1.122,𝜃 =  26,098) GPD(𝜉 =  0.202,𝜎 =  267,532, 𝜇 =  500) 

Zhejiang* Weibull(𝜆 =  35,839, 𝑘 =  1.365) GPD(𝜉 =  0.162,𝜎 =  288,159, 𝜇 =  500) 

Anhui* Gamma(𝑘 =  1.28, 𝜃 =  14,115) Exponential(𝜆 =  154,613) 

Fujian* Weibull(𝜆 =  14,968, 𝑘 =  1.061) GPD(𝜉 =  0.23,𝜎 =  119,510, 𝜇 =  500) 

Jiangxi* Weibull(𝜆 =  14,639, 𝑘 =  1.225) GPD(𝜉 =  0.115,𝜎 =  99,767, 𝜇 =  500) 

Shandong* Gamma(𝑘 =  1.513,𝜃 =  11,296) GPD(𝜉 =  0.221,𝜎 =  137,151, 𝜇 =  500) 

Henan* Gamma(𝑘 =  1.2651,𝜃 =  10,470) 
Log − Skew− Normal(𝜉 =  12.166,𝜔 

=  1.663, 𝛼 =  −1.764) 

Hubei* Gamma(𝑘 =  1.286,𝜃 =  19,723) Lognormal(𝜇 =  11.906, 𝜎 =  1.157) 

Hunan* Gamma(𝑘 =  1.191,𝜃 =  17,194) GPD(𝜉 =  0.172,𝜎 =  152,885, 𝜇 =  500) 

Guangdong* Gamma(𝑘 =  1.053,𝜃 =  17,658) GPD(𝜉 =  0.444,𝜎 =  112,985, 𝜇 =  500) 

Guangxi* Gamma(𝑘 =  1.239,𝜃 =  8,292) GPD(𝜉 =  0.178,𝜎 =  64,404, 𝜇 =  500) 

Chongqing* Gamma(𝑘 =  0.998,𝜃 =  17,208) GPD(𝜉 =  0.399,𝜎 =  83,850, 𝜇 =  500) 
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Sichuan* Weibull(𝜆 =  11,249, 𝑘 =  0.969) GPD(𝜉 =  0.316,𝜎 =  58,894, 𝜇 =  500) 

Guizhou* Weibull(𝜆 =  10,637, 𝑘 =  0.991) GPD(𝜉 =  0.431,𝜎 =  49,077, 𝜇 =  500) 

Yunnan* Gamma(𝑘 =  0.988,𝜃 =  12,194) GPD(𝜉 =  0.131,𝜎 =  89,857, 𝜇 =  500) 

Shaanxi* Gamma(𝑘 =  1.217,𝜃 =  13,771) GPD(𝜉 =  0.195,𝜎 =  100,860, 𝜇 =  500) 

Gansu* Gamma(𝑘 =  1.245,𝜃 =  8,875) GPD(𝜉 =  0.367,𝜎 =  49,964, 𝜇 =  500) 

Xinjiang* Gamma(𝑘 =  1.399,𝜃 =  18,720) GPD(𝜉 =  0.202,𝜎 =  140,936, 𝜇 =  500) 

Notes: the “*” indicates provinces whose wealth data contained negative values and were thus shifted for processing. The 

original values are restored when extracting the fitted data, so no information bias is introduced. For details of the processing 

procedure, see Supplementary Information Section 1.1. 

1.3 Estimation of income and wealth distributions for data-deficient provinces 

As noted in Supplementary Information Section 1.1, the CFPS does not cover four 

provinces—Inner Mongolia, Hainan, Qinghai, and Ningxia—in terms of individual-level income 

and wealth data. To address this data gap, we identified the most similar provinces from the 

remaining 26 regions with available data, and imputed the missing income and wealth 

distributions based on those comparable provinces. We further tested the sensitivity of this proxy 

selection by replacing the identified similar provinces with geographically neighboring provinces. 

The results of this robustness test are presented in Supplementary Information Section 7. 

Below, we describe the main procedure used to identify similar provinces and impute the 

missing distributions. Specifically, we first identified the key factors that influence income and 

wealth distribution across provinces. According to refs. 18-24, inter-provincial variation in 

household income and wealth is typically shaped by multiple dimensions, including the level of 

economic development, industrial structure, rural–urban income gaps, education attainment, 

government expenditure patterns, degree of marketization, and infrastructure quality. We 

selected 10 representative indicators (listed in Table 2) to capture these dimensions. Using these 

indicators, we conducted a clustering analysis to identify the provinces most similar to each data-

deficient province. Based on the assumption that provinces with similar socioeconomic profiles 

exhibit comparable income and wealth distributions, we used the fitted distributions of the 

matched provinces to infer the likely distributional forms in the missing regions. Furthermore, to 

improve the alignment with observed conditions, we adjusted the inferred distributions to match 

the actual average income and average wealth values reported for the missing provinces. 

The data for all quantitative indicators in Table 2 refer to the year 2017. The per capita 

capital stock is estimated using the perpetual inventory method and represents the material 

capital stock of each province; the estimates are drawn from ref. 25. Average years of schooling 

refer to the mean years of education for the population aged 15 and above, while the proportion 

of higher education corresponds to the number of individuals with tertiary education per 100,000 
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people. Both education indicators are obtained from the Bulletin of the Seventh National 

Population Census of China26. All other indicators are sourced from the China Statistical Yearbook 

(2018). The provincial data for all 10 indicators are provided in Supplementary Data 2. 

Table 2. Determinants of household income and wealth distribution across provinces 

Dimension Indicator Explanation 

Level of 

economic 

development 

Per capita GDP (RMB/person) 
A basic indicator for measuring the level of regional economic 

development. 

Industrial 

structure 

Ratio of tertiary sector value 

added to secondary sector 

value added 

Industrial structure has a significant impact on income and wealth 

distribution. Empirical findings from refs. 27,28 suggest that the shift from 

secondary to tertiary industries tends to exacerbate regional inequality. 

Urban–rural 

gap 

Ratio of per capita disposable 

income between urban and 

rural residents 

The income disparity between urban and rural populations is a key factor 

influencing the distribution of household income and wealth. 

Urbanization rate 
Reflects the extent of population concentration in urban areas, 

influencing the distribution of household income and wealth. 

Capital stock 
Per capita capital stock (RMB 

10,000/person) 

Capital formation contributes to future investment activities, but its 

impact on income and net wealth inequality remains ambiguous. On one 

hand, regions with higher capital stock are better positioned to create 

employment opportunities and raise household income. On the other 

hand, the returns on capital tend to disproportionately benefit wealthier 

groups, thereby exacerbating income and wealth disparities. 

Education 

Average years of schooling 
Higher educational attainment enhances workers’ ability to generate 

income through improved skills and productivity. 

Share of population with 

higher education 

The proportion of the population with higher education in a region 

influences the formation of high-income groups. 

Policy factors 

Share of public expenditures 

on social protection, 

healthcare, and education in 

total government 

expenditure 

Educational spending enhances human capital and reduces opportunity 

disparities; healthcare spending alleviates the financial burden of illness 

and lowers the risk of poverty caused by medical expenses; and social 

security improves the income levels of low-income groups through direct 

transfer payments. Together, these expenditures help narrow income 

gaps and promote social equity. 

Degree of 

marketization 

The proportion of self-

employed individuals and 

private-sector workers 

The impact of marketization on income and wealth inequality is 

multifaceted. On the one hand, the development of the non-public sector 

during the marketization process has created a large number of 
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relative to employees in 

state-owned or institutional 

work units 

employment opportunities, reduced unemployment and poverty, and 

contributed to narrowing the income gap. On the other hand, the 

privatization of assets in a market economy may lead to uneven 

distribution of income and net wealth, thereby further widening the gap 

between the rich and the poor. 

Infrastructure 
Density of public roads per 

capita (km/10,000 persons) 

The development of transportation infrastructure contributes to 

improving the welfare of all social groups. On the one hand, enhanced 

infrastructure can provide more employment and development 

opportunities for low- and middle-income or low-wealth populations. On 

the other hand, infrastructure often serves as a productive input that 

complements private capital, potentially increasing returns for the 

wealthy and thereby exacerbating inequality. 

 

1.3.1 Hierarchical clustering 

To estimate the income and wealth distributions of provinces with missing data, we first 

identify provinces with similar characteristics from the set of provinces with available data. The 

estimation is then based on the observed distributional features of these comparable provinces. 

Given the large number of selected indicators—each with different units and scales—it is 

challenging to directly compare the raw indicator values across provinces. Hierarchical clustering 

is an unsupervised learning algorithm that generates a tree-like structure by recursively merging 

(or splitting) data points based on their similarity. Therefore, we adopt a hierarchical clustering 

approach to group provinces based on the 10 indicators in Table 2. The steps are as follows: 

1) Data standardization 

All indicators are standardized using Z-scores to eliminate the influence of differing units and 

magnitudes. The standardization formula is given as: 

𝑍𝑖𝑗 =
𝑋𝑖𝑗 − 𝜇𝑗

σ𝑗
(17) 

where 𝑋𝑖𝑗 is the original value of indicator 𝑗 for province 𝑖, 𝜇𝑗 is the mean value of indicator 

𝑗, and 𝜎𝑗  is the standard deviation of indicator 𝑗. 

2) Distance metric 

To quantify the similarity between provinces, we use Euclidean distance as the distance 

metric. The formula for Euclidean distance is as follows: 



15 

 

𝑑(𝑋𝑖, 𝑋𝑗) = √∑(𝑋𝑖𝑘 − 𝑋𝑗𝑘)
2

𝑛

𝑘=1

(18) 

where 𝑋𝑖 and 𝑋𝑗 represent the feature vectors of provinces 𝑖 and 𝑗, respectively. 𝑋𝑖𝑘 

denotes the value of indicator 𝑘 in province 𝑖. 𝑛 is the total number of indicators. The 

Euclidean distance reflects the overall difference between two provinces across multiple 

indicators. A smaller distance indicates a higher degree of similarity between the provinces. 

3) Linkage method 

Hierarchical clustering requires the specification of a linkage method to define the distance 

between two groups of data points. In this study, we adopt Ward’s method, which aims to 

minimize the within-cluster sum of squares (WCSS) when merging clusters. Specifically, the core 

idea of Ward’s method is to iteratively merge the pair of clusters that leads to the minimum 

increase in within-cluster variance. The formula is as follows: 

ΔWCSS = WCSSnew − (WCSS𝐴 +WCSS𝐵) (19) 

where WCSS𝐴 and WCSS𝐵 are the within-cluster sum of squares for clusters A and B, 

respectively. WCSSnew is the within-cluster sum of squares after merging clusters A and B. The 

advantage of the Ward method is that by minimizing the within-cluster variance after each 

merge, the resulting clusters are more compact and can more accurately reflect the underlying 

structure of the data. This is particularly important when dealing with high-dimensional data. 

4) Dendrogram generation 

To visually present the similarity and clustering structure among provinces, we used 

MATLAB’s dendrogram function to generate a dendrogram (Fig. 4). The horizontal axis represents 

the names of the provinces, while the vertical axis indicates the distance between merged 

clusters (measured by Euclidean distance). The dendrogram illustrates the hierarchical 

relationships between provinces, allowing for flexible grouping by selecting a cutoff height. 

5) Determining the number of clusters 

The number of clusters was determined based on the structure of the dendrogram 

branches. Typically, a natural division can be found by cutting the dendrogram where a sudden 

increase in linkage distance occurs. In this study, we divided the 30 provinces into five clusters by 

truncating the dendrogram to ensure that provinces within each group share similar 

characteristics across multiple socioeconomic and infrastructure indicators (Fig. 4). Cluster 1 

consists of Guizhou, Yunnan, and Gansu; Cluster 2 includes Shanxi, Liaoning, Heilongjiang, Henan, 
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Hunan, Sichuan, and Shaanxi; Cluster 3 covers Hebei, Jilin, Jiangsu, Zhejiang, Anhui, Fujian, 

Jiangxi, Shandong, Hubei, Guangdong, Guangxi, Hainan, and Chongqing; Cluster 4 comprises 

Inner Mongolia, Qinghai, Ningxia, and Xinjiang; and Cluster 5 includes Beijing, Tianjin, and 

Shanghai. 

 

Fig. 4. Hierarchical clustering dendrogram 

1.3.2 Identifying the most similar province 

In hierarchical clustering, the target province is grouped with other provinces into the same 

cluster. However, noticeable differences may still exist within the cluster. Therefore, we further 

refine the matching process by identifying the most similar province based on intra-cluster 

distance. The specific steps are as follows: 

1) Intra-cluster filtering 

Based on the target province’s cluster assignment from the hierarchical clustering results, 

we extract all provinces within the same cluster. 

2) Intra-cluster distance calculation 

For all provinces within the same cluster, we compute the Euclidean distance between the 

target province and each other province. The formula used is identical to the formula (18). Here, 

𝑋𝑖 is the standardized feature vector of the target province, and 𝑋𝑗 is the feature vector of 

another province within the same cluster. 

3) Similarity ranking 

The calculated distances are ranked in ascending order, with smaller values indicating 
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greater similarity to the target province. We identify the three provinces with the smallest 

distances as the “most similar provinces” to the target province. For Inner Mongolia, the three 

most similar provinces were Ningxia (distance: 2.127), Xinjiang (2.383), and Qinghai (3.258). 

However, since Ningxia is also a data-deficient province, Xinjiang was selected as the most similar 

province. For Hainan, the closest provinces were Jilin (2.375), Hebei (2.492), and Jiangxi (2.521), 

with Jilin chosen as the proxy. In the case of Qinghai, the most similar provinces were Inner 

Mongolia (3.258), Xinjiang (3.407), and Ningxia (4.311); as Inner Mongolia also lacks data, 

Xinjiang was again selected. Similarly, for Ningxia, the closest provinces were Xinjiang (1.992), 

Inner Mongolia (2.127), and Qinghai (4.311), and Xinjiang was ultimately chosen due to data 

availability. 

1.3.3 Estimation of income and wealth distributions 

1) Distribution based on similar provinces 

The income and wealth distributions of the most similar provinces are used as the initial 

distributional estimates for the provinces with missing data. 

2) Per capita income adjustment 

To align the distribution with the actual income level of the target province, a linear 

adjustment is applied based on the ratio of average income between the target province and the 

matched similar province. Specifically, the adjustment is performed using the following formulas: 

𝑥adjusted = 𝑥similar ⋅
𝑥target̅̅ ̅̅ ̅̅ ̅

𝑥similar̅̅ ̅̅ ̅̅ ̅̅
(20) 

𝑤adjusted = 𝑤similar ⋅
𝑥target̅̅ ̅̅ ̅̅ ̅

𝑥similar̅̅ ̅̅ ̅̅ ̅̅
(21) 

where 𝑥adjusted and 𝑤adjusted represent the adjusted income and wealth values for the target 

province. 𝑥similar and 𝑤adjusted denote the original income and wealth values from the matched 

similar province. 𝑥target̅̅ ̅̅ ̅̅ ̅ and 𝑥similar̅̅ ̅̅ ̅̅ ̅̅  are the average per capita incomes of the target and similar 

provinces, respectively. 

2 Provincial carbon footprints 

2.1 Extended multi-regional input–output model 

In this study, we apply an environmentally extended multi-regional input–output (EE-MRIO) 

model to calculate the consumption-based carbon emissions (or carbon footprints, CFs) for each 

Chinese province. The MRIO framework enables a detailed depiction of production activities 

within regions, interregional transfers, and final consumption flows. It is widely used to quantify 

regional CFs due to its ability to capture supply chain linkages across regions. 
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Under a non-competitive MRIO framework, the fundamental linear equation for a given 

region 𝑟 is expressed as: 

𝑥𝑟 =∑𝐴𝑟𝑠𝑥𝑠

𝑠

+∑𝑦𝑟𝑠

𝑠

(22) 

where 𝑥𝑟 is a column vector representing the total output in region 𝑟; 𝐴𝑟𝑠 = (𝑎𝑖𝑗
𝑟𝑠) is the 

input coefficient matrix, where each element 𝑎𝑖𝑗
𝑟𝑠 = 𝑧𝑖𝑗

𝑟𝑠 𝑥𝑗
𝑠⁄ , with 𝑧𝑖𝑗

𝑟𝑠 denoting the interregional 

monetary flow from sector 𝑖 in region 𝑟 to sector 𝑗 in region 𝑠, and 𝑥𝑗
𝑠 being the total 

output of sector 𝑗 in region 𝑟. The term 𝑦𝑟𝑠 represents the final consumption of goods and 

services produced in region 𝑟 and consumed in region 𝑠. In particular, 𝑦𝑟𝑟 refers to the goods 

and services that are produced and finally consumed within region 𝑟. The final demand vector 𝑦 

includes rural household consumption, urban household consumption, government expenditure, 

capital formation, and changes in inventories. 

Assuming there are 𝑚 regions and each region contains 𝑛 sectors, formula (22) can be 

expanded into the following form: 

[

𝑥1

𝑥2

⋮
𝑥𝑚

] = [

𝐴11 𝐴12 ⋯ 𝐴1𝑚

𝐴21 𝐴22 ⋯ 𝐴2𝑚

⋮ ⋮ ⋱ ⋮
𝐴𝑚1 𝐴𝑚2 ⋯ 𝐴𝑚𝑚

] [

𝑥1

𝑥2

⋮
𝑥𝑚

] +∑

[
 
 
 
𝑦1𝑠

𝑦2𝑠

⋮
𝑦𝑚𝑠]

 
 
 

𝑠

(23) 

which can be simplified and expressed in the following compact form: 

𝑋 = 𝐴𝑋 + 𝑌 (24) 

Based on formula (24), we have 𝑋 = (𝐼 − 𝐴)−1𝑌, where 𝐼 is the identity matrix with the 

same dimensions as matrix 𝐴. This formulation can be further simplified as: 

𝑋 = 𝐿𝑌 (25) 

where 𝐿 is the Leontief inverse matrix, representing the total output response of all sectors—

both direct and indirect—resulting from a unit change in final demand. The matrix 𝐿 can be 

expanded as follows: 

𝐿 = (𝐼 − [

𝐴11 𝐴12 ⋯ 𝐴1𝑚

𝐴21 𝐴22 ⋯ 𝐴2𝑚

⋮ ⋮ ⋱ ⋮
𝐴𝑚1 𝐴𝑚2 ⋯ 𝐴𝑚𝑚

])

−1

= [

𝐿11 𝐿12 ⋯ 𝐿1𝑚

𝐿21 𝐿22 ⋯ 𝐿2𝑚

⋮ ⋮ ⋱ ⋮
𝐿𝑚1 𝐿𝑚2 ⋯ 𝐿𝑚𝑚

] (26) 

In general, provincial CFs consist of the following components: emissions from goods and 

services produced and consumed locally, embodied emissions in goods and services imported 

from other provinces, and direct emissions from household energy use29,30. To calculate 

provincial CFs, we employ the EE-MRIO model. The EE-MRIO model builds upon the standard 
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MRIO framework by introducing a matrix 𝐸 that contains sector-specific emission intensities for 

each province. It allows for quantifying both the direct and indirect carbon emissions across 

provinces and sectors driven by changes in final demand. The structure of matrix 𝐸 is as follows: 

𝐸 = [

𝐸1 0 ⋯ 0
0 𝐸2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐸𝑚

] (27) 

in which, 

𝐸𝑟 = [

𝑒1
𝑟 0 ⋯ 0

0 𝑒2
𝑟 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑒𝑛

𝑟

] (28) 

is a diagonal matrix composed of the carbon emission intensities of different sectors in region r 

(i.e., direct carbon emissions per unit of output). 𝑒𝑖
𝑟 represents the direct carbon emissions per 

unit output of sector 𝑖 in region 𝑟. 

The MRIO model enables the quantification of monetary flows between sectors across 

different regions. Accordingly, in the EE-MRIO model, carbon emission transfers corresponding to 

these monetary flows can be calculated using the following formula: 

𝐶𝑇 = [

𝐶𝑇11 𝐶𝑇12 ⋯ 𝐶𝑇1𝑚

𝐶𝑇21 𝐶𝑇22 ⋯ 𝐶𝑇2𝑚

⋮ ⋮ ⋱ ⋮
𝐶𝑇𝑚1 𝐶𝑇𝑚2 ⋯ 𝐶𝑇𝑚𝑚

]

= [

𝐸1 0 ⋯ 0
0 𝐸2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐸𝑚

] [

𝐿11 𝐿12 ⋯ 𝐿1𝑚

𝐿21 𝐿22 ⋯ 𝐿2𝑚

⋮ ⋮ ⋱ ⋮
𝐿𝑚1 𝐿𝑚2 ⋯ 𝐿𝑚𝑚

]

[
 
 
 
𝑦11 𝑦12 ⋯ 𝑦1𝑚

𝑦21 𝑦22 ⋯ 𝑦2𝑚

⋮ ⋮ ⋱ ⋮
𝑦𝑚1 𝑦𝑚2 ⋯ 𝑦𝑚𝑚]

 
 
 

(29) 

where 𝐶𝑇𝑟𝑠 represents the embodied carbon emissions in goods and services imported by 

province 𝑠 from province 𝑟. Specifically, 𝐶𝑇𝑟𝑟 denotes the embodied carbon emissions from 

goods and services that are both produced and consumed within province 𝑟. Accordingly, the CF 

of province 𝑟 can be calculated using the following formula: 

𝐶𝐹𝑟 = ∑ 𝐶𝑇𝑠𝑟

𝑠,𝑠≠𝑟

+ 𝐶𝑇𝑟𝑟 + 𝐶𝐸ℎ
𝑟 (30) 

where 𝐶𝐸ℎ
𝑟 denotes the direct carbon emissions from household energy consumption in 

province 𝑟. This activity does not generate value-added and thus cannot be captured within the 

EE-MRIO model, yet it results in carbon emissions. Therefore, it is incorporated into formula (30) 

to account for this portion of emissions (by attributing it to the “household consumption” 

component of final demand). 
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2.2 Data sources 

China’s MRIO tables are not updated on an annual basis, with the most recent version 

available for the year 2017. We obtained the 2012 and 2017 MRIO tables of China from the China 

Emission Accounts and Datasets (CEADs) database31, which consist of 42 industrial sectors and 31 

provinces. In addition, constructing the carbon emission intensity matrix 𝐸 requires province-

level carbon emission inventories by sector. We also obtained historical carbon emission 

inventories for 42 sectors across all provinces from CEADs32. It is important to note that the 

sector classifications in the emission inventories differ slightly from those in the 2012 and 2017 

MRIO tables. Therefore, we aggregated all sectors into 8 broader categories, as shown in Table 3. 

Table 3. Sector aggregation 

CEADs carbon emission 

inventories 
CEADs 2012 MRIO table CEADs 2017 MRIO table This paper 

1. Farming, Forestry, Animal 

Husbandry, Fishery and Water 

Conservancy 

1. Agriculture, Forestry, 

Animal Husbandry and 

Fishery 

1. Agriculture, Forestry, 

Animal Husbandry and Fishery 
1. Agriculture 

2. Coal Mining and Dressing 

3. Petroleum and Natural Gas 

Extraction 

4. Ferrous Metals Mining and 

Dressing 

5. Nonferrous Metals Mining 

and Dressing 

6. Nonmetal Minerals Mining 

and Dressing 

7. Other Minerals Mining and 

Dressing 

2. Mining and washing of 

coal 

3. Extraction of 

petroleum and natural gas 

4. Mining and processing 

of metal ores 

5. Mining and processing 

of nonmetal and other ores 

2. Mining and washing of 

coal 

3. Extraction of petroleum 

and natural gas 

4. Mining and processing of 

metal ores 

5. Mining and processing of 

nonmetal and other ores 

2. Mining 
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8. Logging and Transport of 

Wood and Bamboo 

9. Food Processing 

10. Food Production 

11. Beverage Production 

12. Tobacco Processing 

13. Textile Industry 

14. Garments and Other Fiber 

Products 

15. Leather, Furs, Down and 

Related Products 

16. Timber Processing, 

Bamboo, Cane, Palm Fiber & 

Straw Products 

17. Furniture Manufacturing 

18. Papermaking and Paper 

Products 

19. Printing and Record 

Medium Reproduction 

20. Cultural, Educational and 

Sports Articles 

6. Food and tobacco 

processing 

7. Textile industry 

8. Manufacture of 

leather, fur, feather and 

related products 

9. Processing of timber 

and furniture 

10. Manufacture of paper, 

printing and articles for 

culture, education and sport 

activity 

6. Food and tobacco 

processing 

7. Textile industry 

8. Manufacture of leather, 

fur, feather and related products 

9. Processing of timber and 

furniture 

10. Manufacture of paper, 

printing and articles for culture, 

education and sport activity 

3. Light 

Industry 
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21. Petroleum Processing and 

Coking 

22. Raw Chemical Materials 

and Chemical Products 

23. Medical and 

Pharmaceutical Products 

24. Chemical Fiber 

25. Rubber Products 

26. Plastic Products 

27. Nonmetal Mineral 

Products 

28. Smelting and Pressing of 

Ferrous Metals 

29. Smelting and Pressing of 

Nonferrous Metals 

30. Metal Products 

31. Ordinary Machinery 

32. Equipment for Special 

Purposes 

33. Transportation Equipment 

34. Electric Equipment and 

Machinery 

35. Electronic and 

Telecommunications Equipment 

36. Instruments, Meters, 

Cultural and Office Machinery 

37. Other Manufacturing 

Industry 

38. Scrap and waste 

11. Processing of 

petroleum, coking, 

processing of nuclear fuel 

12. Manufacture of 

chemical products 

13. Manuf. of non -

metallic mineral products 

14. Smelting and 

processing of metals 

15. Manufacture of metal 

products 

16. Manufacture of 

general-purpose machinery 

17. Manufacture of 

special purpose machinery 

18. Manufacture of 

transport equipment 

19. Manufacture of 

electrical machinery and 

equipment 

20. Manufacture of 

communication equipment, 

computers and other 

electronic equipment 

21. Manufacture of 

measuring instruments 

22. Other manufacturing 

23. Comprehensive use of 

waste resources 

11. Processing of petroleum, 

coking, processing of nuclear fuel 

12. Manufacture of chemical 

products 

13. Manuf. of non -metallic 

mineral products 

14. Smelting and processing 

of metals 

15. Manufacture of metal 

products 

16. Manufacture of general-

purpose machinery 

17. Manufacture of special 

purpose machinery 

18. Manufacture of transport 

equipment 

19. Manufacture of electrical 

machinery and equipment 

20. Manufacture of 

communication equipment, 

computers and other electronic 

equipment 

21. Manufacture of measuring 

instruments 

22. Other manufacturing and 

waste resources 

4. Heavy 

Industry 
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39. Production and Supply of 

Electric Power, Steam and Hot 

Water 

24. Production and 

distribution of electric power 

and heat power 

23. Production and 

distribution of electric power and 

heat power 

5. Production 

and Supply of 

Electricity and 

Steam 

40. Production and Supply of 

Gas 

41. Production and Supply of 

Tap Water 

25. Production and 

distribution of gas 

26. Production and 

distribution of tap water 

24. Production and 

distribution of gas 

25. Production and 

distribution of tap water 

6. Production 

and Distribution of 

Gas and Water 

42. Construction 27. Construction 26. Construction 7. Construction 
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43. Transportation, Storage, 

Post and Telecommunication 

Services 

44. Wholesale, Retail Trade 

and Catering Services 

45. Others 

28. Repair of metal 

products, machinery and 

equipment 

29. Wholesale and retail 

trades 

30. Transport, storage, 

and postal services 

31. Accommodation and 

catering 

32. Information transfer, 

software and information 

technology services 

33. Finance 

34. Real estate 

35. Leasing and 

commercial services 

36. Scientific research and 

polytechnic services 

37. Administration of 

water, environment, and 

public facilities 

38. Resident, repair and 

other services 

39. Education 

40. Health care and social 

work 

41. Culture, sports, and 

entertainment 

42. Public administration, 

social insurance, and social 

organizations 

27. Repair of metal products, 

machinery and equipment 

28. Wholesale and retail 

trades 

29. Transport, storage, and 

postal services 

30. Accommodation and 

catering 

31. Information transfer, 

software and information 

technology services 

32. Finance 

33. Real estate 

34. Leasing and commercial 

services 

35. Scientific research  

36. Polytechnic services 

37. Administration of water, 

environment, and public facilities 

38. Resident, repair and other 

services 

39. Education 

40. Health care and social 

work 

41. Culture, sports, and 

entertainment 

42. Public administration, 

social insurance, and social 

organizations 

8. Service 

Industry 
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46. Urban 

47. Rural 
N/A N/A N/A 

Note: in the CEADs carbon emission inventories, "Urban" and "Rural" represent the direct carbon emissions from household 

energy consumption in urban and rural areas, respectively. These activities do not generate value-added and therefore cannot 

be captured by the EE-MRIO model. However, they are important sources of CFs at the provincial level. As a result, they are 

temporarily excluded from the input-output calculations, but as shown in formula (30), they are included when calculating the 

provincial CFs (by attributing it to the “household consumption” component of final demand). 

2.3 Results 

Based on the methodology described above, we calculated the consumption-based carbon 

emissions (CFs) for each Chinese province for the years 2017 and 2012. The provincial CFs were 

further disaggregated by final demand categories into household consumption CF (HCCF), 

government consumption CF (GCCF), and capital formation CF (CFCF) (Fig. 5). In particular, HCCF 

accounts not only for the indirect emissions estimated through the EE-MRIO model but also for 

the direct emissions from household energy use as reported in carbon emission inventories. Due 

to data limitations, CFs associated with international exports were not included in the analysis. 

 

Fig. 5. Composition of consumption-based carbon emissions (CFs) for each province in 2017 and 2012 

Note: HCCF refers to household consumption CF, GCCF refers to government consumption CF, and CFCF refers to capital 

formation CF. 

3 Individual carbon footprints 

By integrating the fitted provincial-level individual income and wealth distributions derived 

from micro-level household surveys with the province-level CFs data obtained from the macro-

level EE-MRIO model, we enable an effective downscaling of CFs from the provincial scale to the 

individual scale. This process is crucial for understanding the distribution of carbon responsibility 

across different income groups. Ref. 33 proposed a systematic method to allocate national-level 
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CFs to the individual level, which has been successfully applied to over 100 countries worldwide. 

This method establishes a mapping between macro-level CF data and micro-level income or 

wealth distributions based on the elasticity of CFs with respect to income or wealth. It enables 

the disaggregation of household consumption CF, government consumption CF, and capital 

formation CF from the national level to individuals across different income brackets. The core 

logic and technical pathway of this method are also applicable at the provincial level in China. 

For analytical purposes, individuals in each province are grouped into 100,000 income 

percentiles, with individuals within each percentile treated as homogeneous. Accordingly, for any 

given province, the CF composition of individuals in percentile 𝑖 can be expressed as follows: 

𝐶𝐹𝑖
tot = 𝐶𝐹𝑖

cons + 𝐶𝐹𝑖
gov
+ 𝐶𝐹𝑖

inv (31) 

where 𝐶𝐹𝑖
tot, 𝐶𝐹𝑖

cons, 𝐶𝐹𝑖
inv, 𝐶𝐹𝑖

gov represent the per capita total CF, household consumption 

CF, capital formation CF, and government consumption CF, respectively, for percentile 𝑖. In the 

following sections, we develop downscaling models corresponding to each of these three CF 

components. 

3.1 Household consumption carbon footprint 

The sum of household consumption CFs across all individuals in a province should be equal 

to the province-level household consumption CF. Meanwhile, individual household CFs are 

primarily influenced by their income levels—meaning that differences in CFs across income 

groups are largely driven by income disparities
33

. Accordingly, for a given province, the 

downscaling model for household consumption CF can be formulated as follows: 

{
  
 

  
 
𝐶𝐹1

cons = 𝑘cons𝐶𝐹cons ∙ 𝑌1
𝛼

𝐶𝐹2
cons = 𝑘cons𝐶𝐹cons ∙ 𝑌2

𝛼

⋮
𝐶𝐹𝑁

cons = 𝑘cons𝐶𝐹cons ∙ 𝑌𝑁
𝛼

∑ 𝐶𝐹𝑖
cons = 𝑁 ∙ 𝐶𝐹cons

𝑁

𝑖=1

(32) 

where 𝐶𝐹cons denotes the per capita household consumption CF of the province, 𝑌𝑖  is the 

average income of individuals in income percentile 𝑖, 𝛼 represents the income elasticity of 

household consumption CF, and 𝑁 is the number of percentile groups, i.e., 100,000. 

It can be observed that an individual’s household consumption CF is determined not only by 

the province’s overall household consumption CF, but also by the income elasticity of household 

CF, denoted as 𝛼. Previous studies have shown that 𝛼 typically ranges between 0.6 and 1.0, 

indicating that an additional unit of income generates less carbon emissions for the rich than for 

the poor33,34. This implies a trade-off between poverty alleviation (or reducing income inequality) 
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and climate mitigation. According to findings from refs. 33-35, the value of 𝛼 varies across regions 

and tends to be higher in more developed areas compared to less developed ones. 

To reflect interprovincial differences, this study estimates province-specific elasticity 

coefficients between income and household consumption CF based on observed data. First, we 

calculate the growth rates of per capita income and per capita household consumption CF for 

each province. These growth rates are then used to derive initial elasticity estimates. To ensure 

consistency with the empirically supported range (0.6–1.0), the initial elasticity values are 

mapped onto this interval to obtain the final province-specific elasticity coefficients. This method 

provides a reasonable adjustment of provincial elasticity estimates based on limited empirical 

data and helps reveal region-specific carbon emission patterns across different levels of economic 

development. It also offers both empirical support and a theoretical basis for formulating 

targeted regional carbon mitigation policies. Details are provided as follows: 

First, the initial elasticity estimate for province 𝑖 is calculated using the following formula: 

𝛼𝑖
initial =

(
𝐻𝐶𝐶𝐹𝑖,2017 −𝐻𝐶𝐶𝐹𝑖,2012

𝐻𝐶𝐶𝐹𝑖,2012
)

(
𝑌𝑖,2017 − 𝑌𝑖,2012

𝑌𝑖,2012
)

(33) 

where 𝐻𝐶𝐶𝐹𝑖,2017 and 𝐻𝐶𝐶𝐹𝑖,2012 represent the per capita household consumption CFs of 

province 𝑖 in 2017 and 2012, respectively, and 𝑌𝑖,2017 and 𝑌𝑖,2012 denote the per capita 

income of province 𝑖 in 2017 and 2012, respectively. The provincial per capita income data are 

obtained from the national and provincial statistical yearbooks. 

Then, after estimating the initial elasticity values for all provinces, the elasticity coefficient 

for province 𝑖 is obtained by mapping its initial elasticity estimate into the theoretical range of 

0.6 to 1.0, as shown in the following formula: 

𝛼𝑖 = 0.6 + 0.4 ×
𝛼𝑖
initial − 𝛼𝑚𝑖𝑛

initial

𝛼𝑚𝑎𝑥
initial − 𝛼𝑚𝑖𝑛

initial
(34) 

where 𝛼𝑚𝑖𝑛
initial and 𝛼𝑚𝑎𝑥

initial denote the minimum and maximum values, respectively, of the 

initial elasticity estimates across all provinces. 

Fig. 6 presents the estimated income elasticity coefficients of household consumption CF for 

each province. In addition, the same estimation method was applied at the national level, 

yielding an elasticity value of 0.76, which is consistent with the estimates reported in refs. 33,36,37. 

We take the estimated provincial income elasticity coefficients as the baseline scenario. In 

Supplementary Information Section 7, we also calculate the provincial CF results under extreme 

scenarios, where the elasticity coefficients are uniformly set to the upper and lower bounds of 
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their typical range (0.6 and 1.0, respectively). 

 

Fig. 6. Income elasticity of household consumption CF (HCCF) across provinces (from 2012 to 2017) 

Note: the red dashed line indicates the national-level elasticity value (0.76). 

3.2 Government consumption carbon footprint 

Unlike household consumption CFs, provincial-level government consumption CFs in this 

study are equally distributed among all individuals within each province. This approach has been 

adopted in global inequality studies33,38, based on the implicit assumption that government 

expenditures primarily serve the general population, and thus the associated emissions should be 

equally borne by everyone. This assumption is generally regarded as both reasonable and 

conservative in international research. 

Although some scholars have pointed out that public service provision in China is 

characterized by significant inequality39—suggesting that government consumption emissions 

should not be equally allocated—Fig. 5 shows that government consumption emissions account 

for only a small share of total CFts in China. Therefore, adopting alternative allocation approaches 

would have only a limited impact on the overall carbon inequality results and would not 

significantly alter the main conclusions. 

Therefore, for a given province, the government consumption CF of individuals in income 

percentile 𝑖 is calculated as follows: 

𝐶𝐹𝑖
gov

= 𝐶𝐹gov (35) 

where 𝐶𝐹gov denotes the per capita government consumption CF of the province. 

3.3 Capital formation carbon footprint 

The allocation of provincial capital formation CFs to individuals follows a similar approach to 
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that of household consumption CFs, but uses wealth rather than income as the allocation basis, 

as shown in the following formula: 

{
  
 

  
 
𝐶𝐹1

inv = 𝑘inv𝐶𝐹inv ∙ 𝑊1
𝛽

𝐶𝐹2
inv = 𝑘inv𝐶𝐹inv ∙ 𝑊2

𝛽

⋮

𝐶𝐹𝑁
inv = 𝑘inv𝐶𝐹inv ∙ 𝑊𝑁

𝛽

∑ 𝐶𝐹𝑖
inv = 𝑁 ∙ 𝐶𝐹inv

𝑁

𝑖=1

(36) 

where 𝐶𝐹inv denotes the per capita household consumption CF of the province, 𝑊𝑖 is the 

average wealth of individuals in income percentile 𝑖, 𝛽 represents the wealth elasticity of 

capital formation CF. 

For the elasticity coefficient 𝛽, we set its value to 1, assuming that the capital formation CF 

borne by individuals within a province is proportional to their wealth. This assumption is 

supported by several empirical studies. Ref. 40, based on analyses of France and Germany, found 

elasticity values of approximately 1.1 and 0.95, respectively, indicating that wealth and the capital 

formation CF are roughly linearly related in magnitude. Ref. 33 further argued that in most 

countries lacking micro-level asset-based carbon data, assuming unit elasticity is an acceptable 

and widely adopted approach in studies on cross-national carbon inequality and responsibility 

allocation. We take 𝛽 = 1 as the baseline scenario. In Supplementary Information Section 7, we 

also calculate individual CF results under extreme scenarios (𝛽 = 0.9 and 1.1). 

The average wealth 𝑊𝑖 of individuals in income percentile 𝑖 cannot be directly derived 

from the fitted provincial income and wealth distribution functions, as individuals in income 

percentile 𝑖 do not necessarily fall into the same wealth percentile. Micro-level data from 

provincial household surveys reveal a highly complex and nonlinear relationship between income 

and wealth. First, income and wealth distributions differ substantially: income typically exhibits a 

right-skewed distribution, whereas wealth is even more heavily right-skewed. Second, the 

dependence between income and wealth is nonlinear; individuals with similar income levels may 

possess vastly different levels of wealth, and the structure of wealth distribution varies across 

income groups. This is understandable—for instance, some high-income individuals may not have 

accumulated substantial wealth, while certain low-income individuals may own considerable 

assets. Therefore, assuming a one-to-one correspondence between income and wealth 

percentiles (e.g., equating the bottom 1% in income with the bottom 1% in wealth) leads to 

significant distortion and fails to reflect the actual statistical patterns observed in the data. To 

address this issue, we propose a percentile-based method for estimating the joint distribution of 

income and wealth. The steps are as follows: 
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1) Fitting the empirical wealth distribution function 

This step has already been completed in Supplementary Information Section 1. Here, we 

denote the optimal cumulative distribution function of wealth as 𝐹𝑊(𝑤). This distribution 

captures the marginal characteristics of the wealth data and serves as the basis for estimating 

individual wealth values in the subsequent steps. 

2. Exploring the relationship between income and wealth based on their joint distribution 

A Copula model is used to fit the joint distribution of income percentiles and wealth 

percentiles, capturing the nonlinear dependence between the two variables. The conditional 

distribution derived from the joint distribution is used to estimate the correspondence between 

income percentiles and wealth percentiles. Based on this, wealth percentile values are generated 

for each sample within different income groups. The details are as follows: 

First, we introduce the Copula model. Copula is a method used to construct multivariate 

joint distributions by separating marginal distributions from their dependence structure. Its core 

idea is expressed as: 

𝐶(𝑢, 𝑣) = 𝑃(𝑈 ≤ 𝑢, 𝑉 ≤ 𝑣) (37) 

where 𝑈 = 𝐹𝑋(𝑥) and 𝑉 = 𝐹𝑌(𝑦) are marginal distributions standardized to the interval [0, 1], 

and 𝐶(𝑢, 𝑣) is the Copula function that describes the dependence structure between 𝑈 and 

𝑉. This approach is particularly well-suited for modeling the complex and nonlinear relationship 

between income and wealth because it allows for the combination of arbitrary marginal 

distributions 𝐹𝑋(𝑥) and 𝐹𝑌(𝑦), preserving the original distributional characteristics of each 

variable, while separately constructing the dependence structure 𝐶(𝑢, 𝑣), thereby enabling the 

capture of nonlinear relationships. 

Then, we proceed with model selection and fitting. Before that, the sample income and 

wealth data are first transformed into percentile values: 

𝑈 = 𝐹𝑋(𝑥) =
rank(income)

𝑛
,  𝑉 = 𝐹𝑌(𝑦) =

rank(wealth)

𝑛
(38) 

where 𝑈 = 𝐹𝑋(𝑥) and 𝑉 = 𝐹𝑌(𝑦) are the normalized percentile values of income and wealth, 

respectively. Here, rank(income) and rank(wealth) denote the rank orders of income and 

wealth within the sample, and 𝑛 is the total number of observations. This transformation maps 

the original data to the [0, 1] interval, producing uniform marginal distributions required for 

Copula fitting. 

After transforming the data into percentile form, we proceed to select the most appropriate 
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Copula type. We fit several commonly used Copula families, including Gaussian, t, Clayton, and 

Gumbel Copulas, and identify the best-fitting model based on the Akaike information criterion 

(AIC), as defined by the following formula: 

AIC = −2 ⋅ loglik + 2 ⋅ num_params (39) 

where loglik denotes the log-likelihood of the fitted Copula model, and num_params is the 

number of estimated parameters. The Copula model with the lowest AIC value is considered the 

best-fitting model. 

Then, based on the fitted Copula model, joint distribution samples (𝑈𝑖 , 𝑉𝑖) of income and 

wealth percentiles can be generated to capture the complex correspondence between income 

percentiles and wealth percentiles. 

Furthermore, we can proceed to estimate the wealth percentiles corresponding to each 

income percentile. For each fixed income percentile 𝑢, multiple corresponding wealth 

percentiles 𝑣 are generated based on the conditional distribution. The conditional distribution 

of a Copula is given by the following formula: 

𝐶𝑉|𝑈=𝑢(𝑣) =
𝜕𝐶(𝑢, 𝑣)

𝜕𝑢

𝜕𝐶(𝑢, 1)

𝜕𝑢
 ⁄ (40) 

where 𝐶𝑉|𝑈=𝑢(𝑣) denotes the conditional distribution function of 𝑉 given 𝑈 = 𝑢. The 

numerator 
𝜕𝐶(𝑢,𝑣)

𝜕𝑢
 represents the partial derivative of the Copula function with respect to 𝑢, 

capturing the cumulative dependence up to percentile 𝑣. The denominator 
𝜕𝐶(𝑢,1)

𝜕𝑢
 serves as a 

normalization term, ensuring that the conditional distribution integrates to 1 over the range of 

𝑣. This formulation allows us to generate conditional samples of wealth percentiles for a given 

income percentile using the estimated Copula function. The specific form of the conditional 

distribution varies depending on the type of Copula used. For example, for the Gaussian Copula, 

the conditional mean and variance are given by: 

𝜇 = 𝜌 ⋅ 𝑧𝑢,  𝜎2 = 1 − 𝜌2 (41) 

where 𝑧𝑢 = Φ
−1(𝑢) is the inverse of the standard normal distribution, and 𝜌 is the 

dependence parameter. 

Finally, the generated wealth percentile 𝑣 is substituted into the inverse of the fitted 

empirical wealth distribution function 𝐹𝑊(𝑤) to obtain the corresponding wealth value: 

𝑤 = 𝐹𝑊
−1(𝑣) (42) 
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The above describes our proposed percentile-based method for estimating the joint 

distribution of income and wealth. This percentile-mapping approach offers two key advantages. 

First, it ensures consistency: the estimated wealth values preserve the original wealth distribution 

in the sample. Second, it retains the complexity of the relationship between income and wealth: 

the mapping between income percentiles and wealth percentiles is derived from the joint 

distribution observed in the original micro-level data, accurately reflecting the nonlinear 

dependence between the two variables. 

4 Individual carbon footprints in 2030 under the BAU scenario 

In the preceding sections, the calculation of individual CFs for each province in 2017 

included emissions from household consumption, government consumption, and capital 

formation. Emissions from exports were excluded due to the lack of province-level data. We 

calculated the share of these three sectors in China’s total carbon emissions in 2017 and found 

that they accounted for 80.66% of the national total. This indicates that the individual CFs we 

computed cover the majority of total emissions. Therefore, we reasonably upscale the individual 

carbon footprints by a factor corresponding to this proportion (80.66%) to match the national 

total emissions. This adjustment ensures consistency between the aggregated individual 

footprints and the national inventory, which is necessary for estimating provincial mitigation 

efforts, which must be assessed relative to the national total carbon emissions. 

Furthermore, we assume that under the business-as-usual (BAU) scenario, China’s national 

carbon intensity in 2030 will remain at its current level, and the distribution of individual carbon 

footprints within each province will also remain unchanged. Based on these assumptions, we 

estimate the individual CFs for each province in 2030 under the BAU scenario, which will serve as 

the reference line for evaluating future provincial mitigation efforts. 

1) Provincial population and CF projections for 2030 

For provincial population projections, this study first refers to the medium-growth scenario 

of China’s population growth rate from the United Nations’ World Population Prospects to 

estimate China’s total population in 203041. Based on this estimate, we assume that each 

province’s share of the national population in 2024 remains constant through 2030, allowing us 

to derive provincial population estimates for 2030. Population data are obtained from the China 

Statistical Yearbook.  

For provincial CF projections, we assume that each province’s share of national CF in 2017 

remains unchanged. Under this assumption, provincial CFs in 2030 can be derived from the 

projected national total. In the BAU scenario, China's carbon intensity in 2030 is assumed to 
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remain at the 2024 level; therefore, national carbon emissions in 2030 are determined by the 

projected GDP. 

Considering recent economic slowdowns due to weak domestic demand and external trade 

pressures, China’s current GDP growth rate has stabilized around 5%. The average annual growth 

rate over the next five years is expected to range between 3% and 5%. To reflect this uncertainty, 

we define three GDP growth scenarios: a high-growth scenario (annual average of 4.5% from 

2025 to 2030), a medium-growth scenario (4.0%), and a low-growth scenario (3.5%). Based on 

these assumptions, we calculate the projected national and provincial BAU carbon emissions in 

2030 under each growth scenario (Table 4). The GDP data are sourced from the China Statistical 

Yearbook. 

2) Individual CF for 2030 under the BAU scenario 

Based on the assumption that the distribution of individual CFs within each province in 2030 

under the BAU scenario remains consistent with that of 2017, and combined with the projected 

population and total CF values for each province in 2030, we can calculate the provincial-level 

individual CFs under the BAU scenario. 

Table 4. Projected national and provincial CFs in 2030 under the BAU Scenario 

Region 
CF in 2017 

(Mt)  

Low GDP growth 

scenario 

(Mt) 

Medium GDP growth 

scenario 

(Mt) 

High GDP growth 

scenario 

(Mt) 

Beijing 244.6 318.2 327.6 337.1 

Tianjin 118.2 153.8 158.3 162.9 

Hebei 685.9 892.3 918.4 945.3 

Shanxi 334.2 434.8 447.5 460.6 

Inner Mongolia 336.9 438.2 451.1 464.3 

Liaoning 357.1 464.5 478.2 492.1 

Jilin 203.7 265.0 272.8 280.7 

Heilongjiang 267.2 347.5 357.7 368.2 

Shanghai 210.6 273.9 281.9 290.2 

Jiangsu 627.6 816.4 840.3 864.9 

Zhejiang 417.7 543.3 559.2 575.6 

Anhui 360.1 468.5 482.2 496.3 

Fujian 191.9 249.6 256.9 264.4 

Jiangxi 252.2 328.1 337.7 347.5 

Shandong 720.0 936.6 964.1 992.3 



34 

 

Henan 748.9 974.2 1002.8 1032.0 

Hubei 457.5 595.2 612.6 630.5 

Hunan 466.5 606.9 624.7 642.9 

Guangdong 743.2 966.7 995.1 1024.1 

Guangxi 255.8 332.7 342.5 352.5 

Hainan 52.4 68.2 70.2 72.3 

Chongqing 247.0 321.2 330.7 340.3 

Sichuan 402.8 524.0 539.3 555.1 

Guizhou 216.0 281.0 289.3 297.7 

Yunnan 329.1 428.1 440.7 453.6 

Shaanxi 302.7 393.8 405.3 417.2 

Gansu 115.5 150.2 154.6 159.2 

Qinghai 65.7 85.4 87.9 90.5 

Ningxia 118.5 154.1 158.6 163.3 

Xinjiang 318.0 413.6 425.7 438.2 

China 10167.7 13226.0 13614.0 14011.5 

Note: all the CF values have been upscaled from 80.66% to 100% of total emissions. 

5 China’s national carbon emissions target for 2030 

In 2020, China announced an updated and enhanced NDC, committing to reduce carbon 

intensity by more than 65% from the 2005 level by 2030. Based on this target, and using the GDP 

growth scenarios defined in Supplementary Information Section 4, we derive the corresponding 

national total carbon emissions targets. 

To account for uncertainties in the level of target achievement, we define three mitigation 

scenarios: low, medium, and high, corresponding to carbon intensity reduction rates of 60%, 65%, 

and 70%, respectively. Combining the three GDP growth scenarios (low, medium, and high) with 

the three mitigation scenarios yields a matrix of nine national carbon emissions target scenarios: 

LL (low GDP growth + low mitigation), LM (low GDP growth + medium mitigation), LH (low GDP 

growth + high mitigation), ML (medium GDP growth + low mitigation), MM (medium GDP growth 

+ medium mitigation), MH (medium GDP growth + high mitigation), HL (high GDP growth + low 

mitigation), HM (high GDP growth + medium mitigation), and HH (high GDP growth + high 

mitigation). 

Table 5 presents the total national carbon emissions targets associated with each of these 

scenarios. As shown, the LH scenario represents the most stringent climate target, allowing 

emissions of only 8.43 billion tons of CO₂ by 2030. In contrast, the HL scenario is the most lenient, 

allowing emissions up to 11.9 billion tons of CO₂. This study focuses on the MM scenario, where 
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the national carbon emissions target is 10.12 billion tons, as the central case for analyzing 

provincial mitigation efforts. Results under the other scenarios are also calculated and serve as 

benchmarks for comparison with the MM scenario. 

Table 5. National carbon emissions targets under different GDP growth and mitigation scenarios 

GDP growth scenario Mitigation scenario Emission target (Mt) 

Low Low 11234.9 

Low Medium 9830.5 

Low High 8426.2 

Medium Low 11564.5 

Medium Medium 10118.9 

Medium High 8673.4 

High Low 11902.1 

High Medium 10414.4 

High High 8926.6 

Note: the low, medium, and high GDP growth scenarios correspond to national average annual GDP growth rates of 3.5%, 

4.0%, and 4.5% from 2025 to 2030, respectively. The low, medium, and high mitigation scenarios correspond to reductions in 

carbon intensity by 60%, 65%, and 70% by 2030 relative to 2005 levels. 

6 Individual carbon footprints based on decent living standards (DLS) 

Unlike most existing studies that focus solely on carbon emissions related to household 

consumption, this study defines an individual’s CF as the sum of emissions associated with three 

final demand components: household consumption, government consumption, and capital 

formation. Traditional estimations of decent living standards (DLS)-based emissions typically 

concentrate on essential household consumption categories—such as food, clothing, housing, 

transport, education, health, water, and cooking—while neglecting the latter two sources. 

Building on household consumption-based DLS CFs, this study further incorporates 

minimum emission thresholds from government consumption and capital formation to construct 

a comprehensive, full-scope DLS CF floor covering all three final demand components. 

Specifically, we calculate household DLS-related CFs based on provincial-level energy demands for 

key consumption categories. For capital formation, we set the 25th percentile of individual 

capital-related CFs within each province as the minimum level of investment required to support 

a decent life. Given the relatively small share of government consumption, we assume that 

maintaining current levels of per capita government consumption CFs is sufficient to meet basic 

public service needs. The resulting individual-level DLS CF comprises these three components and 

serves as a floor reference for subsequent effort-sharing analysis. 
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Household consumption-related DLS CFs in this study are calculated based on estimated DLS 

energy demand and the carbon intensity per unit of energy use. Regarding DLS energy demand, 

ref. 42 developed an evaluation system covering both direct and indirect energy consumption, and 

estimated per capita DLS energy use at the provincial level for 2017. Specifically, their study 

builds upon the general DLS framework proposed by ref. 35, while adapting it to China’s national 

context by incorporating regional development levels, cultural norms, and lifestyle patterns. The 

framework defines DLS thresholds for eight consumption categories: food, clothing, housing, 

transport, education, health, water, and cooking. For example, the food intake standard is 

adjusted based on the Dietary Reference Intakes for Chinese Residents (2013 Edition); heating 

standards in the housing category reflect the temperature differences between northern and 

southern regions; and the transport category assumes that private urban travel is replaced by 

public transportation under DLS conditions. Furthermore, ref. 42 applied the EE-MRIO model to 

quantify provincial DLS energy consumption under the specified thresholds. This includes both 

direct and indirect energy use. Direct energy consumption covers three categories: transport, 

housing, and cooking, while indirect energy consumption spans all eight categories mentioned 

above. The detailed calculation process is provided in Table 6. 

For the carbon emission factor per unit of energy consumption, we use the most recent 

(2021) provincial-level data on energy consumption and carbon emissions in China to calculate 

province-specific emission coefficients. The relevant data are obtained from the China Energy 

Statistical Yearbook. By combining the estimated DLS energy demand with these carbon intensity 

factors, we derive the per capita household consumption DLS CFs for each province. Finally, by 

summing up the household consumption, government consumption, and capital formation 

components of DLS-related CFs, we obtain the individual DLS CF for each province. In addition, to 

test robustness, we adjust the capital formation component of individual DLS CF from the 25th 

percentile to the 40th and 10th percentiles of the provincial individual capital-related CF 

distribution, constructing the upper and lower bounds of the individual DLS CF. The values and 

variation range of individual DLS CF under these scenarios are shown in Fig. 7. 

Table 6. Provincial DLS energy estimation method 

Category DLS material threshold 
Energy 

type 
Calculation logic 

Food 

Daily caloric intake per 

person is set based on the 

Dietary Reference Intakes for 

Chinese Residents, 

differentiated by gender and 

age. Provincial annual caloric 

demand is calculated based 

on the population structure. 

Indirect 

 Using the EE-MRIO to extract the indirect energy use 

associated with household consumption in the “Food 

and Tobacco” sector. 

 Calculating the energy intensity per kcal = total indirect 

energy / actual total caloric intake (kJ/kcal). 

 Multiplying this intensity by the DLS-based caloric 

demand for each province to estimate food-related 

indirect energy consumption under DLS. 
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Clothing 

Annual clothing weight is set 

for men, women, and 

children based on 

temperature zones, ensuring 

adequate insulation during 

the coldest months. 

Indirect 

 Using EE-MRIO to obtain the indirect energy embodied 

in the “Textile, Garment, and Leather Products” sectors 

due to household consumption. 

 Calculating the unit energy intensity per gram = total 

energy / total national clothing weight consumed. 

 Multiplying this by the clothing weight defined under DLS 

for each province to obtain DLS clothing energy use. 

Transportation 

In DLS scenario, urban 

residents use only public 

transport; rural residents use 

a combination of public and 

private transport. Total travel 

distance (passenger-km) is 

assumed the same as in 2017. 

Direct + 

Indirect 

 Direct energy: replacing urban private transport with 

public modes. Applying energy use coefficients 

(MJ/passenger-km) for different transport modes from 

national/international data. Multiplying by travel 

distance by mode to compute direct transport energy 

use. 

 Indirect energy: using EE-MRIO to extract household-

induced energy use from the “Transport, Storage, and 

Postal Services” sector. Computing energy intensity per 

passenger-km and multiply by DLS travel demand to 

obtain indirect energy. 

Housing – 

Cooling 

Each household is assumed 

to own one 1.5 horsepower 

energy-efficient air 

conditioner. Cooling is 

activated when the outdoor 

temperature exceeds 26°C. 

Operating time is 8 hours per 

day on weekdays and 10 

hours on weekends. 

Direct + 

Indirect 

 Direct energy: for each climate zone, representative 

cities are selected to estimate daily household cooling 

load. Multiplying cooling energy per household by 

number of households in each province. 

 Indirect energy: multiplying DLS cooling electricity 

demand by the unit indirect energy coefficient of the 

“Electricity and Heat Supply” sector derived from EE-

MRIO. 

Housing – 

Heating 

Central heating is applied in 

northern urban areas; air 

conditioners are used for 

heating in southern and rural 

regions. Heating area and 

duration are set based on 

climate zones and housing 

standards. 

Direct + 

Indirect 

 Direct energy: estimating heating demand by region 

using standard indoor temperature thresholds and 

heating days. Considering energy sources (coal, 

electricity, heat), efficiency, and distribution losses. 

 Indirect energy: multiplying DLS coal, electricity, and 

heat consumption by their respective indirect energy 

intensities derived from EE-MRIO sectors. 

Housing – 

Lighting 

Lighting is considered for 

living rooms and bedrooms 

only. Lighting power is set 

based on area (in square 

meters) and standard lighting 

power density (W/m²). 

Lighting duration is 

determined by daylight 

hours. 

Direct + 

Indirect 

 Direct energy: multiplying room lighting area by power 

density and estimated lighting time per day. Multiplying 

by number of households to obtain total electricity use 

for lighting. 

 Indirect energy: multiplying DLS lighting electricity 

consumption by the electricity sector’s indirect energy 

intensity from EE-MRIO. 

Housing – 

Appliances 

Each household owns one 

refrigerator (0.33 kWh/day), 

one TV (3 kWh/year), and 

each person owns one mobile 

phone (0.2 kWh/year). 

Direct + 

Indirect 

 Direct energy: multiplying number of devices by annual 

electricity consumption per device unit. Estimating at 

provincial level using population and household size. 

 Indirect energy: multiplying DLS appliance electricity 

consumption by the electricity sector’s indirect energy 

coefficient from EE-MRIO. 

Water 

Each person consumes 100 

liters of water per day, 

consistent with the national 

standard for basic residential 

water supply. 

Indirect 

 Using EE-MRIO to extract the indirect energy use 

associated with household consumption in the “Water 

Production and Supply” sector. 

 Computing per-liter indirect energy intensity = total 

sector energy consumption/ total actual water supplied 

nationally (kJ/L). 
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 Multiplying by DLS water demand per province to get 

indirect energy use. 

Health Care 

Annual per capita 

expenditure is set at 

¥4614.96, equivalent to the 

median value for basic health 

coverage. 

Indirect 

 Using EE-MRIO to extract the indirect energy use induced 

by household consumption in the “Health and Social 

Work” sector. 

 Computing per-yuan energy intensity based on the 

national actual health expenditure (kJ/CNY). 

 Multiplying this by DLS-based per capita health 

expenditure to obtain DLS energy use for health services. 

Education 

DLS requires completion of 

nine-year compulsory 

education, with primary 

school expenditure set at 

¥6939.79 and junior 

secondary at ¥10409.68. 

Indirect 

 Due to lack of a dedicated “Education” sector in EE-

MRIO, use “Other Services” as a proxy. 

 Extracting indirect energy use associated with household 

education consumption. 

 Computing energy intensity per yuan from “Other 

Services” sector in EE-MRIO and multiplying by DLS 

educational spending to estimate energy use. 

Cooking 

Only electricity and gas are 

allowed as fuels. Their 

proportion is determined by 

actual provincial fuel use 

patterns. Cooking energy 

demand is set equal to the 

actual thermal need, with 

fuel switching and efficiency 

adjustments. 

Direct + 

Indirect 

 Direct energy: calculating cooking fuel required = 

thermal demand / fuel efficiency (75% for electricity, 60% 

for gas). 

 Indirect energy: multiplying DLS cooking electricity and 

gas consumption by the indirect energy intensities of the 

“Electricity and Heat Supply” and “Coal Mining and 

Processing” sectors in EE-MRIO. 

Source: ref. 42. 

 

 

Fig. 7. Individual carbon footprint for DLS 

7 Robust tests 

First, for the estimation of provincial individual income and wealth distributions, four provinces—Inner 

Mongolia, Ningxia, Qinghai, and Hainan—lack sufficient data and were thus estimated using a cluster analysis to 

identify the most similar provinces, which were then used as proxies for estimation (Supplementary Information 

1.3). Similarly, refs. 43,44 faced the same issue and addressed it by assuming that data-deficient provinces share 

income distribution patterns with neighboring provinces, directly adopting the latter as proxies. Compared to this 

straightforward approach, our cluster-based proxy selection is arguably more systematic and scientifically 
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justified. Nevertheless, to test the robustness of our method, we also employed neighboring provinces as 

alternative proxies, following the same adjustment procedure with our cluster-based approach: the matched 

distributions were linearly scaled to align with the observed average income and wealth levels of the target 

provinces. We then recalculated the individual CFs for different income groups under these alternative 

assumptions and compared the results with our original estimates. 

Specifically, Shanxi—a neighboring coal-producing province—was used as a proxy for Inner Mongolia; Gansu 

was selected for both Ningxia and Qinghai, given their geographic proximity and similar economic development 

levels; and Guangxi, a neighboring province with a more similar economic development level, was used for 

Hainan. The recalculated individual CFs for each income group are presented in Fig. 8. The results show no 

substantial differences across the income groups, indicating that alternative choices of proxies have minimal 

impact on our findings and thereby supporting the robustness of the adopted method. 

Second, in estimating individual CFs, income and wealth elasticity coefficients serve as key parameters 

linking individual income and wealth to household consumption and investment CFs, and it is necessary to assess 

the sensitivity of the results to their values. For income elasticity (𝛼), we assigned province-specific values based 

on empirical data and theoretical ranges provided in previous studies (refs. 33,34; 0.6 to 1.0), as described in 

Supplementary Information Section 3.1. Here, we consider two extreme scenarios where 𝛼 is set to the lower 

and upper bounds of its typical range (0.6 and 1.0) and recalculate individual CFs accordingly. As shown in Table 7, 

increasing 𝛼 amplifies carbon inequality: individual CFs moderately increase for the top 1%, slightly increase for 

the next 9%, remain largely unchanged for the middle 40%, and slightly decrease for the bottom 50%. In other 

words, for the vast majority of individuals across all provinces, CFs are not highly sensitive to variations in 𝛼, 

indicating that the estimated provincial CFs are robust to the choice of income elasticity estimation. 

For wealth elasticity (𝛽)，we set the baseline value at 1.0, following the approach in ref. 33, due to the lack 

of empirical evidence at the Chinese provincial level (Supplementary Information Section 3.3). To assess the 

robustness of our results to this assumption, we follow ref. 33 by introducing two extreme scenarios for 𝛽: an 

upper bound of 1.1 and a lower bound of 0.9. We then examine the impact of these scenarios on individual CFs 

across income groups in each province. Similar to 𝛼, an increase in 𝛽 leads to higher individual CFs for the top 

1% and the next 9% income groups, while the middle 40% remains largely unaffected and the bottom 50% 

experiences a slight decrease (Table 8). This is expected, as a higher 𝛽 implies a more unequal allocation of 

capital-related emissions across income groups—assigning more responsibility to high-income individuals and less 

to low-income individuals, with middle-income groups relatively unaffected. Importantly, the variations in 

individual CFs under these extreme elasticity assumptions are minor across all provinces and income groups. 

These changes do not materially alter the overall patterns of carbon inequality or the main conclusions of this 

study. 

Third, in the construction of individual DLS CFs, the capital formation component was previously set as the 

25th percentile of the individual capital-related CF distribution within each province. To test the robustness of this 

assumption, we apply a ±15 percentile point variation, constructing lower- and upper-bound scenarios 
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corresponding to the 10th and 40th percentiles, respectively. Based on these extreme cases, we recalculate the 

individual DLS CF values (Fig. 7). At the national level, this adjustment does not affect the overall climate target, as 

the target itself does not rely on the specific definition of individual DLS CF. However, it does cause slight 

variations in the individual CF ceilings (Fig. 9). Under the baseline DLS CF scenario, the individual CF ceilings for 

the low, medium, and high mitigation scenarios are 16.4 tCO₂, 11.2 tCO₂, and 8.3 tCO₂, respectively (as shown in 

Fig. 4 of the main text). When applying the lower-bound scenario (10th percentile), the ceilings become 16.5 

tCO₂, 11.3 tCO₂, and 8.3 tCO₂, respectively; under the upper-bound scenario (40th percentile), they become 16.1 

tCO₂, 11.1 tCO₂, and 8.2 tCO₂. These results indicate that even under extreme assumptions, the variation in 

individual DLS CF has only a limited effect on national-level mitigation indicators. At the provincial level, the 

estimated mitigation efforts under the baseline, lower-bound, and upper-bound DLS CF scenarios are shown in 

Fig. 5e-h of the main text, Fig. 10, and Fig. 11, respectively. The results show that across all mitigation scenarios 

(low, medium, and high), provincial emission reductions, reduction contributions, and reduction rates exhibit 

minimal changes. Combined with the earlier finding that whether or not DLS CF is considered to have negligible 

impact on national and provincial climate targets, these results are fully in line with expectations. 

Finally, since China’s climate targets are defined in terms of carbon intensity rather than absolute emission 

levels, uncertainty in GDP growth directly affects the actual mitigation effort. The preceding analysis is based on 

the medium GDP growth scenario, which assumes an average annual growth rate of 4% from 2025 to 2030. To 

assess the impact of GDP fluctuations, we further calculate the national and provincial emission reduction rates 

under the low (3.5%) and high (4.5%) GDP growth scenarios. The associated uncertainty ranges are illustrated by 

error bars in Fig. 12. The results show that changes in GDP growth scenarios have a relatively small effect on 

emission reduction rates, and this pattern holds consistently across all mitigation scenarios. In contrast, variations 

in mitigation scenarios—i.e., different carbon intensity reduction targets—have a significant impact on emission 

reduction rates. This indicates that policy ambition itself is the primary driver of differences in mitigation 

intensity. Therefore, at both the national and provincial levels, the design of climate targets has a much greater 

influence on reduction rates than the uncertainty in economic growth trajectories. 
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8 Additional tables and figures 

 

Fig. 8. Per capita carbon footprints by income group in data-deficient provinces under different proxy approaches 

Note: a, Per capita carbon footprints by income group for Inner Mongolia under different proxy approaches. The cluster-based 

and neighboring-based proxies are Xinjiang and Shanxi, respectively. b, Per capita carbon footprints by income group for 

Ningxia. The cluster-based and neighboring-based proxies are Xinjiang and Gansu, respectively. c, Per capita carbon footprints 

by income group for Qinghai. The cluster-based and neighboring-based proxies are Xinjiang and Gansu, respectively. d, Per 

capita carbon footprints by income group for Hainan. The cluster-based and neighboring-based proxies are Jilin and Guangxi, 

respectively. 
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Fig. 9. National population in 2030 (1.38 billion), sorted by decreasing individual carbon footprint under the lower-bound (a) 

and upper-bound (b) scenario for individual DLS CF 

Note: The cyan and orange curves represent the BAU and 65% mitigation scenarios in 2030, respectively, with national 

emissions of 13.61 GtCO₂ and 10.12 GtCO₂. The black dashed line shows the 2017 baseline (10.2 GtCO₂). The shaded areas 

indicate the total CFs to be reduced (cyan) or increased (orange) relative to the 65% target. The upper and lower grey horizontal 

dashed lines represent the individual CF ceilings under the 60% and 70% mitigation scenarios, respectively. 
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Fig.10. Provincial mitigation efforts in 2030 under the lower-bound scenario for individual DLS CF 

Note: a, Emission reductions (bars, Mt) and reduction rates (dots, %) across provinces under different mitigation scenarios, with 

provinces ordered from left to right by emission reductions in the medium scenario. Dashed lines represent national reduction 

rates under each scenario. Reduction rate is calculated as the emission reduction divided by the province’s BAU emissions. b–d, 

Emission reduction contributions across provinces under the low, medium, and high reduction scenarios. The color of each 

sector represents the province’s emission reduction rate. The full names of acronyms are as follows: BJ: Beijing, TJ: Tianjin, HE: 

Hebei, SX: Shanxi, NM: Inner Mongolia, LN: Liaoning, JL: Jilin, HL: Heilongjiang, SH: Shanghai, JS: Jiangsu, ZJ: Zhejiang, AH: Anhui, 

FJ: Fujian, JX: Jiangxi, SD: Shandong, HA: Henan, HB: Hubei, HN: Hunan, GD: Guangdong, GX: Guangxi, HI: Hainan, CQ: 

Chongqing, SC: Sichuan, GZ: Guizhou, YN: Yunnan, SN: Shaanxi, GS: Gansu, QH: Qinghai, NX: Ningxia, XJ: Xinjiang, North China: 

NC, Northeast China: NEC, East China: EC, Central China: CC, South China: SC, Southwest China: SWC, Northwest China: NWC. 
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Fig.11. Provincial mitigation efforts in 2030 under the upper-bound scenario for individual DLS CF 

Note: a, Emission reductions (bars, Mt) and reduction rates (dots, %) across provinces under different mitigation scenarios, with 

provinces ordered from left to right by emission reductions in the medium scenario. Dashed lines represent national reduction 

rates under each scenario. Reduction rate is calculated as the emission reduction divided by the province’s BAU emissions. b–d, 

Emission reduction contributions across provinces under the low, medium, and high reduction scenarios. The color of each 

sector represents the province’s emission reduction rate. The full names of acronyms are as follows: BJ: Beijing, TJ: Tianjin, HE: 

Hebei, SX: Shanxi, NM: Inner Mongolia, LN: Liaoning, JL: Jilin, HL: Heilongjiang, SH: Shanghai, JS: Jiangsu, ZJ: Zhejiang, AH: Anhui, 

FJ: Fujian, JX: Jiangxi, SD: Shandong, HA: Henan, HB: Hubei, HN: Hunan, GD: Guangdong, GX: Guangxi, HI: Hainan, CQ: 

Chongqing, SC: Sichuan, GZ: Guizhou, YN: Yunnan, SN: Shaanxi, GS: Gansu, QH: Qinghai, NX: Ningxia, XJ: Xinjiang, North China: 

NC, Northeast China: NEC, East China: EC, Central China: CC, South China: SC, Southwest China: SWC, Northwest China: NWC. 
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Fig. 12. Emission reduction rates across China and its provinces under different mitigation scenarios 

Note: each bar represents the emission reduction rate under the medium GDP growth scenario (average annual growth of 4% 

from 2025 to 2030). The error bars indicate the uncertainty range resulting from GDP growth variations: the upper and lower 

bounds correspond to the high (4.5%) and low (3.5%) GDP growth scenarios, respectively. 
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Table 7. Provincial per-capita carbon footprint by income group in 2017 under different income elasticity scenarios 

Province Scenario 
Per-capita carbon footprint (tCO2) 

Top 1% Next 9% Middle 40% Bottom 50% 

Beijing 

𝛼 = 0.72 (Baseline) 32.2 18.7 10.6 5.5 

𝛼 = 0.6 28.7 17.7 10.6 5.8 

𝛼 = 1 43.5 21.4 10.6 4.8 

Tianjin 

𝛼 = 0.65 (Baseline) 35 16.3 7.8 3.7 

𝛼 = 0.6 33.5 15.9 7.8 3.8 

𝛼 = 1 49.2 18.7 7.5 3.2 

Hebei 

𝛼 = 0.8 (Baseline) 39.1 17.7 8.7 4 

𝛼 = 0.6 36.3 16.6 8.7 4.3 

𝛼 = 1 42.6 18.9 8.7 3.7 

Shanxi 

𝛼 = 0.8 (Baseline) 34 17.7 8.9 4.3 

𝛼 = 0.6 30.7 16.4 8.9 4.7 

𝛼 = 1 37.9 19 8.9 4 

Inner Mongolia 

𝛼 = 0.76 (Baseline) 49.5 26.1 12.8 6.4 

𝛼 = 0.6 46.4 24.8 12.7 6.8 

𝛼 = 1 55.1 28.1 12.9 5.9 

Liaoning 

𝛼 = 0.92 (Baseline) 31 17.1 8.1 3.2 

𝛼 = 0.6 25.4 14.7 8 3.8 

𝛼 = 1 32.8 17.7 8.1 3 

Jilin 

𝛼 = 0.64 (Baseline) 22.3 13.7 7.7 3.9 

𝛼 = 0.6 22.1 13.5 7.7 4 

𝛼 = 1 25.7 14.9 7.8 3.6 

Heilongjiang 

𝛼 = 0.72 (Baseline) 22.6 13.4 7.5 3.8 

𝛼 = 0.6 21.3 12.8 7.4 4 

𝛼 = 1 26.1 14.8 7.5 3.5 

Shanghai 

𝛼 = 0.6 (Baseline) 14.8 11.4 8 5 

𝛼 = 0.6 14.8 11.4 8 5 

𝛼 = 1 19.3 13.3 8.2 4.4 

Jiangsu 

𝛼 = 0.76 (Baseline) 20.9 12.9 7.2 3.5 

𝛼 = 0.6 18.8 12 7.2 3.7 

𝛼 = 1 24.6 14.2 7.2 3.2 

Zhejiang 
𝛼 = 0.69 (Baseline) 14.4 9.6 6.4 3.8 

𝛼 = 0.6 13.8 9.3 6.3 3.9 
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𝛼 = 1 17.1 10.7 6.5 3.5 

Anhui 

𝛼 = 0.83 (Baseline) 14.9 9.5 5.6 3.1 

𝛼 = 0.6 12.7 8.6 5.5 3.4 

𝛼 = 1 16.9 10.2 5.6 3 

Fujian 

𝛼 = 0.64 (Baseline) 12.2 7.5 4.4 2.5 

𝛼 = 0.6 11.9 7.4 4.4 2.5 

𝛼 = 1 15.1 8.6 4.4 2.2 

Jiangxi 

𝛼 = 0.77 (Baseline) 16.4 9.6 5.3 2.8 

𝛼 = 0.6 15.2 9.1 5.2 2.9 

𝛼 = 1 18.2 10.3 5.3 2.6 

Shandong 

𝛼 = 0.8 (Baseline) 21.1 12.5 6.9 3.4 

𝛼 = 0.6 18.7 11.5 6.8 3.7 

𝛼 = 1 24.2 13.6 6.9 3.2 

Henan 

𝛼 = 0.82 (Baseline) 21.5 12.6 7.1 3.9 

𝛼 = 0.6 19.4 11.7 7.1 4.1 

𝛼 = 1 23.5 13.3 7.1 3.7 

Hubei 

𝛼 = 0.7 (Baseline) 36.4 15.7 7.1 3.3 

𝛼 = 0.6 35.5 15.3 7.1 3.4 

𝛼 = 1 39.6 16.9 7.1 3 

Hunan 

𝛼 = 0.9 (Baseline) 25.2 13.8 6.7 3 

𝛼 = 0.6 21.7 12.5 6.6 3.4 

𝛼 = 1 26.7 14.3 6.7 2.9 

Guangdong 

𝛼 = 0.66 (Baseline) 34.2 12.1 5.6 2.5 

𝛼 = 0.6 33.5 11.8 5.6 2.6 

𝛼 = 1 38.9 13.8 5.6 2.1 

Guangxi 

𝛼 = 0.75 (Baseline) 15.7 8.7 4.9 2.6 

𝛼 = 0.6 14.6 8.2 4.8 2.8 

𝛼 = 1 17.9 9.4 4.9 2.5 

Hainan 

𝛼 = 0.77 (Baseline) 14.9 9.2 5.2 2.6 

𝛼 = 0.6 13.5 8.7 5.2 2.7 

𝛼 = 1 17.1 10 5.2 2.4 

Chongqing 

𝛼 = 0.8 (Baseline) 39.9 16.2 7.1 3.3 

𝛼 = 0.6 37.5 15.2 7.1 3.5 

𝛼 = 1 42.9 17.1 7.1 3.1 

Sichuan 
𝛼 = 0.75 (Baseline) 18.9 9.1 4.6 2.1 

𝛼 = 0.6 17.6 8.5 4.6 2.3 
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𝛼 = 1 21.5 9.9 4.6 1.9 

Guizhou 

𝛼 = 0.73 (Baseline) 24.9 11.2 5.1 2.6 

𝛼 = 0.6 23.6 10.7 5 2.7 

𝛼 = 1 28.2 12.3 5 2.4 

Yunnan 

𝛼 = 0.74 (Baseline) 19.4 11.6 6.5 3.7 

𝛼 = 0.6 18.2 11.2 6.4 3.8 

𝛼 = 1 22 12.5 6.4 3.5 

Shaanxi 

𝛼 = 0.75 (Baseline) 22 13.2 7.5 3.7 

𝛼 = 0.6 20.5 12.6 7.4 3.9 

𝛼 = 1 25.1 14.3 7.5 3.5 

Gansu 

𝛼 = 0.78 (Baseline) 14.9 8.3 4.3 2.2 

𝛼 = 0.6 13.4 7.6 4.3 2.3 

𝛼 = 1 17.2 9.1 4.3 2 

Qinghai 

𝛼 = 0.76 (Baseline) 42.3 21.4 10.2 5.2 

𝛼 = 0.6 40.6 20.7 10.1 5.5 

𝛼 = 1 45.6 22.6 10.2 4.9 

Ningxia 

𝛼 = 1 (Baseline) 69.2 34.8 15.6 7 

𝛼 = 0.6 59.3 31 15.4 8 

𝛼 = 1 69.2 34.8 15.6 7 

Xinjiang 

𝛼 = 0.84 (Baseline) 48.3 24.7 11.7 5.9 

𝛼 = 0.6 44.8 23.3 11.6 6.3 

𝛼 = 1 51.1 25.6 11.7 5.7 
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Table 8. Provincial per-capita carbon footprint by income group in 2017 under different wealth elasticity scenarios 

Province Scenario 
Per-capita carbon footprint (tCO2) 

Top 1% Next 9% Middle 40% Bottom 50% 

Beijing 

Baseline 32.2 18.7 10.6 5.5 

𝛽 = 0.9 30.9 18.3 10.6 5.6 

𝛽 = 1.1 33.5 19.1 10.6 5.4 

Tianjin 

Baseline 35 16.3 7.8 3.7 

𝛽 = 0.9 31.9 15.7 7.8 3.8 

𝛽 = 1.1 38.4 16.9 7.7 3.5 

Hebei 

Baseline 39.1 17.7 8.7 4 

𝛽 = 0.9 35.1 17 8.8 4.2 

𝛽 = 1.1 43.7 18.3 8.7 3.8 

Shanxi 

Baseline 34 17.7 8.9 4.3 

𝛽 = 0.9 31.3 17.1 9 4.5 

𝛽 = 1.1 37.2 18.3 8.9 4.2 

Inner Mongolia 

Baseline 49.5 26.1 12.8 6.4 

𝛽 = 0.9 44.9 25.1 12.9 6.6 

𝛽 = 1.1 54.5 27.1 12.7 6.2 

Liaoning 

Baseline 31 17.1 8.1 3.2 

𝛽 = 0.9 29.1 16.7 8.2 3.3 

𝛽 = 1.1 33.1 17.5 8.1 3.1 

Jilin 

Baseline 22.3 13.7 7.7 3.9 

𝛽 = 0.9 20.6 13.1 7.7 4.1 

𝛽 = 1.1 24.2 14.2 7.7 3.8 

Heilongjiang 

Baseline 22.6 13.4 7.5 3.8 

𝛽 = 0.9 21 13 7.5 3.9 

𝛽 = 1.1 24.3 13.8 7.4 3.8 

Shanghai 

Baseline 14.8 11.4 8 5 

𝛽 = 0.9 14.4 11.2 8 5.1 

𝛽 = 1.1 15.2 11.6 8 5 

Jiangsu 

Baseline 20.9 12.9 7.2 3.5 

𝛽 = 0.9 19.7 12.6 7.2 3.6 

𝛽 = 1.1 22.3 13.2 7.2 3.4 

Zhejiang 
Baseline 14.4 9.6 6.4 3.8 

𝛽 = 0.9 13.7 9.4 6.4 3.9 
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𝛽 = 1.1 15.1 9.8 6.4 3.8 

Anhui 

Baseline 14.9 9.5 5.6 3.1 

𝛽 = 0.9 14.4 9.3 5.6 3.2 

𝛽 = 1.1 15.5 9.7 5.6 3.1 

Fujian 

Baseline 12.2 7.5 4.4 2.5 

𝛽 = 0.9 11.4 7.3 4.4 2.5 

𝛽 = 1.1 13 7.7 4.4 2.4 

Jiangxi 

Baseline 16.4 9.6 5.3 2.8 

𝛽 = 0.9 15.2 9.3 5.3 2.8 

𝛽 = 1.1 17.6 9.9 5.2 2.7 

Shandong 

Baseline 21.1 12.5 6.9 3.4 

𝛽 = 0.9 19.9 12.2 6.9 3.5 

𝛽 = 1.1 22.5 12.9 6.8 3.3 

Henan 

Baseline 21.5 12.6 7.1 3.9 

𝛽 = 0.9 20.1 12.2 7.2 4 

𝛽 = 1.1 22.9 13 7.1 3.8 

Hubei 

Baseline 36.4 15.7 7.1 3.3 

𝛽 = 0.9 31.7 15 7.2 3.5 

𝛽 = 1.1 41.6 16.5 7 3.1 

Hunan 

Baseline 25.2 13.8 6.7 3 

𝛽 = 0.9 23.4 13.4 6.7 3.1 

𝛽 = 1.1 27.2 14.3 6.7 2.9 

Guangdong 

Baseline 34.2 12.1 5.6 2.5 

𝛽 = 0.9 29.4 11.7 5.7 2.6 

𝛽 = 1.1 39.7 12.5 5.5 2.4 

Guangxi 

Baseline 15.7 8.7 4.9 2.6 

𝛽 = 0.9 14.5 8.4 4.9 2.7 

𝛽 = 1.1 17.1 8.9 4.9 2.6 

Hainan 

Baseline 14.9 9.2 5.2 2.6 

𝛽 = 0.9 14.1 9 5.2 2.6 

𝛽 = 1.1 15.8 9.5 5.2 2.5 

Chongqing 

Baseline 39.9 16.2 7.1 3.3 

𝛽 = 0.9 34.6 15.5 7.2 3.4 

𝛽 = 1.1 46.1 16.8 7 3.1 

Sichuan 
Baseline 18.9 9.1 4.6 2.1 

𝛽 = 0.9 17.1 8.8 4.7 2.2 
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𝛽 = 1.1 21 9.4 4.6 2 

Guizhou 

Baseline 24.9 11.2 5.1 2.6 

𝛽 = 0.9 22 10.7 5.1 2.7 

𝛽 = 1.1 28.3 11.7 5 2.5 

Yunnan 

Baseline 19.4 11.6 6.5 3.7 

𝛽 = 0.9 18.1 11.2 6.5 3.8 

𝛽 = 1.1 20.8 12 6.4 3.6 

Shaanxi 

Baseline 22 13.2 7.5 3.7 

𝛽 = 0.9 20.5 12.8 7.5 3.8 

𝛽 = 1.1 23.6 13.7 7.5 3.6 

Gansu 

Baseline 14.9 8.3 4.3 2.2 

𝛽 = 0.9 13.9 8 4.3 2.2 

𝛽 = 1.1 16.1 8.5 4.3 2.1 

Qinghai 

Baseline 42.3 21.4 10.2 5.2 

𝛽 = 0.9 37.8 20.4 10.3 5.4 

𝛽 = 1.1 47.3 22.4 10.1 5 

Ningxia 

Baseline 69.2 34.8 15.6 7 

𝛽 = 0.9 63.2 33.5 15.7 7.3 

𝛽 = 1.1 76 36.2 15.5 6.7 

Xinjiang 

Baseline 48.3 24.7 11.7 5.9 

𝛽 = 0.9 43.5 23.6 11.8 6.1 

𝛽 = 1.1 53.6 25.7 11.6 5.7 

Note: the baseline scenario represents 𝛽 = 1, is the basis for the empirical analysis in this study. 
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