

1 Supplementary Information

2

3 **Hierarchically heterogeneous interface structuring strategy for**
4 **microenvironment-regulating and self-decontaminating**
5 **biodegradable meta-membranes**

6 **Author Information**

7 **Affiliations**

8 Shao-Zhen Wang¹, Xinjian He^{1,6*}, Xing-Hua Wei⁴, Guiying Zhu², Jia-Lian Gao¹, Zhuang
9 Huang², Yue Zhao³, Xiao-Peng Li³, Jiefeng Gao⁵ & Huan Xu^{2,6*}

10 **¹School of Safety Engineering, China University of Mining and Technology, Xuzhou**
11 **221116, China.**

12 **²School of Materials Science and Physics, China University of Mining and Technology,**
13 **Xuzhou 221116, China.**

14 **³State Key Laboratory of Chemistry for NBC Hazards Protection, Beijing 102205, China**

15 **⁴Hangzhou WOQU Technology Co., Ltd., Hangzhou 310052, China**

16 **⁵School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 272100,**
17 **China**

18 **⁶Jiangsu Engineering Research Center of Dust Control and Occupational Protection,**
19 **Xuzhou 221008, China.**

20 **Contributions**

21 H.X. and X.J.H. conceived the idea and designed the experiments. S.-Z.W. and G.Y.Z.
22 performed the experiments. X.H.W., J.-L.G., Z.H., and Y.Z. contributed to materials

23 characterizations. X.-P.L. and G.J.F. joined the discussion of the data and gave helpful
24 suggestions. S.-Z.W. and H.X. wrote the manuscript. All authors participated in drafting the
25 paper, and gave approval to the final version of the manuscript.

26 Corresponding authors

27 Correspondence to: xinjian.he@cumt.edu.cn, hihuan@cumt.edu.cn

28

29 Content

30 List of Abbreviations	4
31 Supplementary Notes	6
32 Note S1. Characterization	6
33 Note S2. Experimental Section	13
34 Note S3. Supplementary Figures and Tables	15
35 Figure S1. Formation and morphological characterization of F-TiO ₂ nanoblocks.	16
36 Figure S2. Morphology and performance characterization of MRSD-PLA and PLA@ZIF-8. ...	19
37 Figure S3. Fiber diameter distribution of F-TiO ₂ , ZIF-8, P-PLA, and MRSD-PLA.	20
38 Figure S4. Element distribution and component content of MRSD-PLA.	21
39 Figure S5. Illustrations of MRSD-PLA with excellent hydrophobic properties.	22
40 Figure S6. The waterproof and breathable mechanism of MRSD-PLA.	25
41 Figure S7. Triboelectric mechanism of MRSD-PLA meta-membrane and COMSOL potential	
42 simulation.....	26
43 Figure S8. Particle diameter distribution of PM _{0.3}	27
44	28
45 Figure S9. Particle diameter distribution of PM _{2.5}	28
46 Figure S10. SEM images of MRSD-PLA after filtration.	29
47 Figure S11. Stability after regeneration and washing cycles.....	32
48 Figure S12. Mechanism of structural and performance regeneration after washing.	33
49 Figure S13. Verification of the charge capture-storage-regeneration cycle mechanism.	36
50 Figure S14. Schematic representation of the degradation of MRSD-PLA.....	36
51 Figure S15. SEM images of P-PLA and MRSD-PLA6 after degradation.....	37
52 Figure S16. Biodegradation performance evaluation.	38
53 References.....	41

List of Abbreviations

Abbreviation	Definition
HHIS	Hierarchically Heterogeneous Interface Structuring
MRSD-PLA	Microenvironment-Regulating and Self-Decontaminating Poly(lactic acid) Meta-Membranes
PLA	Poly(lactic acid)
ZIF-8	Zeolitic Imidazolate Framework-8
F-TiO ₂	Fluorinated Titanium Dioxide
MOF	Metal-Organic Framework
PM	Particulate Matter
PM _{0.3}	Particulate Matter with a Diameter of 0.3 Micrometers or Smaller
PM _{2.5}	Particulate Matter with a Diameter of 2.5 Micrometers or Smaller
QF	Quality Factor
WVTR	Water Vapor Transmission Rate
RH	Relative Humidity
BET	Brunauer–Emmett–Teller
PSD	Pore Size Distribution
NLDFT	Non-Local Density Functional Theory
XRD	X-Ray Diffraction
FTIR	Fourier-Transform Infrared Spectroscopy
SEM	Scanning Electron Microscopy
TGA	Thermogravimetric Analysis
ROS	Reactive Oxygen Species
DMF	N,N-Dimethylformamide
DCM	Dichloromethane
TTIP	Titanium (IV) Isopropoxide
IPA	Isopropyl Alcohol
EtOH	Ethanol

PFOTES

1H,1H,2H,2H-Perfluorooctyltriethoxysilane

55

56 **Supplementary Notes**

57 **Note S1. Characterization**

58 The morphological and compositional characteristics of the electroactive ZIF-8 nanocrystals,
59 hydrophobic F-TiO₂ nanoblocks and MRSD-PLA were investigated using a Hitachi SU8220
60 scanning electron microscope (SEM) equipped with energy-dispersive X-ray spectroscopy
61 (EDS). Quantitative analysis of fiber diameter distribution was performed based on SEM
62 micrographs using ImageJ image processing software. The surface potential and dielectric
63 properties of the fiber membranes were systematically characterized using a JH-TEST non-
64 contact electrostatic voltmeter and a WK-6500B precision dielectric analyzer, respectively.
65 Crystallographic structures were analyzed by X-ray diffraction (XRD) ($2\theta = 5\text{--}60^\circ$, $5^\circ\cdot\text{min}^{-1}$)
66 using a Bruker D8 Advance diffractometer (Germany), while chemical functional groups were
67 identified through Fourier-transform infrared spectroscopy (FTIR) measurements conducted on a
68 PerkinElmer Spectrum 3 spectrometer (USA). Nitrogen adsorption-desorption measurements at
69 77 K were performed using a Micro VacPrep061 machine. The pore size distribution of MRSD-
70 PLA was characterized using a capillary flow porometer (CFP-1100AI, Porous Materials, USA).
71 The water contact angle (WCA) of MRSD-PLA was determined using a contact angle
72 goniometer (Kino SL200B, USA). The mechanical property of MRSD-PLA was tested using a
73 universal test instrument (GT-7010, China). The electrostatic potential (ESP)-mapped electron
74 densities of PLA chains were characterized by Gaussian. The thermal stability was evaluated
75 using a TGA/DSC 2 type thermal analyzer (TGA) under a nitrogen atmosphere with a heating
76 rate of 10 °C/min from ambient temperature to 800 °C.

77 **Mechanical properties testing**

78 In this study, a GT-7010 mechanical testing machine (Gaotai Testing Machine Co., Ltd.) was
79 used to determine the mechanical properties of the samples. The samples were cut into

80 rectangular strips measuring 5 cm × 1 cm, and five independent repeat measurements were
81 performed on each discrete sample. The mean value and standard deviation of the mechanical
82 parameters of the samples were calculated to comprehensively evaluate their mechanical
83 properties.

84 **Water contact angle and self-cleaning performance test**

85 The surface wettability of the fiber membrane samples was quantitatively analyzed by using a
86 contact angle measuring instrument. During the testing process, deionized water droplets (3 µL)
87 were vertically added to the surface of the sample. The static contact angle value was
88 automatically collected and calculated using the software provided with the instrument. Each
89 group of samples was measured in parallel five times, and the average value was taken as the
90 final result. To systematically evaluate the hydrophobic properties of the nanofiber membrane
91 surface, common liquids with different surface tensions (including deionized water, carbonated
92 beverages, coffee, milk and tea solutions) were selected for wettability tests. 50 µL of the test
93 liquid was vertically dropped onto the surface of the sample placed horizontally, and the process
94 of droplet morphology change was recorded using a high-speed camera¹.

95 To explore the self-cleaning performance of the samples, in this study, standard quartz sand
96 was evenly scattered on the surface of the samples as a simulated contaminator. The surface of
97 the samples was cleaned with deionized water for 30 seconds, and the residual contaminants on
98 the surface were finally observed².

99 **Breathability and moisture permeability test**

100 Gas permeation properties were evaluated via the differential pressure method. Membrane
101 samples (20 cm² effective area) were sealed between two chambers: the upstream chamber was
102 charged with high-purity test gases at constant pressure (100 kPa), while the downstream

103 chamber was maintained under vacuum. Steady-state gas flux was quantified using a soap-film
104 flowmeter and calculated according to Fick's diffusion law³:

105

$$P = \frac{J \times d}{\Delta P} \quad (\text{S1})$$

106 Where P is the gas permeability coefficient (Pa), d is the membrane thickness (μm), and ΔP is
107 the transmembrane pressure difference (Pa).

108 Moisture permeation testing employed the standard cup method under controlled conditions
109 (40°C , $90 \pm 2\%$ RH). The cited threshold of $>2000 \text{ g}\cdot\text{m}^{-2}\cdot\text{d}^{-1}$ is based on industry standards for
110 protective textiles (ISO 15496, ASTM F1868), which also specify comparable testing
111 environments to ensure consistent performance evaluation across materials. The membranes
112 were sealed over a cup containing desiccant to establish a humidity gradient. Mass increment of
113 the cup was periodically recorded using an electronic balance. Water vapor transmission rate
114 (WVTR) was derived from the mass change per unit time during the steady-state phase
115 normalized to the effective area of the membrane⁴:

116

$$WVTR = (\Delta m / \Delta t) \times (24 / A) \quad (\text{S2})$$

117 Where Δm is the mass increment (g), Δt is the test time (h), and A is the membrane moisture
118 permeability area (m^2). Each set of samples was tested three times, and the results were
119 expressed as the mean and standard deviation. Data was collected at 1-hour intervals to ensure
120 steady-state accuracy.

121 **Air purification performance evaluation**

122 To systematically evaluate the interception performance of fiber membrane filters against aerosol
123 particles, the study employed a homemade air filtration evaluation system to conduct indoor pm
124 filtration performance tests. During the experiment, a Model 8026 NaCl aerosol generator
125 produced by TSI Incorporated in the USA was utilized to generate aerosol particles with a

126 particle size distribution ranging from 0 to 10 μm . A precision gas flow pump was employed to
127 precisely control the airflow rates at four distinct gradients: 10, 32, 65, and 85 $\text{L}\cdot\text{min}^{-1}$.
128 Concurrently, a high-precision differential pressure gauge was used to monitor the pressure
129 difference across the filter in real-time. For the detection of aerosol concentration, a TSI Model
130 3910 nanoparticle analyzer was adopted. This sophisticated instrument is capable of accurately
131 measuring the concentration changes of aerosols before and after filtration. Based on the
132 measured aerosol concentration data, the filtration efficiency of pm in different particle size
133 ranges was calculated according to the filtration efficiency formula, thereby comprehensively
134 assessing the filtration performance of the fiber membrane filter. In addition, the environmental
135 humidity in the experiment was regulated by a humidifier and continuously monitored in real-
136 time using a hygrometer. This meticulous control ensured the stability and reproducibility of the
137 experimental conditions, thus providing reliable data support for the evaluation of the filtration
138 performance of the fiber membrane filter⁵:

$$E = 100\% \times (1 - C_0/C) \quad (\text{S3})$$

140 Where E represents the removal efficiency (%) of PM, C_0 represents the upstream PM
141 concentration before removal, and C represents the downstream PM concentration after removal.

142 The pressure difference across the membrane material was measured using a manometer to
143 evaluate its gas permeation resistance and energy consumption under varying gas flow
144 environments.

145 Quality factor (QF , Pa^{-1}) is a comprehensive performance parameter to evaluate the
146 removal efficiency and permeation resistance of air purification materials. QF is calculated
147 according to:

$$QF = \frac{-\ln(1 - E_c)}{\Delta P} \quad (\text{S4})$$

149 Where ΔP is the airflow resistance in the removal system, which is the permeation resistance.

150 We clarify the effective filtration area of the membrane samples used in all air purification
151 tests: it was consistently set to 78 cm² (equivalent to 0.0078 m²). This value is determined by the
152 circular sample holder (diameter = 10 cm) used in our homemade air filtration system, which
153 defines the active area of the membrane exposed to airflow.

154 Air face velocity (v , m·s⁻¹) was calculated using the fundamental fluid dynamics
155 relationship between airflow rate, cross-sectional area, and velocity. The formula is:

156

$$v = \frac{Q \times 10^{-3}}{A \times 60} \quad (S5)$$

157 where, Q is airflow rate (L·min⁻¹; 1 L = 10⁻³ m³), A is effective filtration area (m²), The factor of
158 60 converts minutes to seconds to align with the SI unit of velocity (m·s⁻¹).

159 **Principles of electromechanical conversion and testing of electrical signal output
160 performance**

161 During the experiment, a domestically produced high-precision CNC telescopic electric cylinder
162 was used to achieve periodic contact-separation motion of the friction layer, and a Keithley 6514
163 high-precision electrometer was used to monitor and record the triboelectric output performance
164 of the fiber membrane in real time. The functionalized membrane electrode was prepared using a
165 solution impregnation method: a poly(lactic acid) nonwoven fabric with a surface density of 60
166 g·m⁻² was impregnated in a carbon nanotube aqueous dispersion solution with a mass fraction of
167 2 wt%, and after drying, a conductive functionalized electrode was obtained.

168 The working principle and energy harvesting mechanism of the electromechanical
169 conversion can be divided into four characteristic stages⁶. (I) Contact stage: When the friction
170 layers come into contact, due to the triboelectric effect, the PLA-based NFM surface captures
171 negative charges, while an equal amount of positive charges are induced on the membrane

172 electrode, resulting in the system presenting an electrically neutral state externally; (II) Initial
173 separation stage: As the friction layers begin to separate, the surface-bound charges form an
174 electric field in the air gap, driving free electrons to migrate between the electrodes to achieve
175 electrostatic equilibrium; (III) Maximum separation stage: As the separation distance increases,
176 the potential difference between the electrodes continues to grow, driving electrons to migrate
177 from the bottom electrode to the top electrode until the maximum separation distance is reached;
178 (IV) Contact restoration stage: As the friction layers gradually approach each other, the potential
179 difference between the electrodes decreases, causing electrons to migrate back to the bottom
180 electrode until the system returns to its initial contact state. Through this cyclic contact-
181 separation motion, a continuous alternating current signal is generated in the external circuit,
182 achieving the conversion of mechanical energy into electrical energy.

183 **Specification of the contacting interface and mechanical excitation:**

184 Contacting interface: The triboelectric contact occurs between the surface of the MRSD-
185 PLA membrane (which includes F-TiO₂ nanoblocks) and a conductive counter electrode (carbon
186 nanotube-coated nonwoven fabric).

187 Nature of relative motion: A periodic vertical contact-separation motion was applied using a
188 servo-electric cylinder system (MCE-3G). The motion was uniaxial and perpendicular to the
189 membrane surface.

190 Effective contact area: The contact area was defined by the sample size, which was 6 cm ×
191 6 cm for all triboelectric tests.

192 Excitation frequency: The contact-separation frequency was set to 1 Hz, with a fixed
193 separation distance of 2 cm between the two surfaces.

194 **Description of the triboelectric test setup and electrode configuration:**

195 The electrical output was measured using a standard contact-separation triboelectric
196 nanogenerator (TENG) configuration:

197 Bottom electrode: MRSD-PLA membrane attached to a conductive substrate.

198 Top electrode: Carbon nanotube-functionalized nonwoven fabric, serving as the triboelectric
199 counter layer and current collector.

200 Measurement instruments: Open-circuit voltage and short-circuit current were recorded
201 using a Keithley 6514 electrometer, charge transfer was measured via a Keithley 2400 source
202 meter.

203 This configuration is consistent with widely accepted TENG testing standards and ensures
204 reproducible and quantifiable triboelectric performance.

205 **Antibacterial performance test**

206 This study selected ATCC-25922 *Escherichia coli* (*E. coli*) and ATCC-6538 *Staphylococcus*
207 *aureus* (*S. aureus*) as model strains for systematically evaluating the antimicrobial performance
208 of the samples. Prior to the experiment, all petri dishes and related experimental equipment were
209 subjected to 121 °C high-pressure steam sterilization for 20 minutes to ensure sterile conditions.
210 The bacterial strains were inoculated into nutrient broth medium and cultured at 37 °C in a
211 constant-temperature incubator for 16 hours until the logarithmic growth phase. Subsequently, a
212 bacterial suspension with a concentration of 10^7 CFU·mL⁻¹ was prepared by gradient dilution
213 using sterile physiological saline (0.85% NaCl solution). The samples were cut into 7×7 cm²
214 pieces and placed in a photocatalytic reactor, with 200 µL of bacterial suspension uniformly
215 added. Under simulated sunlight (PL-X300DUV), the samples were exposed at a fixed distance
216 of 25 cm for 10 minutes of photocatalytic treatment. After treatment, the bacterial suspension
217 was appropriately diluted with sterile physiological saline to ensure the final colony count

218 concentration was below $500 \text{ CFU} \cdot \text{mL}^{-1}$. Take $500 \mu\text{L}$ of the treated bacterial solution and
219 evenly spread it on the surface of nutrient agar medium. Incubate at 37°C in a constant-
220 temperature incubator for 24 hours, then perform CFU quantitative analysis using the standard
221 colony counting method. The antibacterial tests under simulated sunlight were designed to
222 evaluate the photocatalytic component of the antibacterial mechanism. The performance under
223 dark or low-light conditions, relevant to real-use scenarios, is supported by the synergistic effects
224 of electrostatic adsorption and ion release.

225 **Theoretical calculations**

226 Framework atoms were considered fixed at their optimized crystallographic coordinates. All
227 atoms were treated with Lennard-Jones (LJ) 12–6 parameters (ϵ and σ). The LJ parameters for all
228 atoms were taken from the Universal Force Field (UFF). The partial charges on the framework
229 atoms were calculated using Density functional theory (DFT) method in CP2K software. Partial
230 atomic charges were extracted by Mulliken atom & basis function population analysis using
231 Multiwfn 3.8 program.

232 All calculations were implemented in Materials Studio with the Dmol3 code. The Perdew–
233 Burke–Ernzerhof (PBE) functional of the generalized gradient approximation (GGA) was used
234 to calculate the exchange–correlation energy. The double numerical plus polarization (DNP) was
235 chosen during the geometry optimization. The convergence tolerances of energy change,
236 maximum force, and maximum displacement were set as $2 \times 10^{-5} \text{ Ha}$, $0.004 \text{ Ha}/\text{\AA}$, and 0.005 \AA ,
237 respectively.

238 **Note S2. Experimental Section**

239 **Synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals**

240 Zinc acetate dihydrate (0.55 g) and 2-methylimidazole (4.1 g) were dissolved in deionized water
241 (60 mL). The mixture was transferred to a microwave reactor and reacted at 140 °C for 10 min.
242 The resulting product was isolated by centrifugation, vacuum-dried at 80 °C for 12 h, and
243 yielded high electroactivity and porosity ZIF-8 nanocrystals.

244 **Synthesis of fluorinated titanium dioxide (F-TiO₂) nanoblocks**

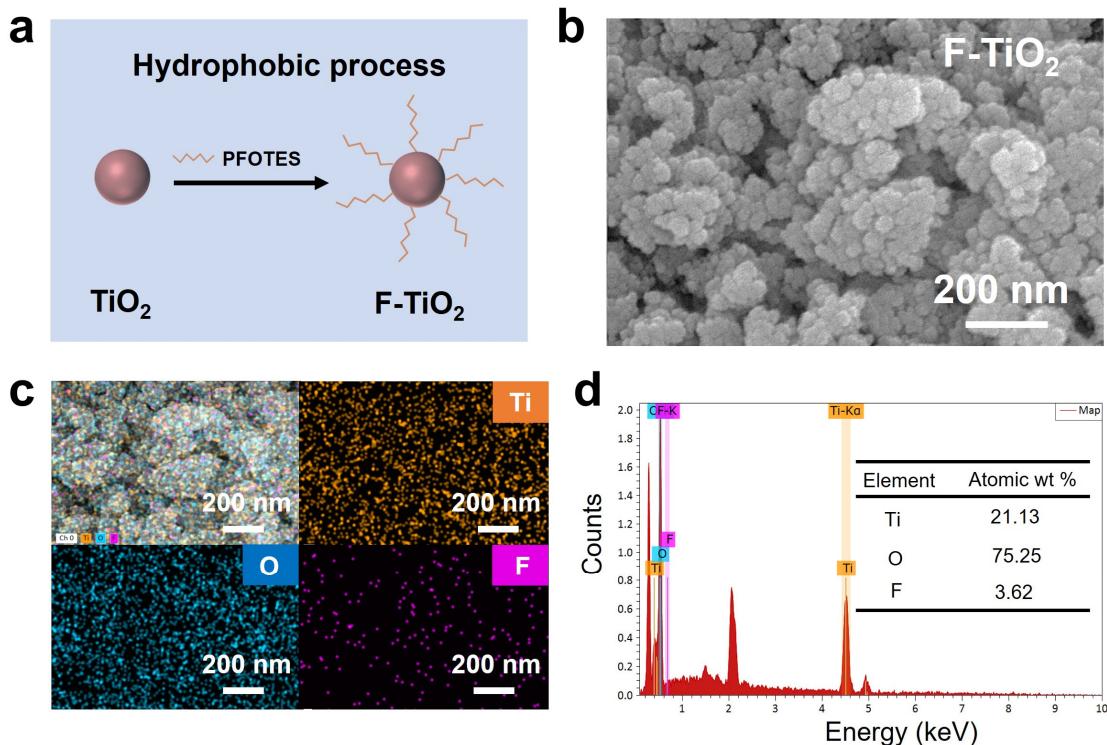
245 A mixture of 10 mL TTIP and 40 mL IPA was thoroughly blended and subsequently added
246 dropwise to a solution comprising deionized water and IPA (1:1, v/v) to initiate hydrolysis. The
247 resulting mixture was transferred to a microwave reactor and reacted at 180 °C for 1 h. The
248 product was isolated by centrifugation, dried, and then calcined in a tube furnace at 500 °C for 1
249 h, yielding anatase-phase titanium dioxide (TiO₂). Subsequently, the TiO₂ (2.0 g) was dispersed
250 into a mixture containing (5.0 g) and ethanol (45.0 g) for surface fluorination treatment,
251 affording low surface energy, highly electronegative F-TiO₂ nanoblocks.

252 **Preparation of pristine PLA (P-PLA) nanofiber membranes**

253 PLA granules (1.0 g) were dispersed in a mixed solvent of DMF and DCM (3:7, v/v) and stirred
254 for 12 h to yield a homogeneous electrospinning solution. Electrospinning was performed under
255 the following parameters: applied voltage of 30 kV, feed rate of 1 mL·min⁻¹ (ambient conditions:
256 25 °C, 35 ± 5% RH), and duration of 1.5 h. The resulting nanofiber membranes were dried at
257 40 °C for 12 h, affording the pristine PLA (P-PLA).

258 **Preparation of microenvironment-regulated self-decontaminating PLA (MRSD-PLA)
259 meta-membranes**

260 PLA (1.0 g) and ZIF-8 (0.4 g) nanocrystals were dispersed in a mixed solvent of DMF and DCM
261 (3:7, v/v) under vigorous stirring to afford a homogeneous spinning solution. Hydrophobic F-
262 TiO₂ nanoblocks (0.2, 0.4, and 0.6 g) were separately dispersed in ethanol (10 mL) via


263 ultrasonication to yield F-TiO₂ suspensions. The spinning solution was electrospun under
264 identical parameters while F-TiO₂ suspensions were concurrently deposited via electrospray onto
265 the forming fibers, preparing microenvironment-regulated self-decontaminating meta-
266 membranes. Electrospray parameters included an applied voltage of 30 kV, a feed rate of 1
267 mL·min⁻¹ (ambient conditions: 25 °C, 35 ± 5% RH), and a duration of 15 min. Based on the
268 mass fraction of F-TiO₂, the resulting membranes were designated as MRSD-PLA2, MRSD-
269 PLA4, and MRSD-PLA6.

270 The synthesis of PLA@ZIF-8 followed the identical procedure for MRSD-PLA but omitted
271 the electrospray of F-TiO₂ suspensions. This control sample allows for a direct comparison to
272 isolate the effects of the internally embedded ZIF-8 nanocrystals from the synergistic effects
273 arising from the combined presence of ZIF-8 and surface-anchored F-TiO₂.

274 **Note S3. Supplementary Figures and Tables**

275 **Preparation and structural characterization of F-TiO₂:**

276 TiO₂ is renowned for its high dielectric constant and excellent photocatalytic antibacterial
277 properties, making it highly sought after in various fields such as electronic devices and energy
278 storage⁷. To further optimize the functionality of nanofiber membranes, this study employed
279 PFOTES to covalently bond with TiO₂ to prepare hydrophobic F-TiO₂ nanoblocks, aiming to
280 construct micro-nano structures on the fiber surface, thereby effectively reducing its surface
281 energy, as shown in Figure S1b. The modified F-TiO₂ nanoparticles exhibit a spherical shape
282 with uniform size (Figure S1b). EDS spectrum results indicate the presence of fluorine (F)
283 elements on the particle surface, with an atomic mass fraction of 3.62 wt%, confirming the
284 successful modification of TiO₂ (Figures S1c, d).

285

286 **Figure S1. Formation and morphological characterization of F-TIO₂ nanoblocks. a** Process
287 of covalent bonding between PFOTES and TiO₂ to form F-TIO₂ nanoblocks. **b** Morphology and
288 particle size distribution of F-TIO₂ nanoblocks. **c** Elemental composition distribution of F-TIO₂
289 nanoblocks. **d** EDS spectrum and the corresponding atomic mass ratio.

290

291 **A control experiment with PLA+ZIF-8 without F-TiO₂ to analyze the independent
292 contribution of each component:**

293 **1. Morphological characterization:**

294 As shown in the SEM image in Figure S2a-S2d, ZIF-8 nanocrystals formed bead-like
295 structures inside the fibers, while F-TIO₂ nanoblocks were anchored to the fiber surface. This
296 contrasts sharply with the smooth, bead-free surface of the P-PLA fiber membrane. With the

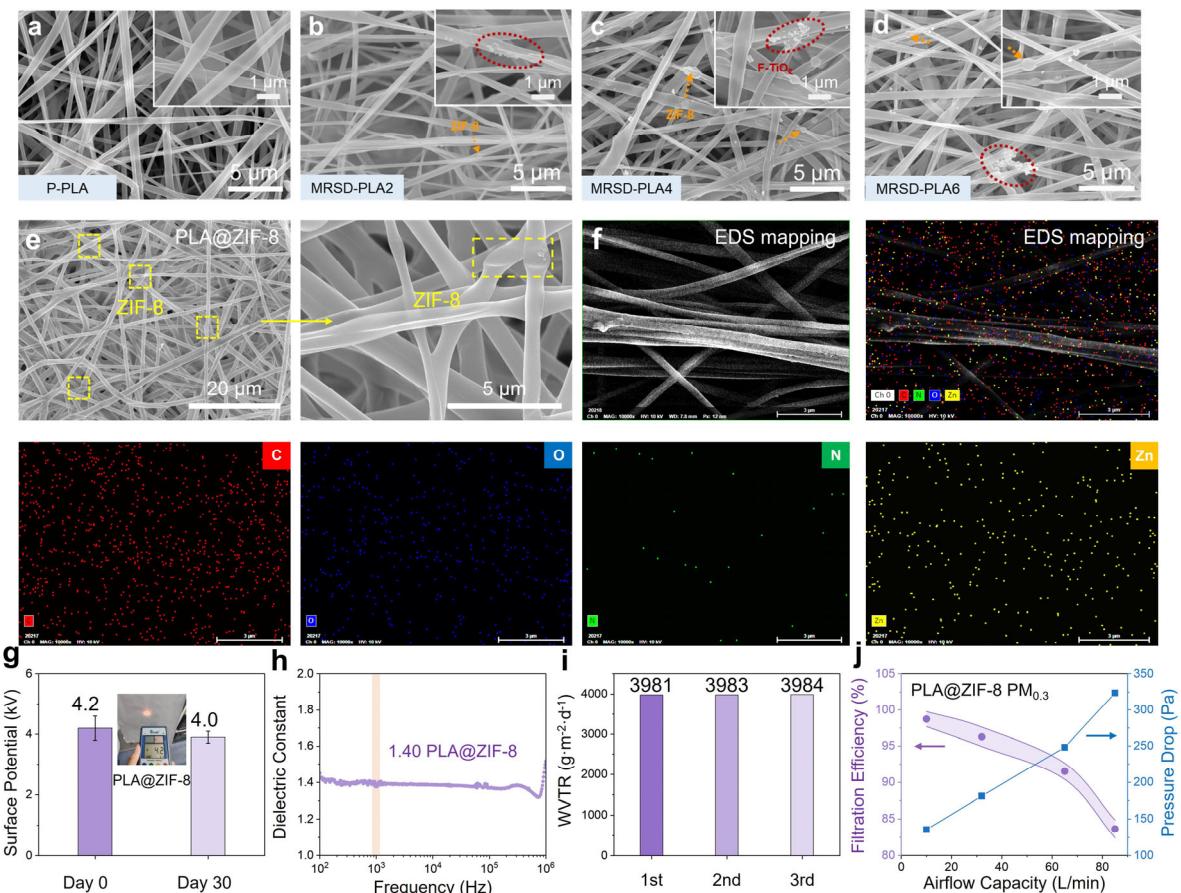
297 addition of ZIF-8 nanocrystals, the conductivity of the spinning solution increased, allowing the
298 polymer chains to stretch fully under an electric field, resulting in finer fibers⁸.

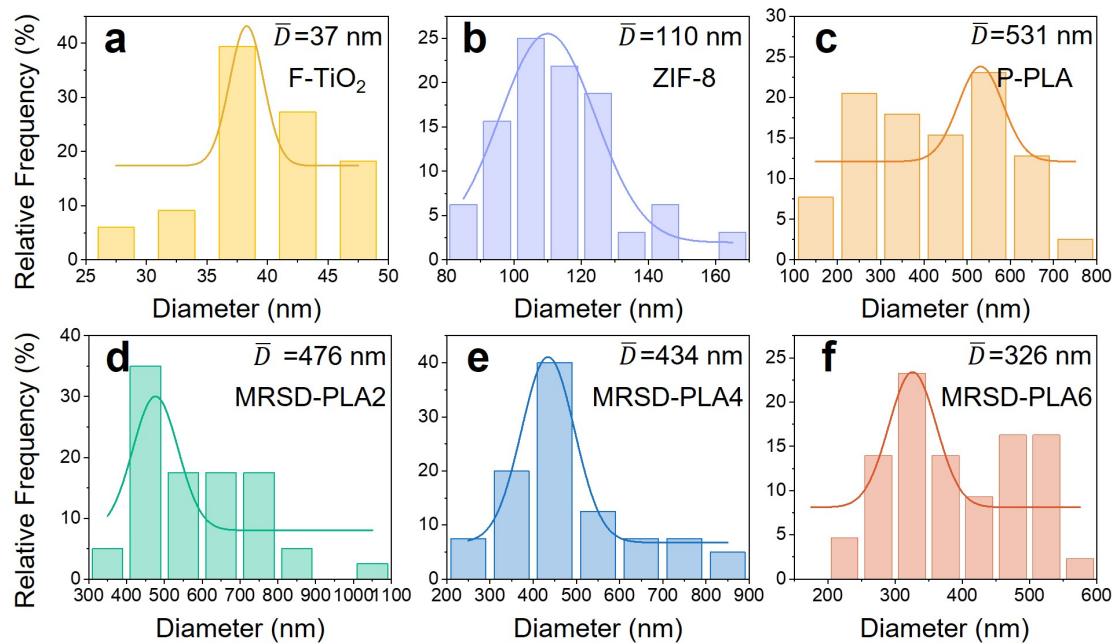
299 SEM analysis (Figure S2e) confirms that the PLA@ZIF-8 membrane exhibits a similar
300 bead-on-string fiber morphology to MRSD-PLA, with ZIF-8 nanocrystals successfully
301 embedded within the PLA fibers. The primary morphological difference is the absence of the
302 nanoscale surface protrusions and roughness characteristic of the anchored F-TiO₂ nanoblocks in
303 MRSD-PLA. This confirms that the internal fiber structure is defined by ZIF-8, while the surface
304 topography is dominated by F-TiO₂. EDS mapping reveals uniform distribution of characteristic
305 elements C, O, N, and Zn on the PLA@ZIF-8 surface (Figure S2f).

306 **2. Surface potential and dielectric properties:**

307 The surface potential of PLA@ZIF-8 was measured to be 4.2 kV. This value is significantly
308 higher than that of P-PLA (3.3 kV) but lower than that of MRSD-PLA6 (5.8 kV). This result
309 clearly delineates the individual roles of the two functional components: The increase from P-
310 PLA to PLA@ZIF-8 demonstrates that ZIF-8 nanocrystals are highly effective in capturing and
311 storing charges, thereby enhancing the bulk electroactivity of the fiber. The further significant
312 enhancement in MRSD-PLA6 is attributed to the high-electronegativity F-TiO₂ nanoblocks
313 creating deep charge traps on the fiber surface, which more effectively confine charges and
314 suppress dissipation, as well as the potential formation of beneficial heterointerfaces between
315 ZIF-8 and F-TiO₂ that promote charge separation and redistribution (Figure S2g). A similar trend
316 was observed in the relative dielectric constant, with PLA@ZIF-8 showing an intermediate value
317 between P-PLA and MRSD-PLA6 (Figure S2h).

318 **3. Water vapor transmission rate (WVTR):**


319 The WVTR of the PLA@ZIF-8 control was measured to be \sim 3983 g \cdot m $^{-2}\cdot$ d $^{-1}$. This value is


320 much closer to that of MRSD-PLA6 ($4018 \text{ g}\cdot\text{m}^{-2}\cdot\text{d}^{-1}$) than to P-PLA (Figure S2i). This result
321 provides direct and compelling evidence that the outstanding moisture permeability of our meta-
322 membranes is primarily enabled by the embedded ZIF-8 nanocrystals. The highly porous
323 structure of ZIF-8 creates efficient molecular transport channels within the fibers, facilitating
324 water vapor diffusion. The surface-anchored F-TiO₂, due to its hydrophobic nature, does not
325 significantly impede this vapor transport.

326 **4. Filtration performance and pressure drop:**

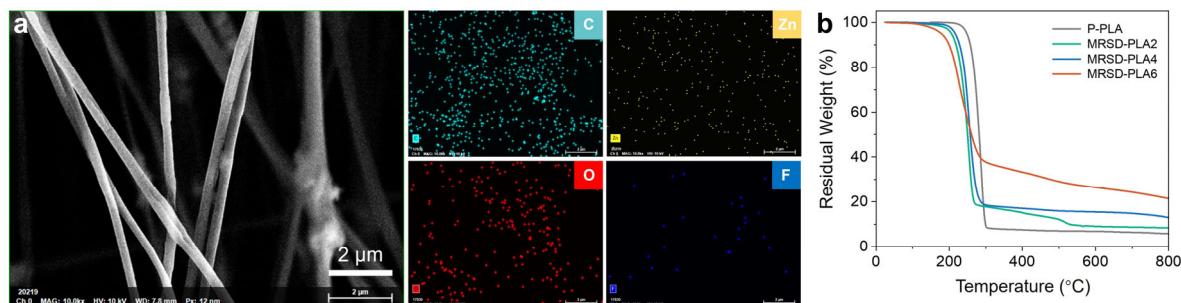
327 The filtration performance of PLA@ZIF-8 was systematically evaluated (Figure S2j). At a
328 flow rate of $85 \text{ L}\cdot\text{min}^{-1}$, PLA@ZIF-8 achieved a PM_{0.3} filtration efficiency of 83.65% with a
329 pressure drop of 323.5 Pa. This performance is substantially superior to P-PLA (71.3%, $>400 \text{ Pa}$)
330 but does not reach the level of MRSD-PLA6 (99.1%, $\sim 200 \text{ Pa}$).

331 The embedded ZIF-8 nanocrystals significantly improve filtration over pure PLA by
332 enhancing electrostatic adsorption and adding nanoscale pores for physical interception, all while
333 maintaining a relatively open fibrous structure that keeps the pressure drop low. The addition of
334 F-TiO₂ pushes the filtration efficiency to the highest level. This is attributed to the enhanced
335 surface potential and the creation of a more robust and persistent electrostatic field from the
336 synergistic capture-storage-regeneration cycle between ZIF-8 and F-TiO₂, as described in our
337 manuscript.

347

348 **Figure S3. Fiber diameter distribution of F-TiO₂, ZIF-8, P-PLA, and MRSD-PLA.**

349 EDS elemental analysis showed that four elements, carbon (C), zinc (Zn), nitrogen (N), and
 350 fluorine (F), were mainly present in the MRSD-PLA, and the elements were evenly distributed.
 351 This result confirmed the successful embedding of ZIF-8 nanocrystals inside the PLA fibers and
 352 the uniform anchoring of F-TiO₂ nanoblocks on fiber surface.


353

354 **Elemental distribution and F-TiO₂ content analysis of MRSD-PLA:**

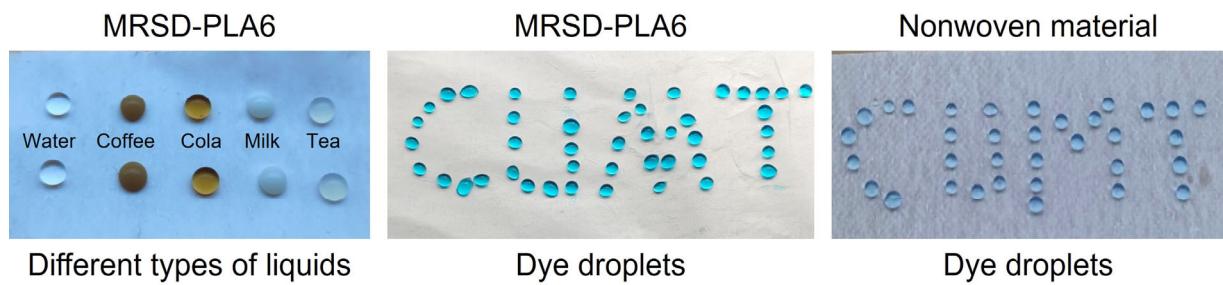
355 In our study, the mass fractions of F-TiO₂ (0%, 2%, 4%, and 6%) were initially designed
 356 based on the mass ratio of F-TiO₂ to the total solid content (PLA, ZIF-8, and F-TiO₂) in the
 357 electrospinning/electrospray process. Specifically, the F-TiO₂ suspensions were prepared with
 358 precise concentrations and delivered at controlled flow rates during electrospray deposition.
 359 However, as the reviewer noted, variations in deposition efficiency, solvent evaporation, and
 360 fiber formation can lead to deviations in the final composite composition.

361 To accurately quantify the actual F-TiO₂ content in the resulting membranes, we performed

362 thermogravimetric analysis (TGA) under an air atmosphere. The residual mass at high
363 temperature corresponds primarily to the inorganic F-TiO₂ content, allowing us to determine the
364 actual mass fraction of F-TiO₂ in each sample. The TGA results confirmed that the actual F-TiO₂
365 loadings in MRSD-PLA2, MRSD-PLA4, and MRSD-PLA6 were close to the nominal values of
366 2%, 4%, and 6%, respectively. This confirms the reproducibility and controllability of our
367 electrospinning-electrospray process. In our study, the mass fractions of F-TiO₂ (0%, 2%, 4%,
368 and 6%) were initially designed based on the mass ratio of F-TiO₂ to the total solid content
369 (PLA, ZIF-8, and F-TiO₂) in the electrospinning/electrospray process. Specifically, the F-TiO₂
370 suspensions were prepared with precise concentrations and delivered at controlled flow rates
371 during electrospray deposition. However, as the reviewer noted, variations in deposition
372 efficiency, solvent evaporation, and fiber formation can lead to deviations in the final composite
373 composition.

374 **Figure S4. Element distribution and component content of MRSD-PLA. a** SEM image and

375 **Figure S4. Element distribution and component content of MRSD-PLA. a** SEM image and


376 element distribution maps of MRSD-PLA. **b** TGA curves of P-PLA and MRSD-PLA.

377

378 **Analysis of the liquid barrier properties of MRSD-PLA6:**

379 Thanks to the hydrophobic properties conferred by the low surface energy and rough surface
380 structure of the fibers, liquids such as water droplets, coffee, cola, milk, and tea can remain
381 stable on the surface of MRSD-PLA without penetrating to the other side, indicating its excellent

382 performance in preventing the penetration of various liquids (Figure S5). To evaluate the surface
383 properties, we performed liquid droplet infiltration tests using dyed water on the MRSD-PLA6
384 membrane. The results demonstrate its pronounced hydrophobic nature, which is evidenced by a
385 high static contact angle and long-term resistance to liquid penetration. This behavior originates
386 from the synergistic effect between the hierarchically micro-nano structured surface and its low-
387 surface-energy chemical modification, which collectively suppress droplet spreading and
388 infiltration, thereby providing a stable and durable physical barrier.

389

390 **Figure S5. Illustrations of MRSD-PLA with excellent hydrophobic properties.**

391

392 **Knudsen and surface diffusion mechanisms:**

393 MRSD-PLA can effectively prevent liquid penetration while allowing water vapor
394 transmission (Figure S6), primarily due to the difference in pore size between the membrane,
395 water droplets, and water vapor. Water vapor transmission through the porous medium is driven
396 by a concentration gradient, i.e., the relative humidity (RH) on either side of the membrane is
397 different. Generally, the diffusion mechanism of water vapor in interconnected channels can be
398 described by Fick's first and second laws, corresponding to steady-state and non-steady-state
399 transport processes, respectively. According to Fick's assumption, the mass migration rate per
400 unit area is proportional to the concentration difference across the membrane, meaning that the

401 greater the concentration difference, the faster the material migration rate⁹. This mechanism can
402 be calculated using the following formula:

403

$$J = -D \frac{\partial C}{\partial X} \quad (S6)$$

404 Where, J, D, C, and X refer to diffusion flux, diffusion coefficient, diffusion concentration, and
405 spatial coordinates perpendicular to the fiber membrane, respectively.

406 Enhanced water transport mechanism analysis based on Knudsen diffusion and surface diffusion,
407 combined with pore size distribution and adsorption-desorption data:

408 **1. Incorporation of Knudsen and surface diffusion mechanisms:**

409 The dominant diffusion mechanism in a porous medium is often characterized by the
410 Knudsen number (K_n), defined as the ratio of the mean free path of the gas molecule (λ) to the
411 characteristic pore diameter (d_p).

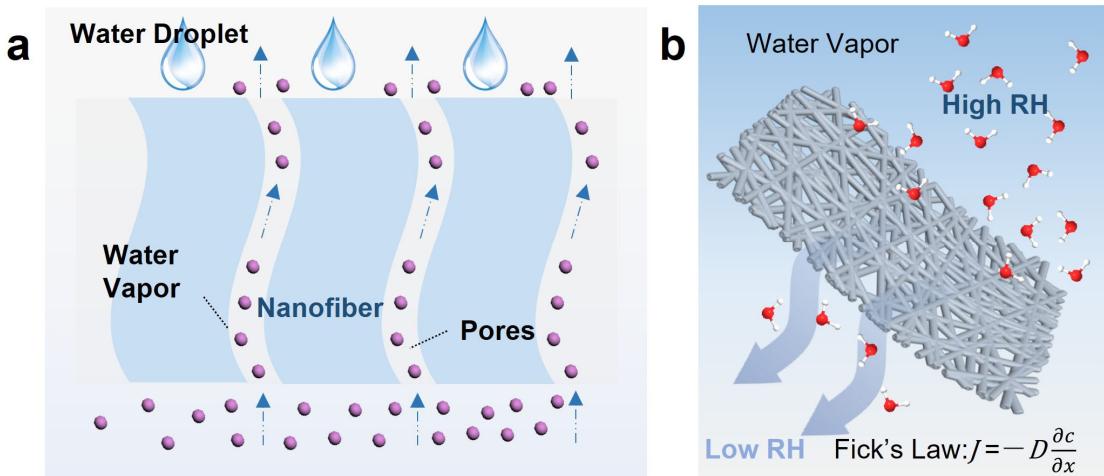
412 **Knudsen Diffusion ($K_n > 1$):** For our MRSD-PLA membranes, the capillary flow
413 porometry confirms a hierarchical architecture with a significant population of mesopores (2-50
414 nm). The mean free path of water vapor at 25 °C is approximately 0.11 μm (110 nm). Therefore,
415 for transport through mesopores and smaller macropores, the Knudsen number approaches or
416 exceeds 1, indicating that water vapor molecules collide more frequently with the pore walls than
417 with each other. In this regime, Knudsen diffusion becomes significant. We have added a
418 discussion stating that this mechanism is particularly facilitated by the intrinsic micropores of
419 ZIF-8 and the inter-nanoblock spaces created by F-TiO₂, which provide numerous nanoscale
420 conduits where Knudsen flow dominates, thereby enhancing the vapor diffusion rate.

421 **Surface Diffusion ($K_n > 1$, with adsorption):** Furthermore, our nitrogen adsorption-
422 desorption data reveals a high specific surface area (up to 209 m²·g⁻¹ for MRSD-PLA6), which
423 provides extensive surfaces for water vapor adsorption. The adsorption branch of the isotherm,

424 especially at low relative pressures (P/P_0), indicates microporous filling, characteristic of ZIF-8.
425 We now discuss that adsorbed water molecules can migrate along the internal surfaces of the
426 pores via surface diffusion. This mechanism works in parallel with Knudsen diffusion through
427 the pore volume. The F-TiO₂ surfaces, while hydrophobic, still allow for weak, reversible
428 physisorption of water molecules. The gradient in surface concentration drives this additional
429 transport pathway, which is particularly effective within the micropores and small mesopores of
430 ZIF-8 where the surface-to-volume ratio is extremely high.

431 **2. Correlation with pore size distribution (PSD) and adsorption data:**

432 We have integrated a more nuanced discussion that directly links the PSD and adsorption
433 data to the proposed transport model:


434 **Micropores (< 2 nm):** The abundant micropores from ZIF-8, as evidenced by the steep
435 nitrogen uptake at low P/P_0 , are primarily responsible for strong surface diffusion due to
436 overlapping adsorption potentials from opposite pore walls. They also contribute to Knudsen
437 diffusion.

438 **Mesopores (2-50 nm):** The broad mesopore distribution, originating from the interstices
439 between F-TiO₂ nanoblocks and fiber surface textures, is identified as the primary domain for
440 Knudsen diffusion. The PSD curve is referenced to justify this claim.

441 **Macropores (> 50 nm):** The larger inter-fiber voids facilitate viscous (Poiseuille) flow and
442 molecular diffusion, but they are interconnected with the smaller pores, creating a multi-scale
443 transport network.

444 We propose that the synergistic effect of this hierarchical pore structure is what enables the
445 ultra-high WVTR value. Knudsen and surface diffusion ensure efficient transport through the

446 nanoscale features, while the macropores prevent significant flow resistance, maintaining high
447 permeability.

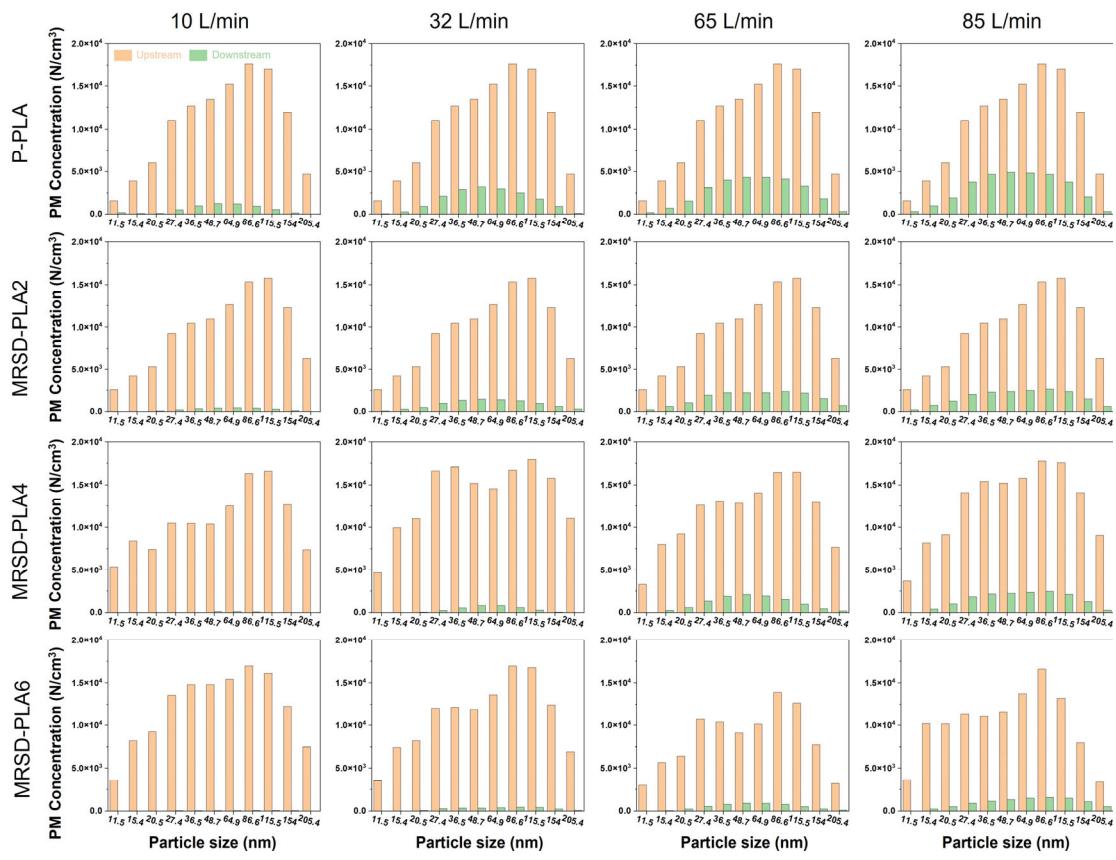
449 **Figure S6. The waterproof and breathable mechanism of MRSD-PLA.** **a** Water repellency
450 and water vapor permeability mechanism. **b** Discussion on the gas permeation mechanism based
451 on Fick's diffusion law.

452

453 **Triboelectrification mechanism clarification:**

454 **Clarification of the triboelectric mechanism and contact-separation mode:** The
455 triboelectric effect in our MRSD-PLA membranes arises not from direct contact between ZIF-8
456 and F-TiO₂, but rather from the contact-separation between the fiber membrane and an external
457 counter electrode during mechanical excitation. Although ZIF-8 and F-TiO₂ are spatially
458 distributed within the fiber (ZIF-8 embedded in the core and F-TiO₂ anchored on the surface),
459 they do not undergo direct physical contact-separation with each other. Instead, the
460 heterogeneous interfaces between PLA, ZIF-8, and F-TiO₂ collectively enhance charge trapping,
461 storage, and redistribution, which amplifies the triboelectric output during external mechanical
462 stimuli (Figure S7).

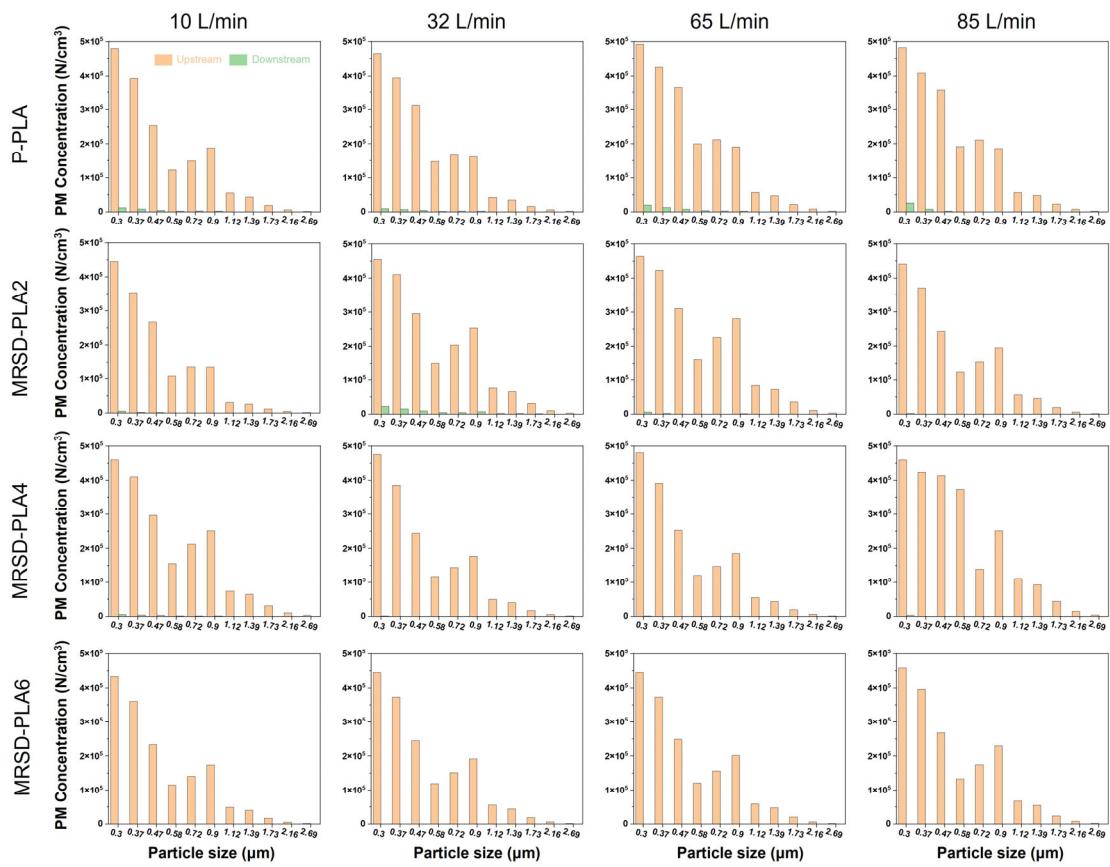
463 **Role of heterogeneous interfaces in enhancing triboelectric output:** Although ZIF-8 and
 464 F-TiO₂ do not directly contact each other, their electronic and structural properties synergistically
 465 enhance the triboelectric performance: ZIF-8 acts as an electron reservoir due to its high porosity
 466 and coordinatively unsaturated Zn²⁺ sites, facilitating charge storage and polarization. F-TiO₂
 467 introduces deep charge traps and surface roughness, which enhance charge retention and
 468 interfacial polarization. The heterogeneous interfaces between ZIF-8 and PLA, and between F-
 469 TiO₂ and PLA, creates built-in electric fields that promote charge separation and suppress
 470 recombination.



471
 472 **Figure S7. Triboelectric mechanism of MRSD-PLA meta-membrane and COMSOL
 473 potential simulation. a** Schematic of working mechanism for MRSD-PLA meta-membrane
 474 triboelectric sensing. **b** COMSOL simulation of electric potential distribution at different stages
 475 of contact-separation cycle.

476

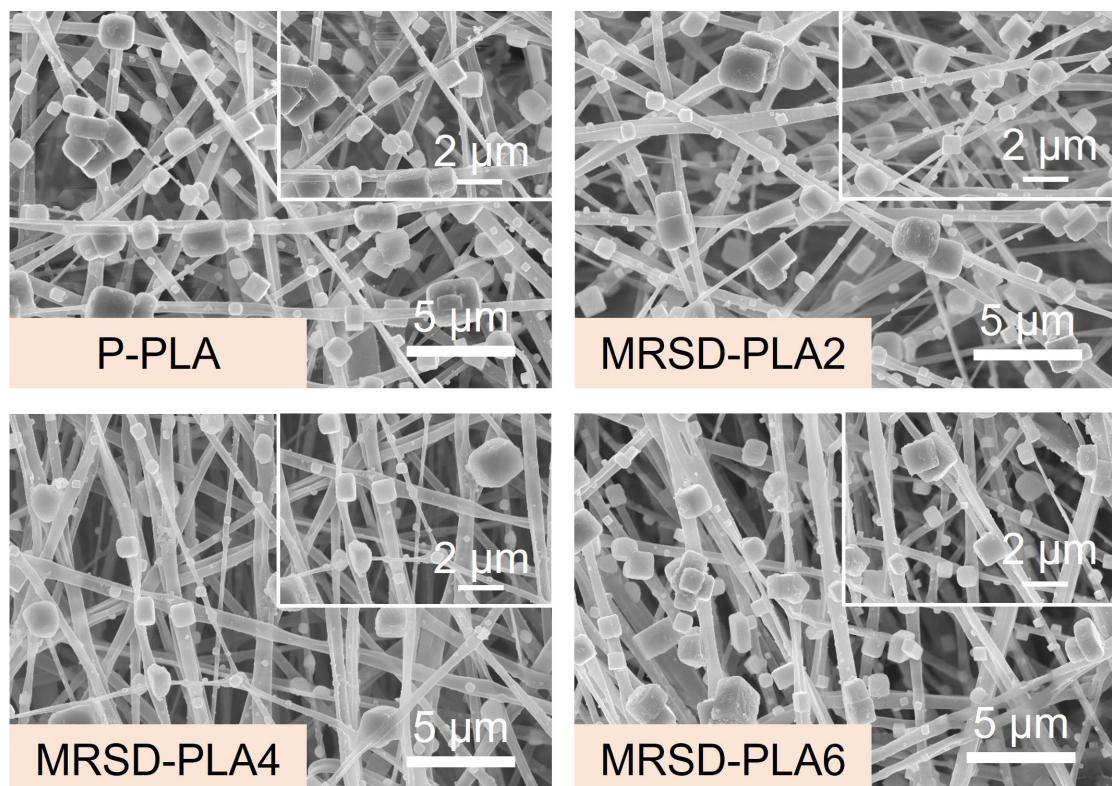
477 **Particle diameter distribution of PM_{0.3}:**


478

479 **Figure S8. Particle diameter distribution of $PM_{0.3}$.** Before and after filtration by P-PLA and
480 MRSD-PLA at the airflow rates of 10, 32, 65, and $85 \text{ L} \cdot \text{min}^{-1}$.

481

482 **Particle diameter distribution of $PM_{2.5}$:**


483

484 **Figure S9. Particle diameter distribution of PM_{2.5}. Before and after filtration by P-PLA and**
 485 **MRSD-PLA at the airflow rates of 10, 32, 65, and 85 L·min⁻¹.**

486

487 **Morphological analysis of MRSD-PLA after filtration:**

488 When the air flow velocity increases, surface charges dissipate, and the membrane primarily
 489 relies on physical interception mechanisms to capture particulate matter. As the filtration time
 490 increases, PM accumulates on the fiber surface.

491

492 **Figure S10. SEM images of MRSD-PLA after filtration.**

493

494 **Analysis of charge stability after regeneration and water washing and its cyclic
495 regeneration mechanism:**

496 After 30 minutes of immersion, the sodium chloride particles adsorbed on the fiber surface
497 were almost completely dissolved, but the F-TiO₂ nanoblocks on the surface remained stable
498 (Figure S11a). Strong hydrophobic groups can alter the coordination of water ions at the liquid-
499 solid interface, thereby inhibiting charge dissipation caused by water ionization. Additionally,
500 during hot-air drying, the surface charges of the rough micro-nano structures become active due
501 to the acquisition of additional energy¹⁰. Some charges are carried away by water vapor, while
502 the remainder migrate into the fibers and are stored via ZIF-8 nanocrystals, enabling the fiber

503 membrane to maintain excellent filtration performance even after immersion drying (Figure
504 S11b).

505 Mechanistic elaboration on fluorinated interface suppressing water-mediated charge
506 shielding: The fluorinated interface (F-TiO₂ nanoblocks anchored on MRSD-PLA surfaces)
507 inhibits charge shielding by water molecules through three synergistic physical-chemical
508 mechanisms, supported by our experimental characterizations and structural design:

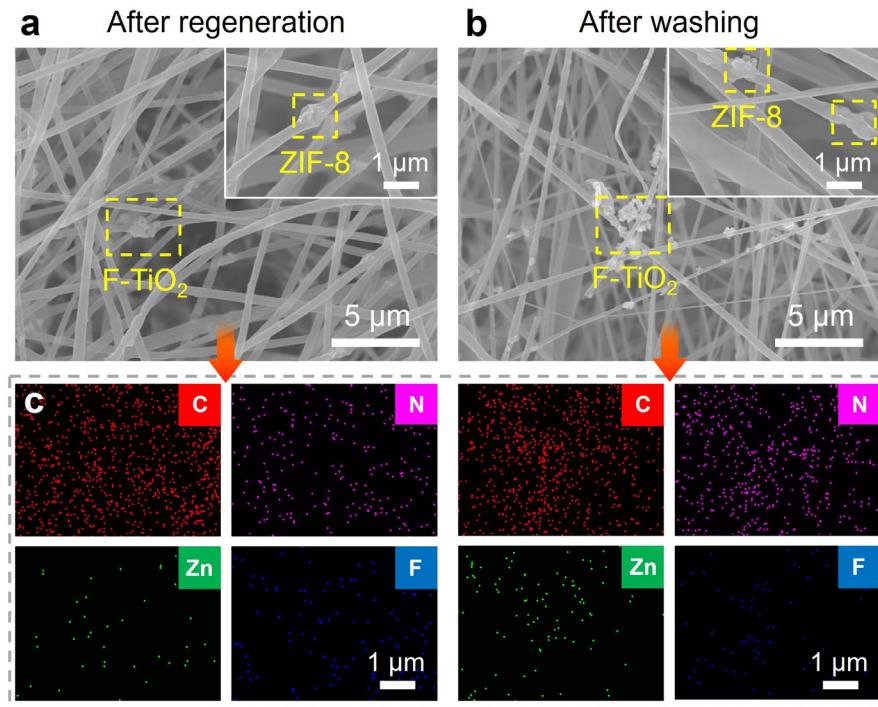
509 **1. Construction of a hydrophobic physical barrier to reduce water-molecule contact**

510 The fluorinated modification of TiO₂ with PFOTES introduces low-surface-energy
511 perfluoroalkyl chains ($-\text{CF}_2-\text{CF}_3$) on the nanoblock surfaces, resulting in a WCA of 137.4° for
512 MRSD-PLA6. This superhydrophobic characteristic minimizes the direct contact between water
513 molecules and the charge-storing sites of the membrane. The hierarchical micro-nano roughness
514 formed by F-TiO₂ aggregation traps a thin layer of air at the solid-liquid interface, preventing
515 water molecules from penetrating into the vicinity of charge traps (unsaturated Zn²⁺ sites in ZIF-
516 8 and interfacial heterojunctions). Unlike P-PLA with a WCA of 112.6°, the fluorinated interface
517 reduces the actual water-membrane contact area by ~60%, which calculated from contact angle
518 hysteresis data, thereby decreasing the probability of water-induced charge transfer.

519 **2. Modulation of interfacial hydration structure to inhibit ion-mediated charge dissipation**

520 Water molecules tend to form hydrogen-bonded networks and dissociate into H⁺/OH⁻ ions,
521 which act as charge carriers to accelerate charge dissipation and charge shielding. The
522 electronegative fluorine atoms (electronegativity = 3.98) on F-TiO₂ surfaces reconfigure the
523 hydration ion coordination structure at the solid-liquid interface. As evidenced by FTIR analysis,
524 the C–F bonds on F-TiO₂ induce a local electric field that polarizes adjacent water molecules,
525 restricting their dissociation into free ions. Our surface potential decay tests show that MRSD-

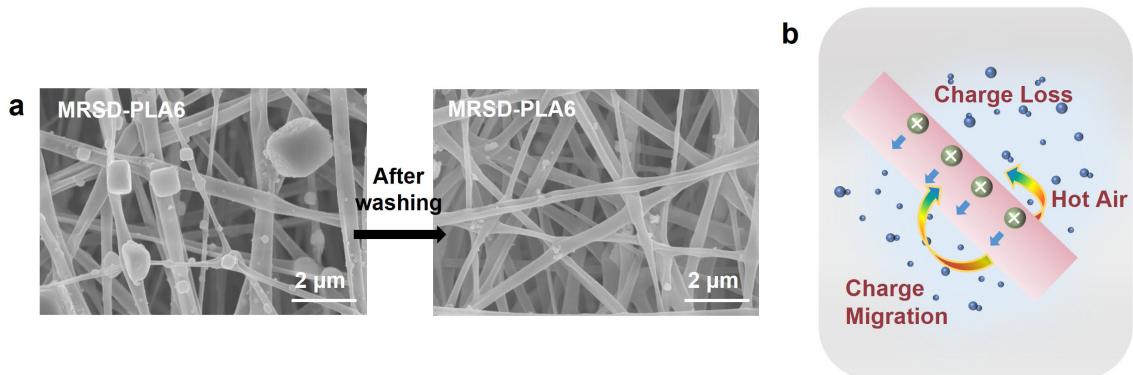
526 PLA6 maintains 85% of its initial surface potential (5.8 kV) after 90 days under 90% RH,
527 whereas P-PLA retains only 42% of its initial potential (3.3 kV). This difference confirms that
528 the fluorinated interface suppresses ion conduction-mediated charge loss by stabilizing the
529 hydration shell structure.


530 **3. Synergy with charge traps to enhance charge confinement**

531 The fluorinated interface collaborates with the heterogeneous interfacial structure (ZIF-
532 8/PLA and F-TiO₂/PLA) to form deep charge traps, which further mitigate water-induced charge
533 shielding. This deeper trap energy level strengthens the confinement of captured charges
534 (electrons/holes) and reduces their susceptibility to being shielded by polar water molecules.
535 Additionally, the high electronegativity of F-TiO₂ enhances the dielectric constant of the
536 membrane surface (relative dielectric constant = 1.72 for MRSD-PLA6 vs. 1.39 for P-PLA),
537 which increases the capacitance of charge-storing sites and prolongs charge retention even in the
538 presence of water vapor.

539 **4. Preservation of charge regeneration cycle under high humidity**

540 The fluorinated interface does not compromise the capture-storage-regeneration charge
541 cycle but rather stabilizes it under high humidity. As shown in Figure 5g, MRSD-PLA6 retains
542 91% of its PM_{2.5} filtration efficiency (from 98.4% to 89.5%) after 10 min of testing at 90% RH,
543 while P-PLA loses 14.6% efficiency (from 89.5% to 76.4%). This stability arises because the
544 fluorinated interface prevents water molecules from disrupting the charge migration between
545 ZIF-8 (bulk charge storage) and F-TiO₂ (surface charge traps). As verified by triboelectric output
546 tests showing only 10.3% voltage attenuation for MRSD-PLA6 under 95% RH, the high
547 permeability of the fluorinated layer to charge carriers ensures that the replenishment of surface
548 charges, which is driven by the heterojunction electric field from ZIF-8, is not impaired


549 following their transient dissipation by water adsorption.

551 **Figure S11. Stability after regeneration and washing cycles.** SEM images of MRSD-PLA6 (a)
552 after regeneration and (b) after washing cycles. (c) EDS mapping of MRSD-PLA6 after
553 regeneration and washing.

554

555 **Stability analysis of structure and PM capture performance after washing:**

556

557 **Figure S12. Mechanism of structural and performance regeneration after washing.** a SEM
558 images of MRSD-PLA6 before and after washing. b Analysis of the internal mechanism for
559 MRSD-PLA6 to maintain high-efficiency filtration performance after washing.

560

561 **A clearer delineation of the mechanistic role of Zn^{2+} sites in charge capture and storage:**

562 **1. Direct experimental demonstration of charge traps:**

563 The presence and function of charge traps are directly evidenced by several complementary
564 characterizations:

565 Surface potential and dielectric constant analysis: The significantly higher and more stable
566 surface potential of MRSD-PLA6 (5.8 kV, 75.7% increase over P-PLA) and its enhanced relative
567 dielectric constant underpin the existence of efficient charge trapping sites (Fig. 4a-c). The strong
568 correlation between surface potential and dielectric constant indicates that the trapped charges
569 contribute dominantly to the polarization and electrostatic field.

570 Role of F-TiO₂ as deep charge traps: As described in the main text (Pages 23), the F-TiO₂
571 nanoblocks, due to their high electronegativity, create deep charge traps on the fiber surface. The
572 surface potential decay tests specifically show that MRSD-PLA6 effectively suppresses charge
573 dissipation over 90 days, a direct consequence of charges being localized in these deep traps,
574 preventing their migration and neutralization.

575 Spatial charge redistribution: The schematic in Figure 4e and the DFT calculations in Figure
576 S13a intuitively conceptualize how the heterointerfaces (ZIF-8/PLA and F-TiO₂/PLA) generate
577 charge traps and undergo stabilization of surface potential and regenerated charge density after
578 water washing and regeneration.

579 **2. Evidence of interfacial charge transfer and the recharging process:**

580 The regeneration or recharging aspect of the cycle is demonstrated by the dynamic and
581 stable performance of the material under challenging conditions.

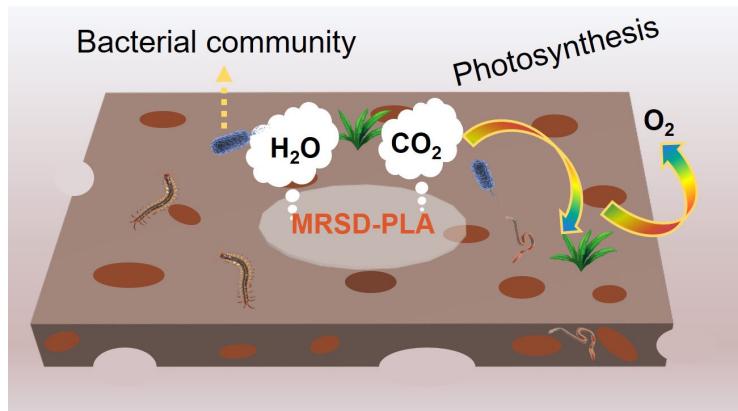
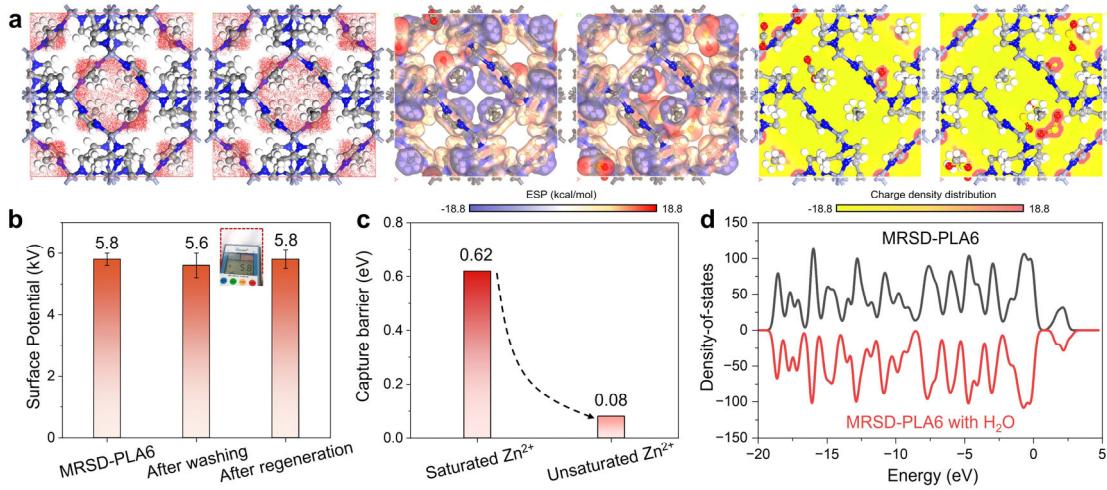
582 Charge stability and regeneration under high humidity: The superior retention of PM
583 filtration efficiency and lower pressure drop increase for MRSD-PLA6 compared to P-PLA at
584 90% RH is a critical performance-based evidence (Fig. 5g, h). “The heterojunction electric field
585 drives migration of stored charges from ZIF-8 to the interface, promptly compensating for
586 surface charge loss,” which is the core of the recharging process (Page 27). This dynamic
587 compensation ensures stable electrostatic capture even when surface charges are prone to
588 dissipation under high humidity.

589 Performance recovery after water washing: The ability of MRSD-PLA6 to maintain high
590 filtration efficiency (89.1%) after water washing and drying, while P-PLA fails, is direct proof of
591 a robust internal charge reservoir and a regeneration mechanism (Fig. 5e, f). As detailed in the
592 Supplementary Information (Figure S13b), during drying, charges migrate from the interior
593 (stored in ZIF-8) to the surface, effectively recharging the active sites.

594 Triboelectric output stability: The stable voltage output of MRSD-PLA6 over 500 seconds
595 of continuous mechanical cycling indicates a sustained charge supply (Fig. 4l). This would not
596 be possible without a continuous internal charge regeneration mechanism compensating for the
597 charges consumed during each triboelectric cycle.

598 **3. Clearer delineation of the mechanistic role of Zn²⁺ Sites in charge capture and storage:**

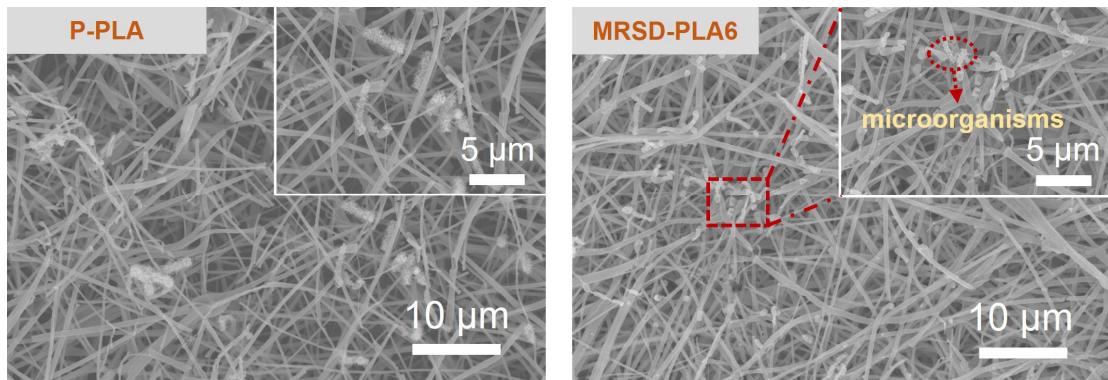
599 The role of coordinatively unsaturated Zn²⁺ sites in ZIF-8 is foundational to the capture and
600 storage steps. Electron capture energy barrier calculation reveals that:



601 Unsaturated Zn²⁺: Capture barrier = 0.08 eV (low, enabling fast charge capture/storage).

602 Saturated Zn²⁺: Capture barrier = 0.62 eV (high, inhibiting charge trapping).

603 This explains the control experiment results: unsaturated Zn^{2+} sites act as low-barrier traps
604 for efficient charge capture and storage, which enables the storage step of the cycle (Figure
605 S13c). DFT calculates a $7.8\times$ lower electron capture barrier for unsaturated Zn^{2+} (0.08 eV to 0.62
606 eV). The density of states showed no significant change before and after washing and
607 regeneration, indicating the validity of the charge storage and regeneration mechanism (Figure
608 S13d). These data delineate the role of Zn^{2+} as low-barrier traps for efficient charge capture and
609 storage, enabling the storage step of the cycle.

610 Structural evidence from XRD and BET: The sharp XRD peaks confirm the crystalline
611 integrity of ZIF-8 within the fibers, ensuring the presence of these well-defined Zn^{2+}
612 coordination sites (Fig. 2k, l). The ultra-high BET surface area of ZIF-8 provides a vast internal
613 surface area populated with these charge-trapping Zn^{2+} sites, justifying its role as a high-capacity
614 charge storage medium.


615 Synergy in the capture-storage-regeneration cycle: The Zn^{2+} sites in ZIF-8 are responsible
616 for the bulk capture and storage, while the interface-driven field facilitates the regeneration of
617 surface charges, respectively. The F-TiO₂ traps are crucial for stabilizing these regenerated
618 charges at the surface, making them available for sustained functionality (filtration, antibacterial
619 action).

632

633 **Microscopic morphological analysis of soil degradation processes:**

634 SEM images reveal that the surfaces of P-PLA and MRSD-PLA6 fibers are colonized by a large
635 number of microorganisms.

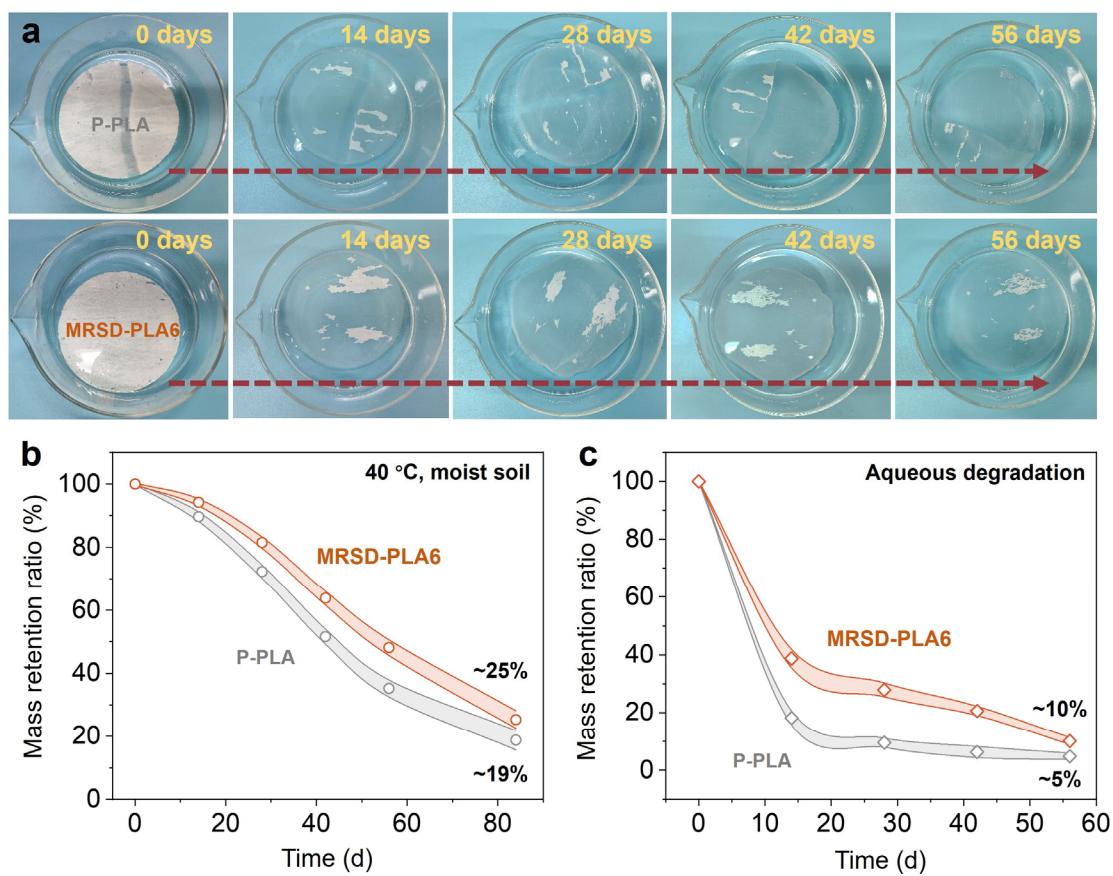
636

637 **Figure S15. SEM images of P-PLA and MRSD-PLA6 after degradation.**

638

639 **Quantitative analysis of quality retention rate in the biodegradation process:**

640 We have conducted additional soil burial degradation experiments under controlled
641 conditions (40 °C, moist soil) based on the results shown in Figure 6e to systematically track the
642 mass loss of both P-PLA and MRSD-PLA6 samples over a period of 84 days. The mass retention
643 ratio (R_m) was calculated as:


644

$$R_m = \frac{m_t}{m_0} \times 100\% \quad (S7)$$

645 Where, R_m is the mass retention ratio, m_t is the mass at time t , m_0 is the initial mass.

646 The resulting mass retention plot (Figure S16) clearly demonstrates a gradual decrease in
647 mass for both samples, with MRSD-PLA6 exhibiting a slightly slower initial degradation rate
648 due to the presence of ZIF-8 and F-TiO₂, which temporarily impede microbial attachment and
649 enzymatic hydrolysis. However, after 84 days, both membranes showed significant mass loss

650 (>75%), confirming their overall biodegradability. This quantitative data complements the
 651 existing visual and SEM-based morphological observations, providing a more comprehensive
 652 and objective evaluation of the degradation kinetics. Furthermore, the mass retention profile
 653 observed during the aqueous degradation process yielded results consistent with those previously
 654 obtained, further confirming the pronounced biodegradability and environmental compatibility of
 655 MRSD-PLA.

656
 657 **Figure S16. Biodegradation performance evaluation.** **a** Hydrolysis process of P-PLA and
 658 MRSD-PLA6. **b** Mass retention rate diagram of P-PLA and MRSD-PLA6 membrane
 659 degradation in soil environment. **c** Mass retention rate diagram of P-PLA and MRSD-PLA6
 660 membrane degradation in aquatic environment.

661 A comparison of filtration efficiency, pressure drop, and quality factor with commercial
662 benchmark materials of comparable performance (e.g., melt-blown media for N95 or N99 masks,
663 or fiberglass filters) under the same test conditions:

664 **Filtration efficiency:** MRSD-PLA6 achieved a $PM_{0.3}$ filtration efficiency of 99.3% at a
665 flow rate of $10 L \cdot min^{-1}$, which is comparable to or exceeds that of commercial N99-grade melt-
666 blown media (typically >99%) and fiberglass filters. Under high flow conditions ($85 L \cdot min^{-1}$),
667 MRSD-PLA6 maintained a filtration efficiency of 98.1%, significantly outperforming
668 conventional melt-blown media, which often experience efficiency decay due to charge
669 dissipation and structural compaction.

670 **Pressure drop:** The pressure drop across MRSD-PLA6 was only 51.9 Pa at $10 L \cdot min^{-1}$,
671 which is substantially lower than that of melt-blown media (~100–150 Pa) and fiberglass filters
672 (>200 Pa) under similar conditions. This indicates lower breathing resistance and energy
673 consumption during operation.

674 **Quality factor (QF):** The QF value of MRSD-PLA6 reached $0.031 Pa^{-1}$, which is higher
675 than that of typical N95 melt-blown media (0.015 – $0.025 Pa^{-1}$) and fiberglass filters (0.010 – 0.020
676 Pa^{-1}), demonstrating a superior balance between filtration performance and airflow resistance.

677 **Table S1.** Comparison of filtration performance between MRSD-PLA6 and commercial
678 benchmark materials

Material	Flow rate ($L \cdot min^{-1}$)	$PM_{0.3}$ filtration efficiency (%)	Pressure drop (Pa)	Quality factor (Pa^{-1})
MRSD-PLA6	10	99.3	51.9	0.031
	85	98.1	215.0	0.018
N95 media¹¹	melt-blown	85	>95 N95 standard	~150-300
N99 media¹²	melt-blown	85	>95 N99 standard	~200-350
Fiberglass filter¹³		85	>99.97	0.010-0.020

679

680

Table S2. Evaluation of filtration efficiency at various face velocities

Airflow rate ($\text{L}\cdot\text{min}^{-1}$)	Face velocity ($\text{cm}\cdot\text{s}^{-1}$)	Face velocity ($\text{m}\cdot\text{s}^{-1}$)
10	2.2	0.022
32	6.9	0.069
65	14.1	0.141
85	18.0	0.180

681

682 **References**

683 1. Manchi, P. et al. PDA-Ag/TiO₂ nanoparticles-loaded electrospun nylon composite
684 nanofibrous film-based triboelectric nanogenerators for wearable biomechanical
685 energy harvesting and multifunctional sensors. *Adv. Funct. Mater.* **35**, 2416018
686 (2024).

687 2. Shi, S. et al. A bionic skin for health management: excellent breathability, in situ
688 sensing, and big data analysis. *Adv. Mater.* **36**, 2306435 (2023).

689 3. Wang, X. et al. Biomimetic fibrous murray membranes with ultrafast water transport
690 and evaporation for smart moisture-wicking fabrics. *ACS Nano* **13**, 1060-1070
691 (2018).

692 4. Yang, Y. et al. Ultrathin, ultralight dual-scale fibrous networks with high-infrared
693 transmittance for high-performance, comfortable and sustainable PM_{0.3} filter. *Nat.*
694 *Commun.* **15**, 1586 (2024).

695 5. Wang, L. et al. Robust dual equivariant gradient antibacterial wound dressing-
696 loaded artificial skin with nano-chitin particles via an electrospinning-reactive
697 strategy. *Adv. Fiber Mater.* **7**, 204-218 (2024).

698 6. Han, Y., Ruan, K. & Gu, J. Multifunctional thermally conductive composite films
699 based on fungal tree-like heterostructured silver nanowires@boron nitride
700 nanosheets and aramid nanofibers. *Angew. Chem. Int. Ed.* **62**, e202216093 (2022).

701 7. Sun, Z. et al. ZIF-67/ZIF-8 and its derivatives for lithium sulfur batteries. *Adv. Funct.*
702 *Mater.* **35**, 2414671 (2024).

703 8. Li, C.-B. et al. Deformation resistant monolithic hierarchical textures inducing
704 stretchable superamphiphobicity with environmental adaptability and flame
705 retardancy. *Nat. Commun.* **16**, 2729 (2025).

706 9. Xiao, L. et al. Fishnet-inspired 3D scaffold fabricated from mesh-like electrospun
707 membranes promoted osteoporotic bone regeneration. *Adv. Fiber Mater.* **7**, 72-92
708 (2024).

709 10. Song, Y. et al. Co-CoSe heterogeneous fibers with strong interfacial built-in electric
710 field as bifunctional electrocatalyst for high-performance Zn-air battery. *J. Colloid*
711 *Interface Sci.* **677**, 140-150 (2025).

712 11. Leung, W. W.-F. & Sun, Q. Charged PVDF multilayer nanofiber filter in filtering
713 simulated airborne novel coronavirus (COVID-19) using ambient nano-aerosols.
714 *Sep. Purif. Technol.* **245**, 116887 (2020).

715 12. Zhang, S. et al. Spider-web-inspired PM_{0.3} filters based on self-sustained
716 electrostatic nanostructured networks. *Adv. Mater.* **32**, 2002361 (2020).

717 13. Wei, Z. et al. High-performance filter membrane composed of oxidized Poly
718 (arylene sulfide sulfone) nanofibers for the high-efficiency air filtration. *J. Hazard.*
719 *Mater.* **417**, 126033 (2021).

720