

1 Supplementary Materials for

2 **Estrogen Receptor β Activation Inhibits Colitis by Promoting NLRP6- 3 Mediated Autophagy**

4 Wentao Fan^{1, 2, †}, Chenchen Ding^{1 †}, Shuhui Liu^{1 †}, Xiaona Gao¹, Xiaofei Shen³, Marthe De Boevre⁴,
5 Zhangshan Gao¹, Mengcong Li¹, Shuo Zhang¹, Yufan Miao¹, Wenxian Guan³, Guangliang Liu⁵,
6 Liping Yan^{1, 2}, Sarah De Saeger⁴, Suquan Song^{1, 2, *}

7 ¹MOE Joint International Research Laboratory of Animal Health and Food Safety, College of
8 Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China

9 ²Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital
10 of Nanjing University Medical School, Nanjing, 210008, China

11 ³Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College
12 of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China

13 ⁴Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical
14 Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium

15 ⁵State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute,
16 Chinese Academy of Agricultural Sciences, Lanzhou 730046, China

17 [†]Wentao Fan, Chenchen Ding, and Shuhui Liu contributed equally to this work.

18 *Corresponding authors. Email: suquan.song@njau.edu.cn.

19 **The file includes:**

20 Fig. S1. ER β signaling alleviates IL-1 β or TNF- α -induced colitis and deletion of NLRP6 drives
21 colitis.

22 Fig. S2. The effects of ER β on NLRP6 inflammasome expression and NLRP6 inflammasome
23 assembly.

24 Fig. S3. The role of ER β and NLRP6 in mitochondrial damage and autophagy during inflammation.

25 Fig. S4. The relationship between the ER β -NLRP6 axis and autophagy.

26 Fig. S5. The effects ERB-041 on NLRP6 localization to autophagy machinery.

27 Fig. S6. NLRP6 is required for Rap-induced recovery from inflammation.

28 **Other Supplementary Material for this manuscript includes the following:**

29 Dataset 1. Technical data file (Table S1, Excel spreadsheet).

30 Dataset 2. Raw data file (Table S2, Excel spreadsheet).

31 Related Manuscript File. Unprocessed immunoblots (PDF file).

32 Movie S1. Live cell imaging to examine the co-localization of mCherry-ULK1 and EGFP-NLRP6
33 in starved NCM-460 cells without drug treatment.

34 Movie S2. Live cell imaging to examine the co-localization of mCherry-ATG16L1 and EGFP-
35 NLRP6 in starved NCM-460 cells without drug treatment.

36 Movie S3. Live cell imaging to examine the co-localization of mCherry-LC3B and EGFP-NLRP6
37 in starved NCM-460 cells without drug treatment.

38 Movie S4. Live cell imaging to examine the co-localization of mCherry-BECN1 and EGFP-
39 NLRP6 in starved NCM-460 cells without drug treatment.

40 Movie S5. Live cell imaging to examine the co-localization of mCherry-p62 and EGFP-NLRP6 in
41 starved NCM-460 cells without drug treatment.

42 Movie S6. Live cell imaging to examine the co-localization of mCherry-PHB2 and EGFP-NLRP6
43 in starved NCM-460 cells without drug treatment.

44 Movie S7. Live cell imaging to examine the co-localization of mCherry-ULK1 and EGFP-NLRP6
45 in starved NCM-460 cells with DSS treatment.

46 Movie S8. Live cell imaging to examine the co-localization of mCherry-ATG16L1 and EGFP-
47 NLRP6 in starved NCM-460 cells with DSS treatment.

48 Movie S9. Live cell imaging to examine the co-localization of mCherry-LC3B and EGFP-NLRP6
49 in starved NCM-460 cells with DSS treatment.

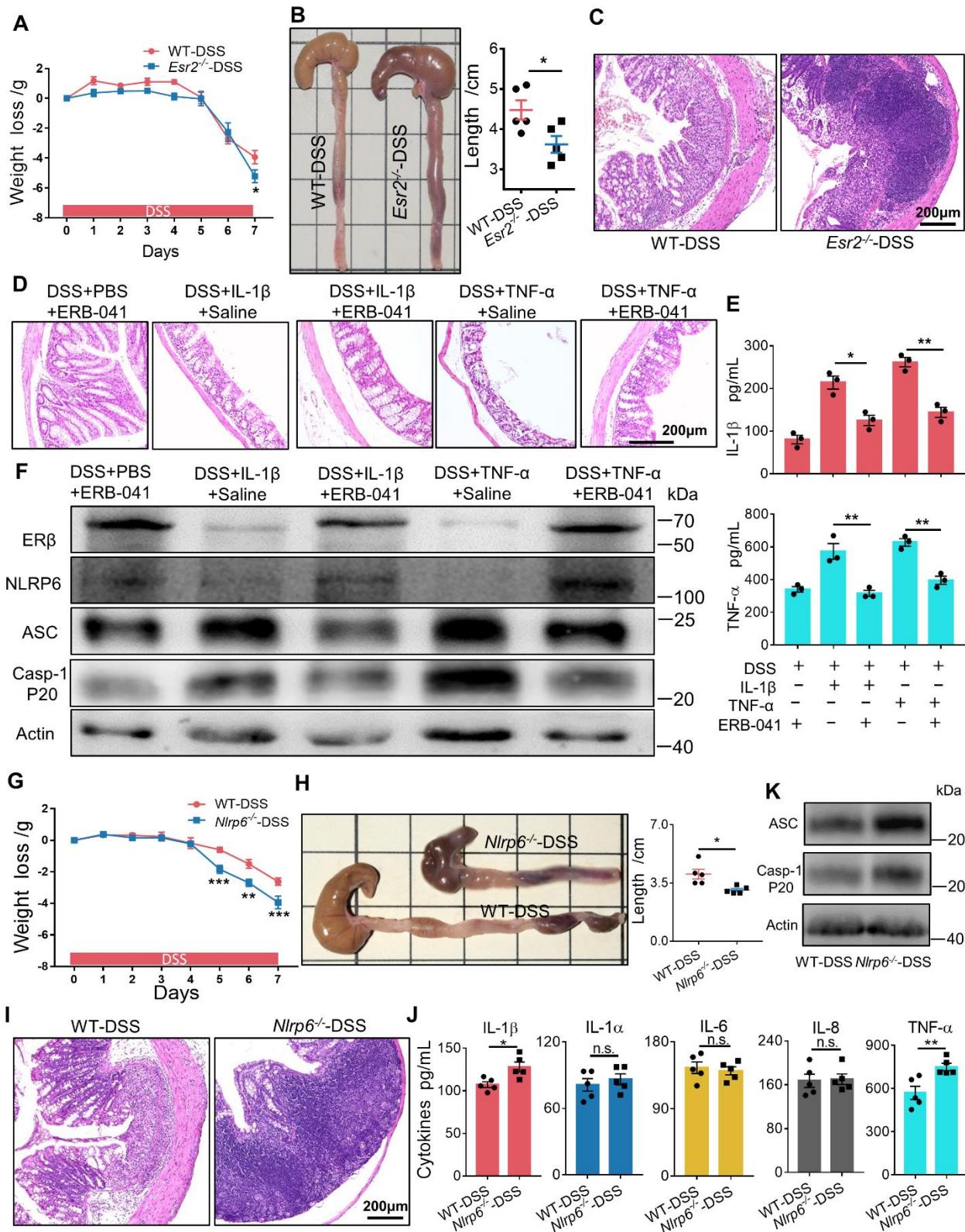
50 Movie S10. Live cell imaging to examine the co-localization of mCherry-BECN1 and EGFP-
51 NLRP6 in starved NCM-460 cells with DSS treatment.

52 Movie S11. Live cell imaging to examine the co-localization of mCherry-p62 and EGFP-NLRP6
53 in starved NCM-460 cells with DSS treatment.

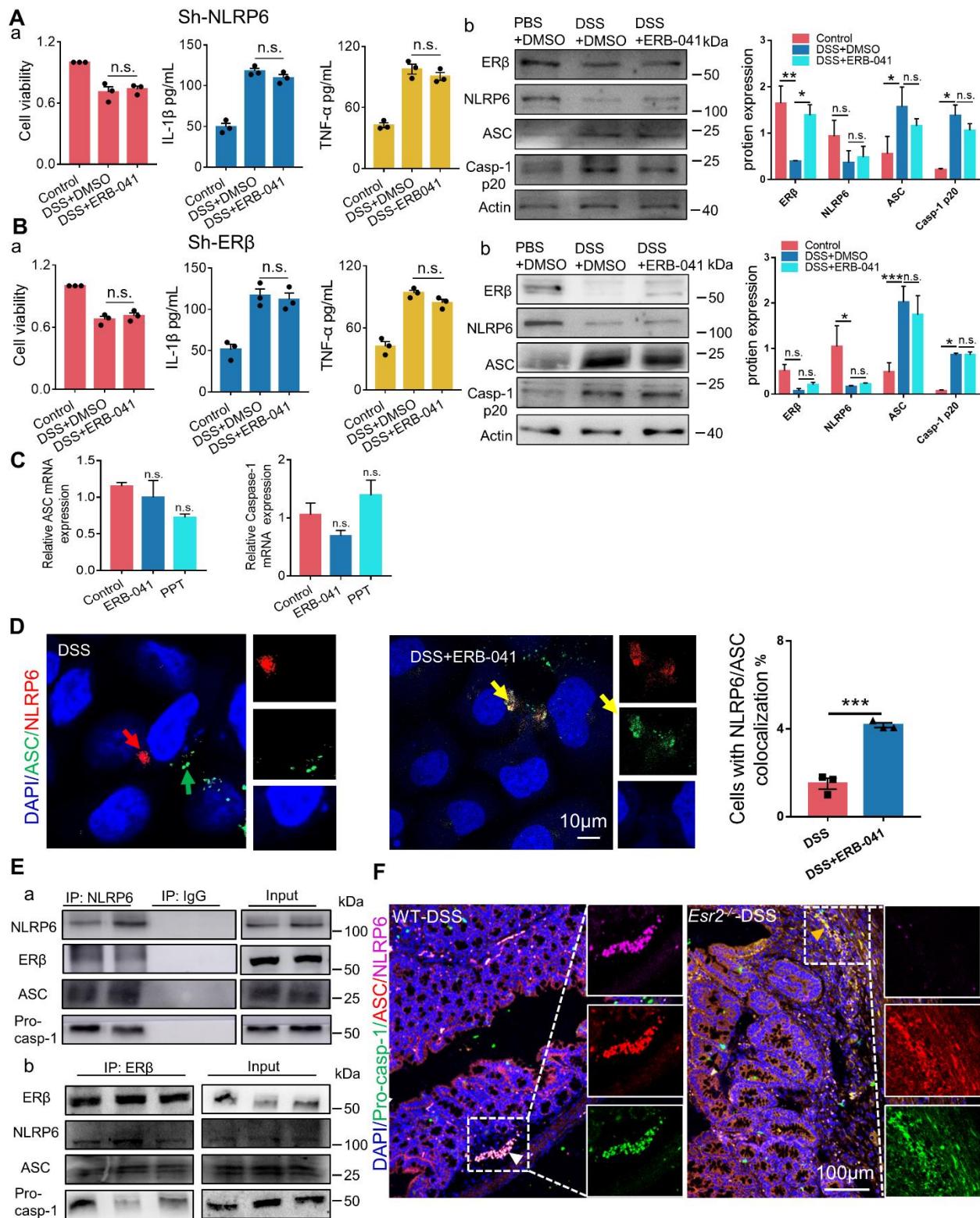
54 Movie S12. Live cell imaging to examine the co-localization of mCherry-PHB2 and EGFP-NLRP6
55 in starved NCM-460 cells with DSS treatment.

56 Movie S13. Live cell imaging to examine the co-localization of mCherry-ULK1 and EGFP-
57 NLRP6 in starved NCM-460 cells with DSS and ERB-041 treatment.

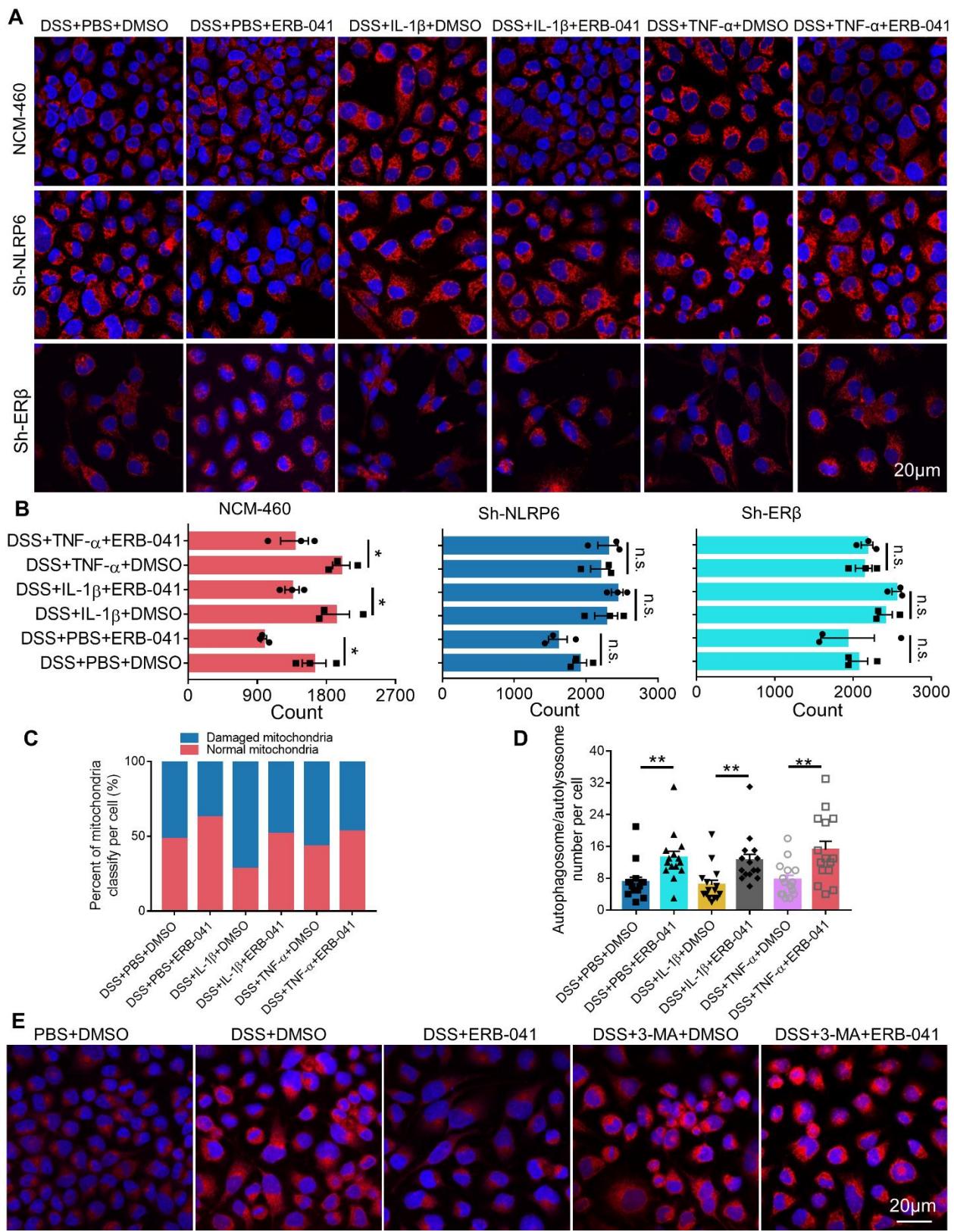
58 Movie S14. Live cell imaging to examine the co-localization of mCherry-ATG16L1 and EGFP-
59 NLRP6 in starved NCM-460 cells with DSS and ERB-041 treatment.

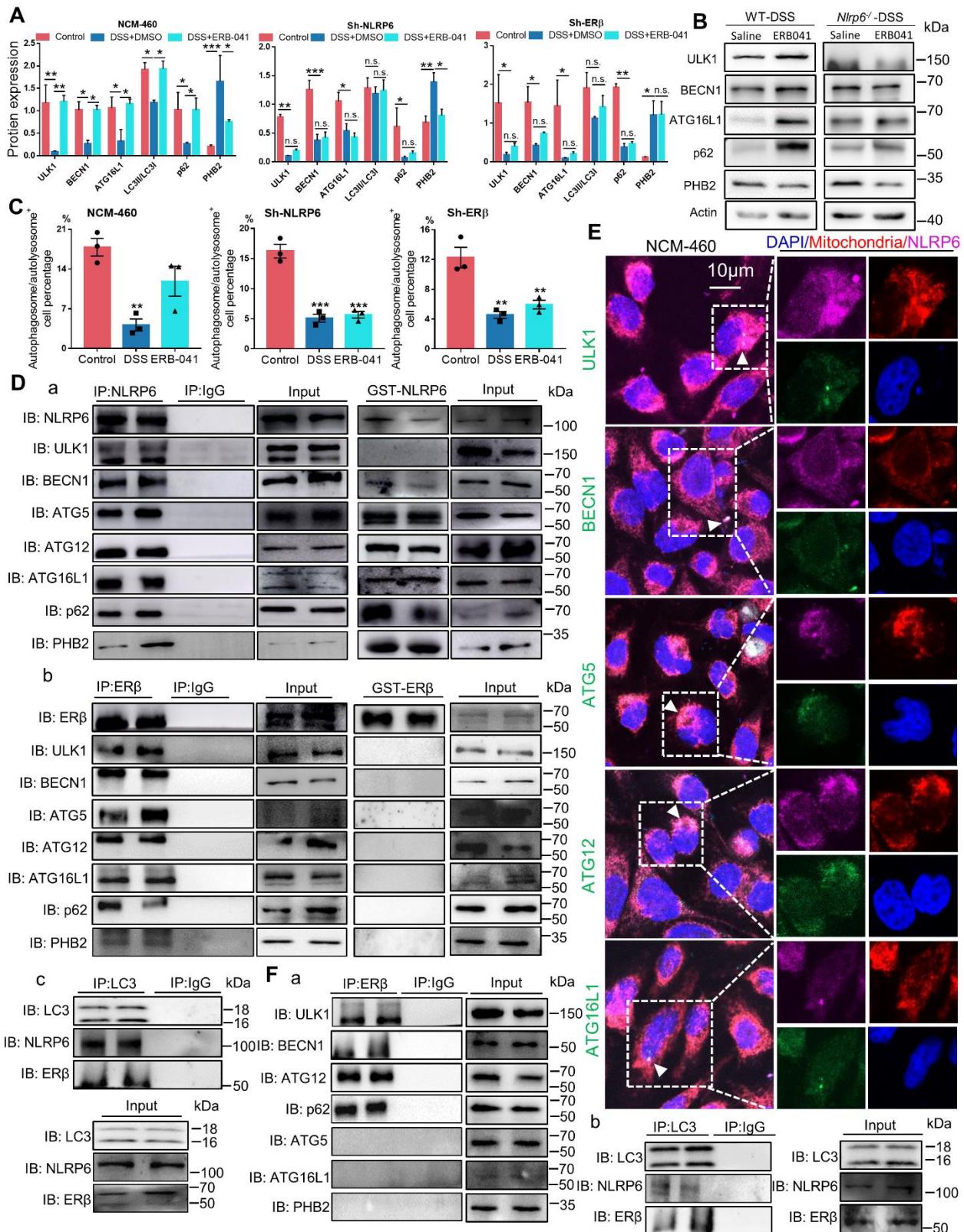

60 Movie S15. Live cell imaging to examine the co-localization of mCherry-LC3B and EGFP-NLRP6
61 in starved NCM-460 cells with DSS and ERB-041 treatment.

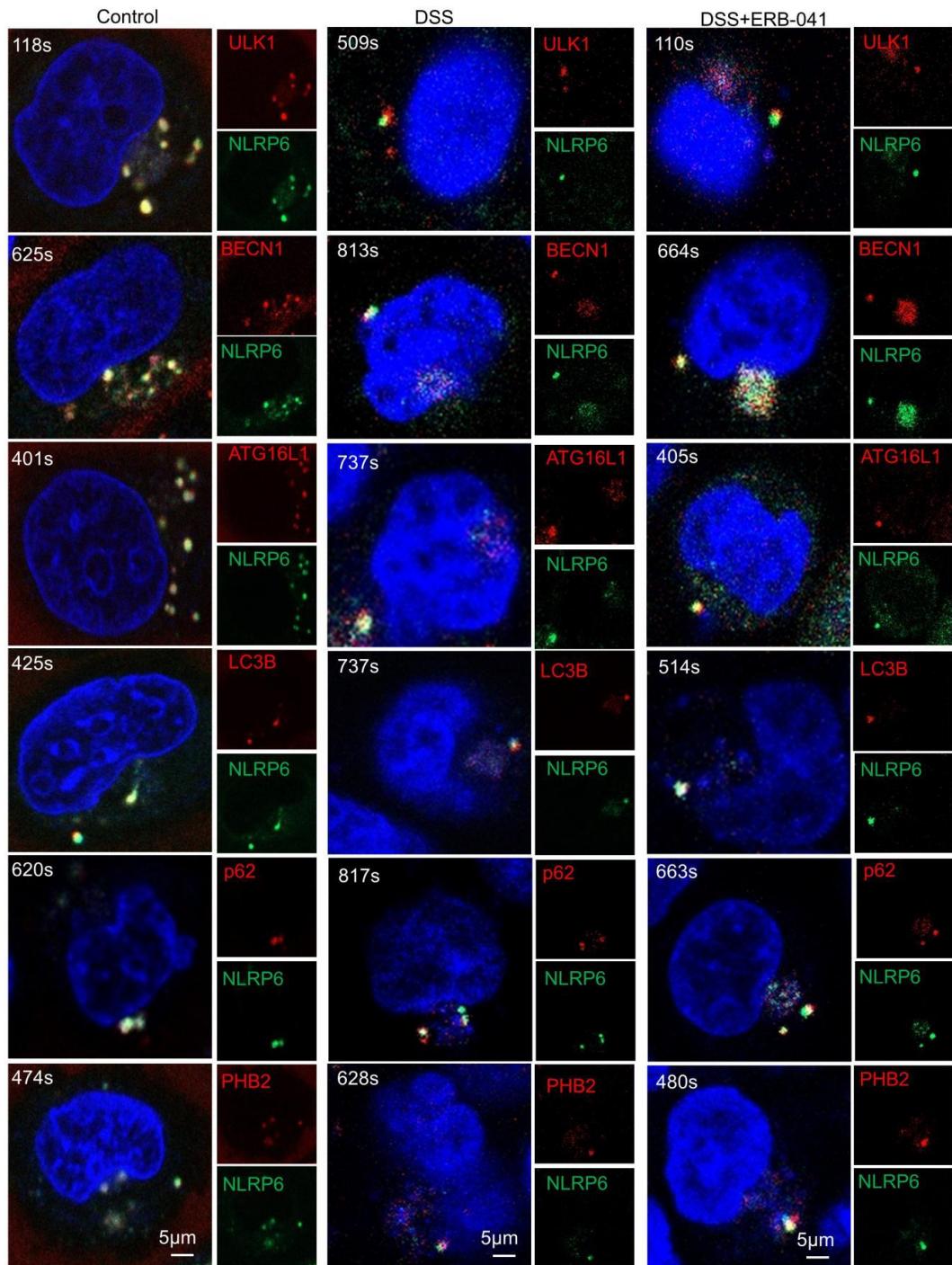
62 Movie S16. Live cell imaging to examine the co-localization of mCherry-BECN1 and EGFP-
63 NLRP6 in starved NCM-460 cells with DSS and ERB-041 treatment.

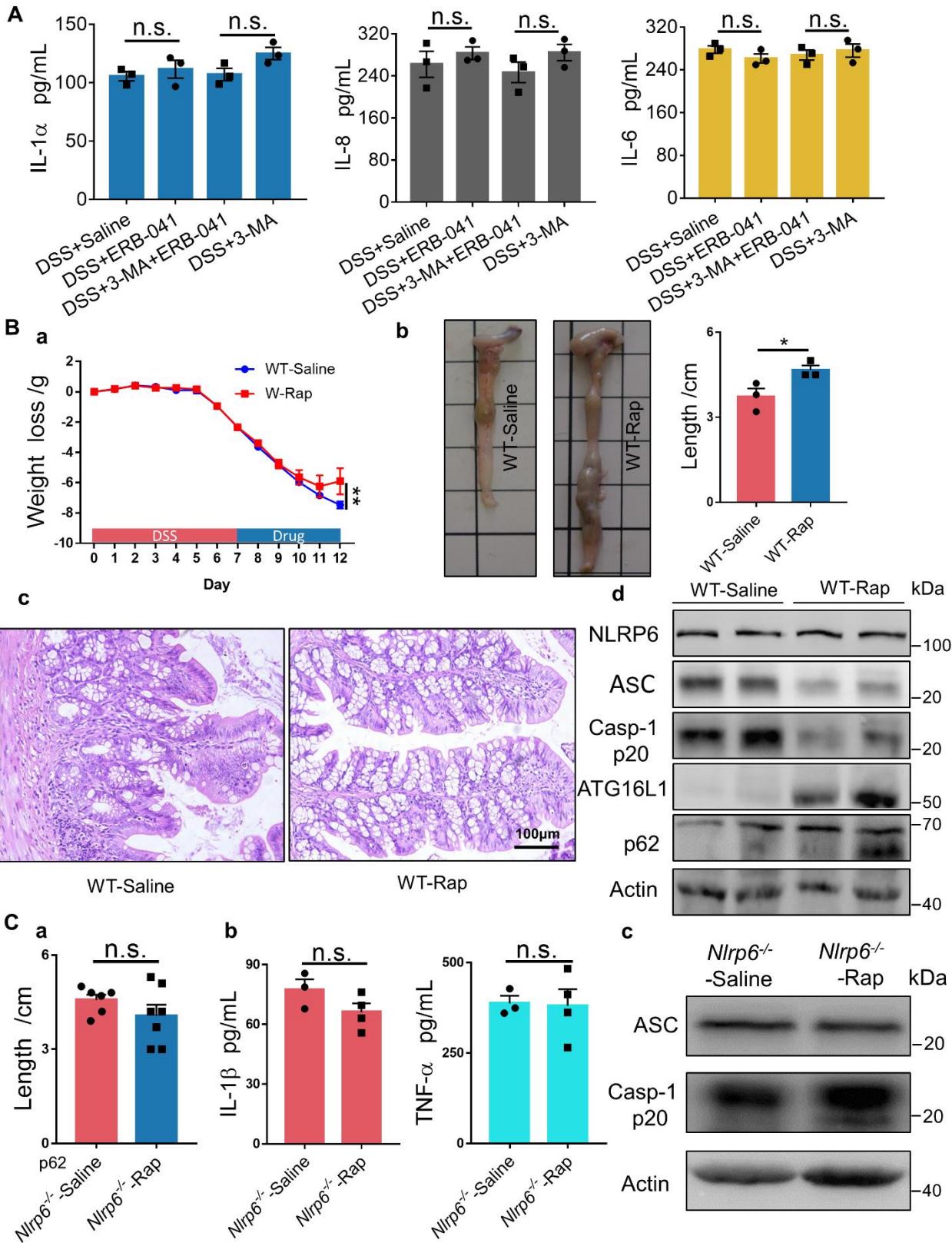

64 Movie S17. Live cell imaging to examine the co-localization of mCherry-p62 and EGFP-NLRP6
65 in starved NCM-460 cells with DSS and ERB-041 treatment.

66 Movie S18. Live cell imaging to examine the co-localization of mCherry-PHB2 and EGFP-NLRP6
67 in starved NCM-460 cells with DSS and ERB-041 treatment.


68


70 **Fig. S1. ER β signaling alleviates IL-1 β or TNF- α -induced colitis and deletion of NLRP6 drives colitis.** WT and
71 $Esr2^{-/-}$ mice were administered 3% DSS in drinking water for 7 days (n = 5). (A) Weight loss of colitis model mice.
72 Data represent mean values \pm SEM. *P< 0.05, by two-way ANOVA with Sidak's post hoc test. (B) Representative
73 gross photographs and the colon length of different mice. Data represent mean values \pm SEM. *P< 0.05, by unpaired
74 Student's *t*-test. (C) Representative H&E staining of distal colon sections from mice. (Scale bars, 200 μ m). WT mice
75 were administered 3% DSS in drinking water for 7 days following intraperitoneal (i.p.) IL-1 β (1 μ g/kg body weight)
76 or TNF- α (500 ng/kg body weight) with(out) ERB-041 (5 mg/kg body weight) injection for 5 days (n = 3). (D)
77 Representative H&E staining of distal colon sections. (Scale bars, 200 μ m). (E) Cytokines (IL-1 β and TNF- α) levels.
78 (F) ER β and NLRP6 inflammasome expression of mice colon. Data represent mean values \pm SEM. *P< 0.05, **P<
79 0.01, by unpaired Student's *t*-test. WT and $Nlrp6^{-/-}$ mice were administered 3% DSS in drinking water for 7 days (n =
80 5). (G) Weight loss of colitis model mice. Data represent mean values \pm SEM. **P< 0.01, ***P< 0.001, by two-way
81 ANOVA with Sidak's post hoc test. (H) Representative gross photographs and quantification of the colon length of
82 different mice. (I) Representative H&E staining of distal colon sections from mice. (Scale bars, 200 μ m). (J) Colon
83 tissue IL-1 β , IL-1 α , IL-6, IL-8, and TNF- α levels were measured by ELISA. (K) Inflammasome (ASC and Casp-1
84 p20) expression in mouse colon lysate. Data represent mean values \pm SEM. *P<0.05, **P< 0.01, n.s., not significant,
85 by unpaired Student's *t*-test


87 **Fig. S2. The effects of ER β on NLRP6 inflammasome expression and NLRP6 inflammasome assembly.** NLRP6
88 and ER β knockdown NCM-460 cells (Sh-NLRP6/Sh-ER β) were treated with 3% DSS for 24 h, then treated with ERB-
89 041 (1 μ M) for 48 h. (A-B, a). Cell viability of treated cells was detected by the CCK-8 method. Cytokines (IL-1 β and
90 TNF- α) levels in the supernatant were determined by ELISA. Each data point represents a unique experiment
91 performed in triplicate. Data represent mean values \pm SEM. n.s., not significant by unpaired Student's *t*-test. (A-B, b)
92 Immunoblotting of treated cell lysates with specific anti-ER β , anti-NLRP6, anti-ASC, and anti-Casp-1 p20 antibodies.
93 Data are representative of three independent experiments. Data represent mean values \pm SEM. **P*< 0.05, ***P*< 0.01,
94 ****P*< 0.001, n.s., not significant, by two-way ANOVA with Tukey's post hoc analysis. (C) qRT-PCR assay for ASC
95 and *Caspase-1* genes in the NCM-460 cells with ERB-041 or PPT stimulation. Data represent mean values \pm SEM.
96 n.s., not significant, by one-way ANOVA with Dunnett's post hoc analysis (vs. Control). (D) Representative
97 immunofluorescence staining for NLRP6 (red), ASC (green), and DAPI nuclear stain (blue) of treated normal colon
98 epithelial cells. (Scale bars, 10 μ m). At least 400 cells were analyzed per group. Data are representative of three
99 independent experiments. Data represent mean values \pm SEM. ****P*< 0.001, by unpaired Student's *t*-test. (E-a) Co-
100 immunoprecipitation of NLRP6 with anti-ER β , anti-ASC or anti-Pro-casp-1 in untreated NCM-460 cells. (E-b) Co-
101 immunoprecipitation of ER β with anti-NLRP6, anti-ASC or anti-Pro-casp-1 in untreated NCM-460 cells. (F)
102 Representative immunofluorescence staining for NLRP6 (violet), ASC (red), Pro-casp-1 (green), and DAPI nuclear
103 stain (blue) in DSS-treated WT and *Esr2*^{-/-} mice colon tissue. The yellow arrow represents the co-localization of Pro-
104 casp-1 and ASC. The white arrow represents the co-localization of NLRP6, Pro-casp-1 and ASC. (Scale bars, 100 μ m).


106 **Fig. S3. The role of ER β and NLRP6 in mitochondrial damage and autophagy during inflammation.** NCM-460
107 cells, NLRP6 and ER β knockdown cells (Sh-NLRP6/Sh-ER β) were stimulated with 3% DSS for 24 h, then IL-1 β (10
108 ng/mL) or TNF- α (5 ng/mL) with(out) ERB-041 (1 μ M) treated for 48 h. After treatment, cells were incubated with
109 100 nM MitoTracker Red CMXRos for 30 min to trace morphological changes in mitochondria. (A) The samples
110 were observed by fluorescence microscopy. (Scale bars, 20 μ m). (B) Histograms quantification of ROS positive cells
111 in different groups. Each data point represents a unique experiment performed in triplicate. Data represent mean values
112 \pm SEM. * P < 0.05, n.s., not significant, by unpaired Student's t -test. (C) Mitochondrial quantitative analysis of
113 mitochondria morphology in different treated NCM-460 cells. (Normal: cristae are maintained. Damaged: mildly
114 swollen and increased mitochondria fission or fusion or severely swollen and >70% of cristae are missing, or highly
115 dysmorphic and electron dense). (D) Autophagosome and autolysosome quantification in the treated NCM-460 cells.
116 At least 15 cells in each group were analyzed. Experiment performed in triplicate. Data represent mean values \pm SEM.
117 ** P < 0.01, by unpaired Student's t -test. (E) NCM-460 cells were stimulated with 3% DSS for 24 h, then treated with
118 3-MA together with or without ERB-041 (1 μ M) for 48 h. Different treated cells were incubated with 100 nM
119 MitoTracker Red CMXRos for 30 min to trace morphological changes in mitochondria. The samples were observed
120 by fluorescence microscopy. (Scale bars, 20 μ m).

122 **Fig. S4. The relationship between the ER β -NLRP6 axis and autophagy.** NCM-460 cells, NLRP6 knockdown (Sh-
123 NLRP6), and ER β knockdown (Sh-ER β) NCM-460 cells were stimulated with 3% DSS for 24 h, then treated with
124 ERB-041 (1 μ M) for 48 h. (A) Western blot analysis of autophagy protein. Each data point represents a unique
125 experiment performed in triplicate. Data represent mean values \pm SEM. * P < 0.05, ** P < 0.01, *** P < 0.001, n.s., not
126 significant, by two-way ANOVA with Tukey's post hoc analysis. (B) Western blot analysis of colon tissue from WT
127 and *Nlrp6*^{-/-} mice treated with 3% DSS followed by saline or ERB-041. Total lysates were prepared, and western blots
128 were probed with specific anti-ULK1, anti-BECN1, anti-ATG16L1, anti-p62, and anti-PHB2 antibodies. (C) Confocal
129 microscopy of EGFP-mCherry-LC3B (yellow) expressed in different treated NCM-460 cells. Changes in cells
130 containing autophagy puncta were calculated from at least 10 areas (400 cells) of interest pooled from three
131 independent experiments. Data represent mean values \pm SEM. ** P <0.01, *** P <0.001, by one-way ANOVA with
132 Dunnett's post hoc analysis (vs. Control). (D-a) Co-immunoprecipitation of autophagy protein with NLRP6 in
133 untreated NCM-460 cells and *in vitro* interaction of purified GST-NLRP6 with autophagy proteins. (D-b) Co-
134 immunoprecipitation of autophagy protein with ER β in untreated NCM-460 cells and *in vitro* interaction of purified
135 GST-ER β with autophagy proteins. (D-c) Co-immunoprecipitation of NLRP6 and ER β with LC3 in untreated NCM-
136 460 cells. (E) Representative images showing co-localization of endogenous NLRP6 (Violet) and
137 ULK1/BECN1/ATG5/ATG12/ATG16L1 (green) on mitochondria (red) in untreated NCM-460 cells. White arrow
138 indicates the co-localization of endogenous NLRP6 and autophagy protein on mitochondria. (Scale bars, 10 μ m). (F-
139 a) Co-immunoprecipitation of autophagy protein with ER β in untreated HEK293T cells. (F-b) Co-
140 immunoprecipitation of NLRP6 and ER β with LC3 in untreated HEK293T cells.

Fig. S5. The effects ERB-041 on NLRP6 localization to autophagy machinery. NCM-460 cells were stimulated with 3% DSS for 24 h, then treated with ERB-041 (1 μ M) for 48 h. Live NCM-460 cells stably expressing EGFP-NLRP6 and mCherry-ULK1/BECN1/ATG16L1/LC3B/p62/PHB2 were starved of amino acids in Hank's Balanced Salt Solution (HBSS) for one hour and then imaged continuously for 15 minutes. Co-localization images are shown. See supplementary videos for live cell recording.

148 **Fig. S6. NLRP6 is required for Rap-induced recovery from inflammation.** WT mice were administered 3% DSS
149 in drinking water for 7 days followed by intraperitoneal (i.p.) injection of saline or the ERB-041 (5 mg/kg body weight)
150 with or without 3-MA (1.5 mg/kg body weight) for 5 days (n = 5). (A) IL-1 α , IL-8, and IL-6 levels were measured by
151 ELISA. Data represent mean values \pm SEM. n.s., not significant, by Unpaired Student's *t*-test. (B) WT mice were
152 administered 3% DSS in drinking water for 7 days followed by intraperitoneal (i.p.) injection of saline or rapamycin
153 (Rap) (2 mg/kg body weight, n = 3) for 5 days. (a) Weight loss, (b) representative gross photographs and the colon
154 length of different mice, (c) representative H&E staining of distal colon sections from mice (scale bars, 100 μ m), and
155 (d) expression levels of NLRP6 inflammasome (NLRP6, ASC, and Casp-1 p20) and autophagy protein (ATG16L1,
156 and p62) were analyzed. Data represent mean values \pm SEM. *P< 0.05, **P< 0.01, by two-way ANOVA with Sidak's
157 post hoc test or unpaired Student's *t*-test. (C) *Nlrp6*^{-/-} mice were administered 3% DSS in drinking water for 7 days
158 followed by intraperitoneal (i.p.) injection of saline (n = 6) or rapamycin (Rap) (2 mg/kg body weight, n = 7) for 5
159 days. (a) Colon length, (b) cytokines, and (c) inflammasome (ASC, and Casp-1 p20) expression was analyzed. Data
160 represent mean values \pm SEM. n.s., not significant, by unpaired Student's *t*-test.