2 Appendix A Memory Pool Prompt

~—— Memory Pool Prompt

describe responsibilities
You have access to a memory pool. You are responsible for passing in the correct arguments
to the tool you choose to use.

Define the input format
Each input will consist of two parts:
1. Question description or Observation 2. What parameters are in the memory pool.

explain how LLM uses memory pool

when not to use memory pool

You should first try to extract the argument that this tool need from the problem
description, such as 'drug_smiles': 'C=C1C2=CCCC=C(NC(C)".

when and how to use memory pool

If the question description does not contain this argumennt, then you need to find this
argument in the memory pool, using '(key in the MemoryPool)' to indicate this choice.
You should use () to read MemoryPool.

give an example

For example, if MemoryPool(arguments=dict_keys(['user_smiles', 'generated_smiles’,
‘optimized_smiles'])), then you can use 'drug_smiles': '(user_smiles)' or ‘'drug_smiles':
' (generated_smiles)' or ‘drug_smiles': '(optimized_smiles)

wrong example

You cannot use arguments that are not in the memory pool. For example, if MemoryPool does
not contain ‘'user_target_seq', you should not give 'target_seq': '(user_target_seq)'.

Fig. A1l: Memory pool prompt.

013 To help LLMs better understand the PMP in DrugPilot, we have incorporated a
oia memory pool prompt into the system prompt. The full memory pool prompt is shown

o15 in Fig. Al.

016 The memory pool prompt first clarifies the existence of PMP and the responsibil-
o7 ities of the LLMs, namely the correct transmission of parameters to the tools. It then
ais defines the input format received by the LLMs, comprising two parts: the user’s ques-
o9 tion or the tool’s output, and a description of the current state of PMP, which includes
o0 the list of currently stored keys. LLMs can select a key from this pool and map it to
o1 its corresponding value. It then explains in detail how the LLMs should interact with
o2 PMP. First, it defines scenarios where PMP should not be used: if the required param-
o3 eters are already present in the question, the LLMs should extract them directly. Next,
o4 it specifies when and how to use PMP: if the question lacks the necessary parameters,
o5 the LLMs must retrieve the corresponding key from the memory pool and enclose it
o6 in parentheses to indicate retrieval. Finally, the prompt provides both a correct and
o7 an incorrect example, demonstrating proper memory pool usage and helping LLMs

o8 avoid retrieving non-existent keys, thereby mitigating hallucination.

2 Appendix B DrugPilot’s Reasoning Errors

o0 In tool calling, LLMs are required to generate an action input in JSON format, con-
o1 taining the tool name to be called and required parameters. And in actual tasks, there

31

932

933

934

935

936

937

938

939

940

Output Format Error

Undefined Function Error

Parameter Type Error W

Function Selection Error

Function Confusion Error

< Errors of LLM Output

Parameter Extraction Error >

Dictionary Key Error

Fig. B2: Common reasoning errors of LLMs. The common types of reasoning errors
when LLMs call drug-related tools, and the Fe-Fo mechanism will provide feedback
to LLMs regarding these issues.

Memory Pool Reading Error

Hyperparameter Value / Strategy
Batch size 4-8

Cutoff length 1024

Optimizer AdamW

Initial learning rate 5e-5

Learning rate scheduler = Cosine decay
Precision BF16

Number of epochs 3

Deployment platform Ollama

Table C1: Hyperparameter Settings for Fine-tuning

will be frequent interactions with PMP. Therefore, problems will inevitably arise both
in content and format. Based on the real output of LLMs, we summarized the common
reasoning errors as shown in Fig.B2.

Appendix C Fine-Tuning Configuration

We conducted LoRA fine-tuning on the LLMs used in DrugPilot to enhance their
domain knowledge in drug discovery and improve their ability to call drug-related
tools. Batch size of 4 was used for smaller models, and 8 for larger ones. We deployed
the final inference-stage LLMs on the Ollama' platform. The hyperparameter settings
used during the fine-tuning process are detailed in Table C1.

Thttps://github.com/ollama/ollama.

32

https://github.com/ollama/ollama

941

942

943

944

Datasets Metrics Molecule Generation Task

CDGS [59] GruM-2D [60] MOOD [61] RMCD (Ours)
QM9 + FCD | 77.0 / 61.1 / 53.1 85.3 / 60.7 / 52.7 80.2 / 57.7 / 48.7 77.0 / 56.0 / 47.8
GDSCv2 MMD | .340 / 142 / .110 337 /138 / 106 347 /195 / .144 .313 / .142 / .101
Datasets Metrics Molecular Optimization Task
Prompt-MolOpt [62] HN-GFN [63] FFLOM [64] FMOP (Ours)
QM9 + Success 1 91.68% 92.70% 88.83% 95.43%
GDSCv2 Tmprov. 1 5.70% 3.30% 6.3% 7.50%
Datasets Metrics Drug Target Interaction Prediction Task
FOTF-CPI [65] HiGraphDTT [66] MGNDTI [67] SiamDTI (Ours)
BindingDB AUROC + 0.506 £+ 0.030 0.540 £ 0.030 0.524 £+ 0.032 0.554 + 0.016
BioSNAP 0.590 £ 0.030 0.629 + 0.030 0.601 £ 0.012 0.636 + 0.020
Datasets Metrics Drug Target Affinity Prediction Task
RF [68] MSGNN-DTA [69] HGRL-DTA [70] CLG-DTA (Ours)
KIBA PCC 1 0.150 0.116 0.083 0.280
MSE | 0.962 0.907 1.024 0.900
Datasets Metrics Molecular Property Prediction Task
KCL [71] GROVER ([72] CoMPT [73] KCHML (Ours)
QM7 MSE | 59.9 + 2.8 90 £ 1.9 86.5 + 1.3 56.1 + 3.5
QM8 0.0130 £ 0.013 0.0180 =+ 0.001 0.0187 £ 0.001 0.0121 + 0.000
ESOL 0.659 £ 0.019 1.435 £+ 0.283 0.832 £ 0.039 0.612 £ 0.142
FreeSolv RMSE | 1.148 £+ 0.257 2.935 £ 0.620 1.940 £ 0.808 1.136 + 0.142
Lipo 0.566 + 0.007 0.829 £ 0.010 0.647 £ 0.028 0.527 £ 0.009
BACE ROC-AUC 1 93.00 £ 0.69 82.34 £ 8.83 82.47 £+ 0.69 94.57 + 1.63
BBBP . 95.38 £ 1.70 84.37 £ 4.10 94.57 £ 1.20 95.89 + 1.66
Datasets Metrics Drug-Drug Interaction Prediction Task
GMPNN [74] DGNN-DDI [75] DSN-DDI [76] KCHML (Ours)
TwoSide® AUC 1 77.69 £ 0.26 77.254+0.23 77.25+0.23 81.87 + 0.54
TwoSide® 80.91 £ 0.80 81.96 £+ 0.26 81.59 + 0.66 83.75 £+ 0.89
Datasets Metrics Drug Response Prediction Task®
MSDAGraTransDRP MSDATyansEDRP CLDRG aTransDRP CLDRyansEDRP
GDSCv2 PCC 1 0.5103 (5.3%) 0.5316 (+5.1%) 0.5288 (+11.61%) 0.5149 (+1.77%)
MSE | 0.0039 (+20.6%) 0.0044 (15.2%) 0.0039 (+17.02%) 0.0038 (+26.23%)
Datasets Metrics Drug Retrosynthesis Task
GET-LT1 [77] SCROP [78] RetroXpert [79] CFC-Retro (Ours)
Top-1 1 59.1 59.0 62.1 65.9
USPTO-50K Top-3 1 73.4 74.8 75.8 80.4
Top-5 1 76.4 78.1 78.5 82.4

®: Both molecules unseen in training data. b, Only one molecule present in training.
¢: MSDA and CLDR are enhancement plug-ins introduced by Ours to improve the perfor-
mance of baseline methods such as GraTransDRP [80] and TransEDRP [81].

Table C2: Performance comparison across task-specific AI model zoo. The results
demonstrate how our methods perform across different tasks, in comparison with the
current SOTA methods.

Appendix D Al Model Zoo

DrugPilot is designed to facilitate the accurate and efficient execution of multiple tasks
within the drug research and development pipeline by leveraging tool calling mecha-
nisms. For each specific task, there are various models that are tailored to complete

33

945

946

947

948

949

the task. Table C2 presents a comprehensive comparison of the performance achieved
by our method against a range of SOTA baselines. Our method consistently achieves
superior performance across all tasks, which ensures the reliability and effectiveness of
individual task execution. Consequently, this contributes to the enhanced robustness
of the overall DrugPilot workflow.

34

	Model Capabilities for the MPP Task.
	Model Capabilities for the DRP Task.
	Effect of SFT and Fe-Fo Mechanism.
	Effect of PMP Mechanism.
	The Structure of PMP
	Parameter Reading and Updating
	Baselines
	Fine-Tuning
	Evaluation Process
	Memory Pool Prompt
	DrugPilot's Reasoning Errors
	Fine-Tuning Configuration
	AI Model Zoo

