Supplementary Material

Thalamic involvement defines distinct slow-wave subtypes in NREM sleep

Damiana Bergamo ^{1,2}, Giacomo Handjaras ¹, Dante Picchioni ², Emiliano Ricciardi ¹, Pınar S. Özbay ^{3,4}, Jacco A. de Zwart ³, Jeff H. Duyn ^{3*}, Giulio Bernardi ^{1*}, Monica Betta ^{1*}

Table S1

SLOW WAVES							
Signal Change	Region	Voxels	СМх	СМу	CM z		
Positive	Cerebellum	6107	0.8	-54.9	-24.2		
	Anterior Thalamus	166	-0.2	-3.1	0.6		
	Left Cerebellum	106	-25.6	-50.7	-49.6		
	Parieto-Occipital Cortex	4392	-1.3	-67.8	14.1		
	Left Inferior Frontal Gyrus	1790	-43.1	22.3	-1		
	Medial Superior Frontal Gyrus	1790	-1.6	54.6	3.7		
Negative	Right Inferior Frontal Gyrus	1702	41.7	23.4	-3.7		
	Right Superior Temporal Gyrus (Heschel Gyrus)	853	47.4	-25.1	14		
	Left Superior Temporal Gyrus (Heschel Gyrus)	830	48	-25.4	14		
	Medial Superior Frontal Gyrus	554	-0.1	20.3	52.8		
	Right Somatomotor	141	40.1	-18	48.5		
	Left Somatomotor	69	-42.1	-20.5	53.6		

Table S1. Brain areas showing significant BOLD-signal changes time-locked to the occurrence of sleep slow waves. The table includes for each area the number of voxels and the coordinates of the center of mass (CM) in the standard MNI space (minimum cluster size = 50 voxels).

Table S2

SLEEP SPINDLES						
Signal Change	Region	Voxels	CM x	СМ у	CM z	
	Insula-Hippocampus- Thalamus	6972	-15.2	-6.9	2.9	
	Medial Frontal Cortex	2960	0.5	12.5	43.7	
Positive	Inferior Occipital Gyrus	2526	11.9	-90.3	-8.6	
	Right Somatomotor Cortex	468	52	-4.3	40.7	
	Right Inferior Frontal Gyrus	276	51.2	15.6	-6.6	
	Left Fusiform Gyrus	215	-46.3	-53.6	-18.7	
	Right Medial Frontal Cortex	141	5.8	53	18.7	
	Right Middle Temporal Gyrus	124	51.7	-39	5.2	
	Left Supramarginal Gyrus	95	-62.8	-50.1	27.3	
	Left Superior Temporal Gyrus	78	-56.5	-28.4	0.6	

Table S2. Brain areas showing a significant BOLD-signal change time-locked to the occurrence of sleep spindles. The table includes for each area the number of voxels and the coordinates of the center of mass (CM) in the standard MNI space (minimum cluster size = 50 voxels).

Table S3

PWA-drops							
Signal Change	Region	Voxels	СМх	СМу	CM z		
Positive	Right Caudate	203	14.3	5	15.2		
	Left Caudate	150	-15.3	5.5	15.5		
Negative	Roi 1	127108					
	Left Cerebellum	567	-21.5	-52.4	-51.8		
	Right Cerebllum	434	22.4	-49.5	-52		
	Cerebellar Vermis	72	-1.5	-71.6	-34.4		

Table S3. Brain areas showing significant BOLD-signal changes time-locked to the occurrence of PWA-drops. The table includes for each area the number of voxels and the coordinates of the center of mass (CM) in the standard MNI space (minimum cluster size = 50 voxels). Roi 1 encompasses nearly all cortical areas, as well as specific subcortical structures, namely the thalamus and pons.

Table S4

CLUSTER 1 SLOW WAVES						
Signal Change	Region	Voxels	СМх	СМу	CM z	
Positive	Cerebellum, Thalamus, Midbrain, Pons	8016	-0.6	-49.6	-22.8	
	Right Cerebellum	94	12.7	-67.3	-45.1	
	Occipital Cortex	4546	-1.4	-74.1	11.6	
	Medial Frontal Cortex	1736	-1.5	53.1	2.4	
	Left Inferior Frontal Gyrus	1088	-40.5	23	-4	
	Right Inferior Frontal Gyrus	995	40	23	-4.3	
Negative	Right Superior Temporal Gyrus (Heschel Gyrus)	783	46.6	25.8	15	
	Left Superior Temporal Gyrus (Heschel Gyrus)	692	-46.6	-26.3	14.9	
	Right Somatomotor	286	30	-19.7	49.6	
	Left Somatomotor	239	-42.8	-18.8	56.7	
	Posterior Cingulate Cortex	236	-2.4	-27.7	35.5	
	Medial Frontal Cortex	186	-2.1	14.2	60.1	
	Somatomotor	53	-0.9	-42.7	71.8	
	Caudate Nucleus	51	10.2	7.2	13.4	
CLUSTER 2 SLOW WAVES						
Signal Change	Region	Voxels	СМх	СМ у	CM z	
Negative	Thalamus	382	-0.5	-24.6	9.5	

Left Inferior Frontal	113	-53	20	9.3
Gyrus	113	-33	29	9.3

Table S4. Brain areas showing significant BOLD-signal changes time-locked to the occurrence of Cluster 1 and Cluster 2 slow waves. The table includes for each area the number of voxels and the coordinates of the center of mass (CM) in the standard MNI space (minimum cluster size = 50 voxels).

Table S5

N1-N2 SLOW WAVES						
Signal Change	Region	Voxels	СМх	СМу	CM z	
Positive	Cerebellum, Thalamus, Midbrain, Pons	14680	-0,4	-54	-28,6	
	Medial Frontal Cortex	4052	-0,8	40,5	22,4	
	Left Insula	3824	-45,5	3,8	7,4	
	Bilateral Visual Cortex	3680	-2,3	-68,4	10,6	
	Right Anterior Insula & Medial Frontal Lobe	3149	43,2	15,3	8,2	
	Right Posterior Insula	1277	48	-24	13,7	
Negative	Left Parieto-Occipital Cortex	250	-9,6	-70,9	35	
	Right Parieto- Occipital Cortex	245	12	-68,7	35,6	
	Left Anterior Cingulate Cortex	198	-19,6	0	21,8	
	Left Somatomotor	147	-41,5	-19,4	52,6	
	Right Hippocampus	103	29,8	-28,2	-10,1	
	Right Anterior Cingulate Cortex	69	18,7	18,6	16,5	
	Left Anterior Hippocampus	61	-26,1	-16,5	-19,7	
	Left Caudate	57	-13	13,1	13,9	
	Right Caudate	52	12,5	18,7	9	
	Left Posterior Hippocampus	51	-24,9	-37,6	-2	

N3 SLOW WAVES						
Signal Change	Region	Voxels	CM x	СМу	CM z	
Positive	Right Cerebellum	607	26.3	-45.6	-26.5	
	Left Cerebellum	276	-24.4	-44.1	-26.8	
	Middle Cerebellum	207	-5.3	-65.6	-18.9	
Negative	Parieto-Occipital Cortex	4456	-0.8	-64.6	18.9	
	Left Superior Temporal Lobe	178	-53.4	-26.3	14.5	
	Left Orbitofrontal Cortex	123	-44.7	25.1	-11.9	
	Bilateral Orbitofrontal Cortex	67	-4.1	49.6	-10.2	
	Bilateral Somatomotor	53	-1.1	-42.2	71.8	

Table S5. Brain areas showing significant BOLD-signal changes time-locked to the occurrence of slow waves in N1/N2 and N3 sleep, respectively (q<0.001 after FDR correction). The table includes for each area the number of voxels and the coordinates of the center of mass (CM) in the standard MNI space (minimum cluster size = 50 voxels).

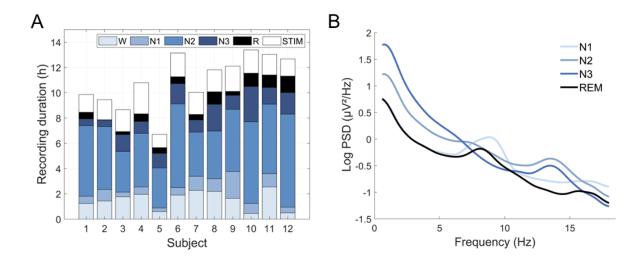


Figure S1. Analysis of EEG recordings. A. Amount of time spent in each sleep stage for each participant. Each column represents the sum of the two sessions for a different subject. STIM = artifactual segments, excluded from the analysis. B. Mean power spectral densities (PSD) obtained across all participants and recordings for N1, N2, N3 and REM sleep. PSD values were computed in two frontal (F3, F4) and two central (C3, C4) electrodes and then averaged.

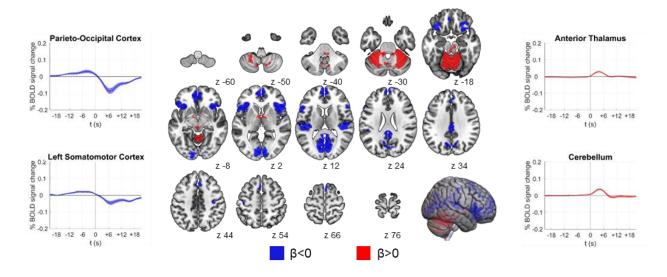


Figure S2. Results of the regression analysis for slow waves. Brain regions associated with a significant (q < 0.001) BOLD-signal increase are shown in red ($\beta > 0$), while regional BOLD-signal decreases are displayed in blue ($\beta < 0$). Brain images were generated using MRIcroGL (https://www.nitrc.org/projects/mricrogl/). Plots on the left and right show the mean BOLD-signals (up-sampled to the EEG sampling rate) time-locked to slow waves and the relative standard errors. These plots were obtained by averaging the signal of individual voxels within significant clusters identified through the regression analysis and cleaned out from sleep spindles signal contribution. t0: slow wave negative peak.

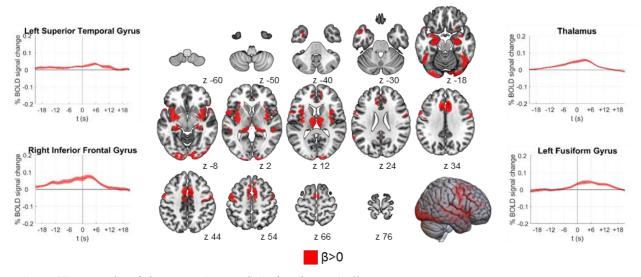


Figure S3 - Results of the regression analysis for sleep spindles. Brain regions associated with a significant (q < 0.001) BOLD-signal increase are shown in red ($\beta > 0$). Brain images were generated using MRIcroGL (https://www.nitrc.org/projects/mricrogl/). Plots on the left and right show the mean BOLD-signals (up-sampled to the EEG sampling rate) time-locked to sleep spindles and the relative standard errors. These plots were obtained by averaging the signal of individual voxels within significant clusters identified through the regression analysis and cleaned out from slow wave signal contribution. t0: sleep spindle onset.

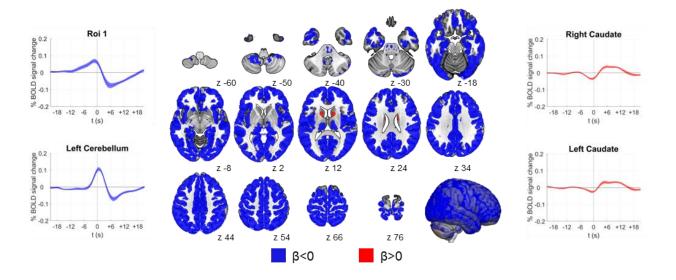


Figure S4 - Results of the regression analysis for PWA-drops. Brain regions associated with a significant (q < 0.001) BOLD-signal increase are shown in red ($\beta > 0$), while regional BOLD-signal decreases are displayed in blue ($\beta < 0$). Brain images were generated using MRIcroGL (https://www.nitrc.org/projects/mricrogl/). Plots on the left and right show the mean BOLD-signals (up-sampled to the EEG sampling rate) time-locked to PWA-drops and the relative standard errors. These plots were obtained by averaging the signal of individual voxels within significant clusters identified through the regression analysis and cleaned out from slow waves signal contribution. Roi 1 encompasses nearly all cortical areas, as well as specific subcortical structures, namely the thalamus and pons. t0: PWA-drop onset.

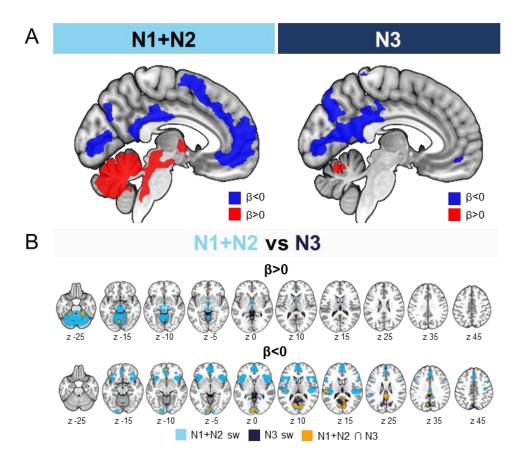


Figure S5. Results of the regression analysis for N1+N2 and N3 slow waves. A. Brain regions (q < 0.001) associated with a significant BOLD-signal increase are shown in red ($\beta > 0$), while regional BOLD-signal decreases are displayed in blue ($\beta < 0$). B. The axial brain slices illustrate the hemodynamic response patterns associated with light (N1+N2, in light blue) and deep (N3) NREM sleep slow waves (q < 0.001, FDR corrected). Overlapping areas are shown in orange. Brain images were generated using MRIcroGL (https://www.nitrc.org/projects/mricrogl/).

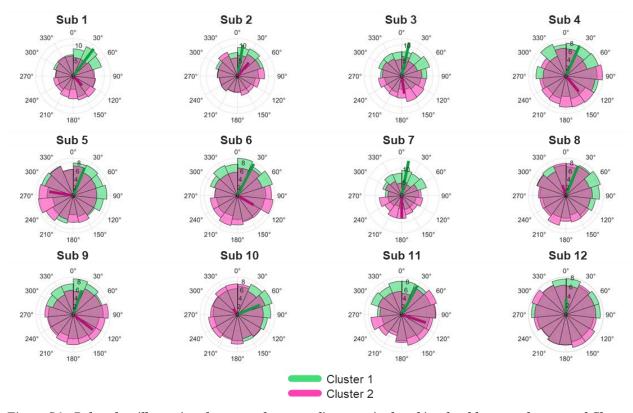


Figure S6 - Polar plots illustrating the mean phase coupling at a single subject level between the onset of Cluster 1 (green) and Cluster 2 (pink) slow waves and the ISO phase, with 0° representing the ISO peak. The plot includes the mean vector for each cluster. The full range of the infraslow phase was divided in 15 bins (24° each) for visualization purposes.

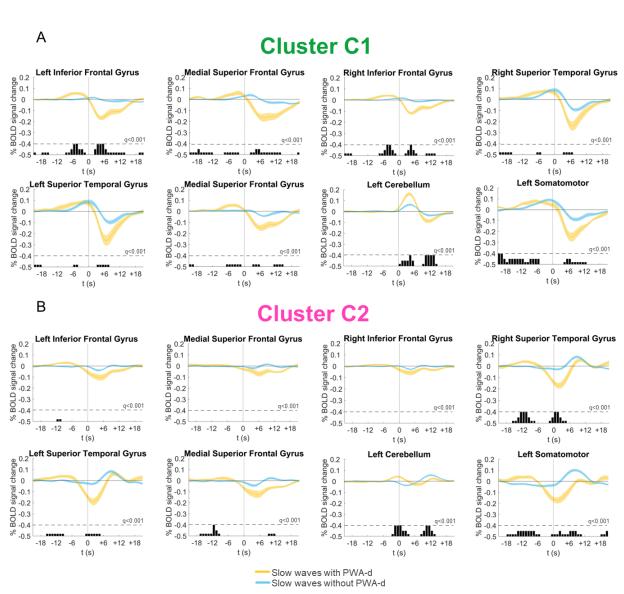


Figure S7 - Mean BOLD signal changes time-locked to the onset of C1 (A) and C2 (B) slow waves are displayed, along with the corresponding standard errors. These plots compare slow waves associated with a concurrent PWA drop (yellow) to those without a drop (light blue). Significant differences between the two conditions, calculated over 1-second bins (paired t-tests) and corrected for multiple comparisons using the FDR method, are indicated by black bars. The BOLD profiles were generated by averaging the signal across individual voxels within significant clusters identified through the main slow wave regression analysis. to: marks the negative peak of the slow wave.