

912 **Appendix A Memory Pool Prompt**

```
Memory Pool Prompt
# describe responsibilities
You have access to a memory pool. You are responsible for passing in the correct arguments to the tool you choose to use.

# Define the input format
Each input will consist of two parts:
1. Question description or Observation 2. What parameters are in the memory pool.

# explain how LLM uses memory pool
# when not to use memory pool
You should first try to extract the argument that this tool need from the problem description, such as 'drug_smiles': 'C=C1C2=CCCC=C(NC(C))'.
# when and how to use memory pool
If the question description does not contain this argumennt, then you need to find this argument in the memory pool, using '(key in the MemoryPool)' to indicate this choice.
You should use () to read MemoryPool.
# give an example
For example, if MemoryPool(arguments=dict_keys(['user_smiles', 'generated_smiles', 'optimized_smiles'])), then you can use 'drug_smiles': '(user_smiles)' or 'drug_smiles': '(generated_smiles)' or 'drug_smiles': '(optimized_smiles)'.
# wrong example
You cannot use arguments that are not in the memory pool. For example, if MemoryPool does not contain 'user_target_seq', you should not give 'target_seq': '(user_target_seq)'.
```

Fig. A1: Memory pool prompt.

913 To help LLMs better understand the PMP in DrugPilot, we have incorporated a
914 memory pool prompt into the system prompt. The full memory pool prompt is shown
915 in Fig. A1.

916 The memory pool prompt first clarifies the existence of PMP and the responsibilities
917 of the LLMs, namely the correct transmission of parameters to the tools. It then
918 defines the input format received by the LLMs, comprising two parts: the user's ques-
919 tion or the tool's output, and a description of the current state of PMP, which includes
920 the list of currently stored keys. LLMs can select a key from this pool and map it to
921 its corresponding value. It then explains in detail how the LLMs should interact with
922 PMP. First, it defines scenarios where PMP should not be used: if the required param-
923 eters are already present in the question, the LLMs should extract them directly. Next,
924 it specifies when and how to use PMP: if the question lacks the necessary parameters,
925 the LLMs must retrieve the corresponding key from the memory pool and enclose it
926 in parentheses to indicate retrieval. Finally, the prompt provides both a correct and
927 an incorrect example, demonstrating proper memory pool usage and helping LLMs
928 avoid retrieving non-existent keys, thereby mitigating hallucination.

929 **Appendix B DrugPilot's Reasoning Errors**

930 In tool calling, LLMs are required to generate an action input in JSON format, con-
931 taining the tool name to be called and required parameters. And in actual tasks, there

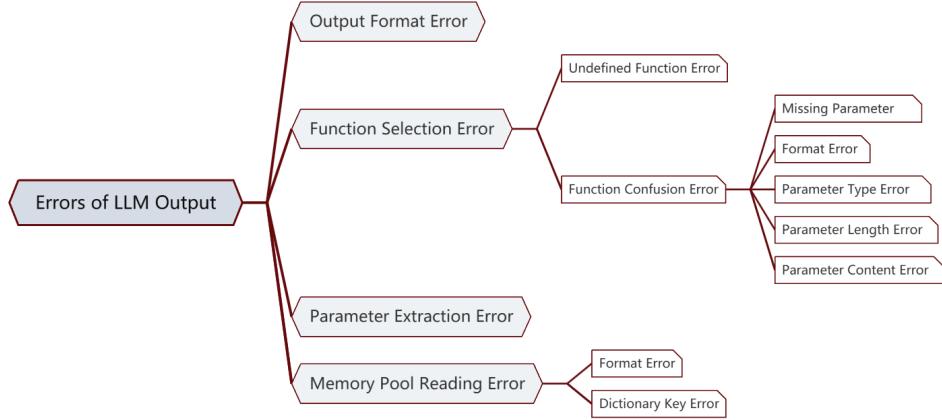


Fig. B2: Common reasoning errors of LLMs. The common types of reasoning errors when LLMs call drug-related tools, and the Fe-Fo mechanism will provide feedback to LLMs regarding these issues.

Hyperparameter	Value / Strategy
Batch size	4-8
Cutoff length	1024
Optimizer	AdamW
Initial learning rate	5e-5
Learning rate scheduler	Cosine decay
Precision	BF16
Number of epochs	3
Deployment platform	Ollama

Table C1: Hyperparameter Settings for Fine-tuning

932 will be frequent interactions with PMP. Therefore, problems will inevitably arise both
 933 in content and format. Based on the real output of LLMs, we summarized the common
 934 reasoning errors as shown in Fig.B2.

935 Appendix C Fine-Tuning Configuration

936 We conducted LoRA fine-tuning on the LLMs used in DrugPilot to enhance their
 937 domain knowledge in drug discovery and improve their ability to call drug-related
 938 tools. Batch size of 4 was used for smaller models, and 8 for larger ones. We deployed
 939 the final inference-stage LLMs on the Ollama¹ platform. The hyperparameter settings
 940 used during the fine-tuning process are detailed in Table C1.

¹<https://github.com/ollama/ollama>.

Datasets	Metrics	Molecule Generation Task			
		CDGS [59]	GruM-2D [60]	MOOD [61]	RMCD (Ours)
QM9 + GDSCv2	FCD \downarrow	77.0 / 61.1 / 53.1	85.3 / 60.7 / 52.7	80.2 / 57.7 / 48.7	77.0 / 56.0 / 47.8
	MMD \downarrow	.340 / .142 / .110	.337 / .138 / .106	.347 / .195 / .144	.313 / .142 / .101
Datasets	Metrics	Molecular Optimization Task			
		Prompt-MolOpt [62]	HN-GFN [63]	FFLOM [64]	FMOP (Ours)
QM9 + GDSCv2	Success \uparrow	91.68%	92.70%	88.83%	95.43%
	Improv. \uparrow	5.70%	3.30%	6.3%	7.50%
Datasets	Metrics	Drug Target Interaction Prediction Task			
		FOTF-CPI [65]	HiGraphDTI [66]	MGNDTI [67]	SiamDTI (Ours)
BindingDB BioSNAP	AUROC \uparrow	0.506 \pm 0.030	0.540 \pm 0.030	0.524 \pm 0.032	0.554 \pm 0.016
		0.590 \pm 0.030	0.629 \pm 0.030	0.601 \pm 0.012	0.636 \pm 0.020
Datasets	Metrics	Drug Target Affinity Prediction Task			
		RF [68]	MSGNN-DTA [69]	HGRL-DTA [70]	CLG-DTA (Ours)
KIBA	PCC \uparrow	0.150	0.116	0.083	0.280
	MSE \downarrow	0.962	0.907	1.024	0.900
Datasets	Metrics	Molecular Property Prediction Task			
		KCL [71]	GROVER [72]	CoMPT [73]	KCHML (Ours)
QM7	MSE \downarrow	59.9 \pm 2.8	90 \pm 1.9	86.5 \pm 1.3	56.1 \pm 3.5
		0.0130 \pm 0.013	0.0180 \pm 0.001	0.0187 \pm 0.001	0.0121 \pm 0.000
QM8		0.659 \pm 0.019	1.435 \pm 0.283	0.832 \pm 0.039	0.612 \pm 0.142
		0.659 \pm 0.019	1.435 \pm 0.283	0.832 \pm 0.039	0.612 \pm 0.142
ESOL		1.148 \pm 0.257	2.935 \pm 0.620	1.940 \pm 0.808	1.136 \pm 0.142
		0.566 \pm 0.007	0.829 \pm 0.010	0.647 \pm 0.028	0.527 \pm 0.009
FreeSolv		93.00 \pm 0.69	82.34 \pm 8.83	82.47 \pm 0.69	94.57 \pm 1.63
		95.38 \pm 1.70	84.37 \pm 4.10	94.57 \pm 1.20	95.89 \pm 1.66
Datasets	Metrics	Drug-Drug Interaction Prediction Task			
		GMPNN [74]	DGNN-DDI [75]	DSN-DDI [76]	KCHML (Ours)
TwoSide ^a TwoSide ^b	AUC \uparrow	77.69 \pm 0.26	77.25 \pm 0.23	77.25 \pm 0.23	81.87 \pm 0.54
		80.91 \pm 0.80	81.96 \pm 0.26	81.59 \pm 0.66	83.75 \pm 0.89
Datasets	Metrics	Drug Response Prediction Task ^c			
		MSDA _{GraTransDRP} 0.5103 (5.3%)	MSDA _{TransEDRP} 0.5316 (+5.1%)	CLDR _{GraTransDRP} 0.5288 (+11.61%)	CLDR _{TransEDRP} 0.5149 (+1.77%)
GDSCv2	PCC \uparrow	0.0039 (+20.6%)	0.0044 (15.2%)	0.0039 (+17.02%)	0.0038 (+26.23%)
	MSE \downarrow				
Datasets	Metrics	Drug Retrosynthesis Task			
		GET-LT1 [77]	SCROP [78]	RetroXpert [79]	CFC-Retro (Ours)
USPTO-50K	Top-1 \uparrow	59.1	59.0	62.1	65.9
	Top-3 \uparrow	73.4	74.8	75.8	80.4
	Top-5 \uparrow	76.4	78.1	78.5	82.4

^a: Both molecules unseen in training data. ^b: Only one molecule present in training.

^c: MSDA and CLDR are enhancement plug-ins introduced by Ours to improve the performance of baseline methods such as GraTransDRP [80] and TransEDRP [81].

Table C2: Performance comparison across task-specific AI model zoo. The results demonstrate how our methods perform across different tasks, in comparison with the current SOTA methods.

941 Appendix D AI Model Zoo

942 DrugPilot is designed to facilitate the accurate and efficient execution of multiple tasks
943 within the drug research and development pipeline by leveraging tool calling mechanisms.
944 For each specific task, there are various models that are tailored to complete

945 the task. Table C2 presents a comprehensive comparison of the performance achieved
946 by our method against a range of SOTA baselines. Our method consistently achieves
947 superior performance across all tasks, which ensures the reliability and effectiveness of
948 individual task execution. Consequently, this contributes to the enhanced robustness
949 of the overall DrugPilot workflow.