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S1 Domain-specific Question Answering

We conducted an additional evaluation question that examined AgentD’s ability to extrapo-
late mechanistic findings to broader therapeutic contexts by asking about the implications of
combining ABT-199 and proteasome inhibitors for treating solid tumors compared to hema-
tologic malignancies. This question tests the system’s capacity to synthesize domain-specific
knowledge and provide clinically relevant insights beyond the immediate scope of the ref-
erence paper. Figure S1 shows the actual responses from both AgentD with RAG and the
standard GPT-40 model to illustrate these differences in clinical reasoning and mechanistic
understanding.

We evaluated responses using the same Weller et al. study, which primarily focuses
on the mechanistic basis of drug synergy through NOXA upregulation and MCL-1 inhibi-
tion. 5! While this question extends beyond the paper’s direct experimental scope, it remains
grounded in the mechanistic principles described in the work. Both AgentD with RAG and
the standard GPT-40 model were asked to discuss the therapeutic implications for different
cancer types.

The RAG-augmented response demonstrates superior clinical reasoning by directly con-
necting the paper’s mechanistic findings to therapeutic applications. AgentD correctly iden-
tifies that the combination could “significantly impact the treatment of both solid tumors
and hematologic malignancies” through the dual mechanism of direct BCL-2 inhibition and
indirect MCL-1 inhibition via NOXA activation. Importantly, the response provides specific
examples, noting effectiveness in “solid tumors, such as soft tissue sarcoma” and established
efficacy in hematologic malignancies including “chronic lymphocytic leukemia and multiple

myeloma.”
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Domain-specific question:
What are the implications of the findings regarding the combinatorial use of ABT-199 and
proteasome inhibitors for treating solid tumors compared to hematologic malignancies?

AgentD (w/ RAG):

The findings indicate that combining ABT-199 (venetoclax) with proteasome inhibitors (Pls) could
significantly impact the treatment of both solid tumors and hematologic malignancies. In solid tumors,
such as soft tissue sarcoma, this combination synergistically induces apoptosis by activating the pro-
apoptotic protein NOXA, which inhibits the anti-apoptotic protein MCL-1, enhancing ABT-199's efficacy.
This dual action—direct BCL-2 inhibition and indirect MCL-1 inhibition—suggests effectiveness in solid
tumors overexpressing these proteins. In hematologic malignancies, where ABT-199 is already effective,
particularly in chronic lymphocytic leukemia and multiple myeloma, combining it with Pls could improve
outcomes by overcoming resistance mechanisms involving MCL-1. These findings support further clinical
evaluation of this combination in various cancers, potentially expanding therapeutic options for both
solid and hematologic malignancies.

Standard GPT4o0:

The findings on the combinatorial use of ABT-199 (venetoclax) and proteasome inhibitors have several
implications for the treatment of solid tumors compared to hematologic malignancies. Here's a
breakdown:

1. Mechanistic Synergy:

Hematologic Malignancies: ABT-199, a BCL-2 inhibitor, is particularly effective because these cancers
often rely heavily on the BCL-2 pathway for survival. When combined with proteasome inhibitors, which
block protein degradation, the apoptotic pathways are further enhanced, leading to increased cancer cell
death.

Solid Tumors: These cancers might not be as dependent on BCL-2 as hematologic malignancies.
However, the combination could still disrupt protein homeostasis and induce apoptosis by targeting
multiple pathways.

2. Clinical Efficacy:

Hematologic Malignancies: Clinical trials have shown promising results due to the high BCL-2
expression. The combinatorial approach can enhance responses in resistant cases.

Solid Tumors: The efficacy might be more variable due to the diverse nature of these tumors and their
reliance on other anti-apoptotic proteins like MCL-1 or BCL-XL.

Resistance Mechanisms:

Hematologic Malignancies: Resistance can develop through mutations or upregulation of alternative
survival pathways.

Solid Tumors: The diverse genetic landscape means multiple resistance mechanisms could limit
effectiveness.

3. Toxicity and Side Effects:
Combining ABT-199 with proteasome inhibitors can potentially increase toxicity, necessitating careful
dose optimization and monitoring in both cancer types.

4. Biomarker Development:
Identifying biomarkers to predict response can help tailor the combination therapy more effectively,
particularly in solid tumors where response rates might be heterogeneous.

5. Future Research Directions:

Continued research is needed to understand the specific tumor types and settings where this
combination is most beneficial, and to develop strategies to overcome resistance in solid tumors.
Overall, while the combination has shown efficacy in hematologic cancers, its application in solid tumors
requires a nuanced understanding of tumor biology and careful clinical evaluation.

Figure S1: AgentD response demonstrating domain-specific question answering capabilities.
The question extrapolates beyond the direct scope of the source article.
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The RAG response captures the key therapeutic insight that this combination approach
could “overcome resistance mechanisms involving MCL-1,” which aligns closely with the
ground truth explanation that the strategy “could potentially overcome intrinsic resistance
mechanisms in solid tumors that are less dependent on BCL-2 but still rely on MCL-1 for
survival.” This mechanistic understanding is crucial for clinical translation, as it identifies
the specific molecular rationale for why the combination might succeed where single-agent
BCL-2 inhibition fails.

In contrast, the standard GPT-40 response, while comprehensive and well-structured,
provides a generic framework that could apply to virtually any combination therapy discus-

%«

sion. The response covers broad categories such as “mechanistic synergy,” “clinical efficacy,”
and “resistance mechanisms” but fails to reference the specific NOXA-mediated pathway
that makes this particular combination therapeutically promising. Critical omissions in-
clude the ISR activation, ATF3/ATF4 transcriptional regulation, and the specific role of
MCL-1 inhibition in overcoming resistance.

The standard response does acknowledge that “solid tumors might not be as dependent
on BCL-2 as hematologic malignancies” and mentions reliance on “other anti-apoptotic
proteins like MCL-1 or BCL-XL,” but it lacks the mechanistic foundation to explain how the
combination specifically addresses these dependencies. This represents a missed opportunity
to provide actionable clinical insights based on the underlying biology.

Furthermore, while the standard response discusses general considerations such as toxic-
ity management and biomarker development, it does so without the mechanistic context that
would guide these clinical decisions. The RAG response, by contrast, grounds its recommen-
dations in the specific findings about NOXA upregulation and MCL-1 inhibition, providing
a more targeted foundation for clinical development.

This evaluation demonstrates that even for questions that extend beyond the immediate
experimental scope of the reference literature, RAG-augmented responses maintain superior

clinical relevance by preserving the mechanistic foundation that underlies therapeutic poten-
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tial. The ability to connect specific molecular mechanisms to broader therapeutic applica-
tions represents a critical advantage for biomedical question answering systems, particularly
in translational research contexts where mechanistic understanding directly informs clinical

strategy.
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S2 ADMET Properties

Table S1: Complete list of ADMET properties predicted for all compounds in this study.

Category Property Description
Absorption Caco-2 Permeability (log- Permeability across Caco-2 cell
Paap) monolayers
Human Intestinal Absorp- Fraction absorbed in human intestine
tion
Human Oral Bioavailability Probability of achieving >20% oral
(20%) bioavailability
Human Oral Bioavailability Probability of achieving >50% oral
(50%) bioavailability
MDCK Permeability Madin-Darby Canine Kidney cell
permeability
P-Glycoprotein Inhibitor Inhibition of P-glycoprotein efflux
pump
P-Glycoprotein Substrate Substrate of P-glycoprotein efflux
pump
Skin Permeability Dermal absorption coefficient
Distribution Blood-Brain Barrier Pene- CNS penetration capability

tration

Blood-Brain Barrier (log
BB)

Unbound (Hu-

Fraction

man)

Blood-brain barrier partition coeffi-
cient

Unbound fraction in human plasma
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Table S1 — Continued from previous page

Category Property Description
Plasma Protein Binding Extent of protein binding in plasma
Volume of Distribution Steady-state volume of distribution
Metabolism BCRP Substrate Breast Cancer Resistance Protein
substrate
CYP1A2 Inhibitor Cytochrome P450 1A2 inhibition
CYP1A2 Substrate Cytochrome P450 1A2 substrate
CYP2C19 Inhibitor Cytochrome P450 2C19 inhibition
CYP2C19 Substrate Cytochrome P450 2C19 substrate
CYP2C9 Inhibitor Cytochrome P450 2C9 inhibition
CYP2C9 Substrate Cytochrome P450 2C9 substrate
CYP2D6 Inhibitor Cytochrome P450 2D6 inhibition
CYP2D6 Substrate Cytochrome P450 2D6 substrate
CYP3A4 Inhibitor Cytochrome P450 3A4 inhibition
CYP3A4 Substrate Cytochrome P450 3A4 substrate
OATP1B1 Substrate Organic Anion Transporting
Polypeptide 1B1
OATP1B3 Substrate Organic Anion Transporting
Polypeptide 1B3
Excretion Clearance Total body clearance
Half-Life Elimination half-life
OCT2 Substrate Organic Cation Transporter 2 sub-
strate
Toxicity AMES Mutagenicity Bacterial mutagenicity test
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Table S1 — Continued from previous page

Category

Property

Description

Avian Toxicity

Bee Toxicity
Bioconcentration Factor
Biodegradation
Carcinogenicity
Crustacean Toxicity
Daphnia Toxicity

Eye Corrosion

Eye Irritation

Fathead Minnow Toxicity

Hepatotoxicity (DILI)
Hepatotoxicity  (Alterna-
tive)

Maximum Tolerated Dose
Micronucleus Test

Nuclear Receptor AhR
Nuclear Receptor AR
Nuclear Receptor AR-LBD
Nuclear Receptor  Aro-

matase

Nuclear Receptor ER

Acute toxicity to birds

Acute toxicity to honeybees
Bioaccumulation potential
Environmental biodegradability
Carcinogenic potential

Acute toxicity to crustaceans
Acute toxicity to Daphnia magna
Severe eye damage potential

Eye irritation potential

Acute toxicity to Pimephales prome-
las

Drug-induced liver injury

Alternative liver injury prediction

Highest non-toxic dose
Chromosomal damage potential
Aryl hydrocarbon receptor activation
Androgen receptor binding
Androgen receptor ligand binding
domain

Aromatase enzyme inhibition

Estrogen receptor binding
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Table S1 — Continued from previous page

Category Property Description

Nuclear Receptor ER-LBD  Estrogen receptor ligand binding do-
main

Nuclear Receptor GR Glucocorticoid receptor binding

Nuclear Receptor PPAR-y  Peroxisome proliferator-activated re-
ceptor y

Nuclear Receptor TR Thyroid receptor binding

Rat Acute Toxicity Acute oral toxicity in rats

Rat Chronic Toxicity Chronic oral toxicity in rats

Respiratory Toxicity Respiratory system toxicity

Skin Sensitization Dermal sensitization potential

Stress Response ARE Antioxidant response element activa-
tion

Stress Response ATADbS ATADS5 genotoxicity pathway

Stress Response HSE Heat shock response element

Stress Response MMP Mitochondrial membrane potential

Stress Response p53 p53 tumor suppressor pathway

Tetrahymena pyriformis Acute toxicity to T. pyriformis

hERG Inhibition Human ether-a-go-go-related gene
K+ channel

General Boiling Point Boiling point temperature

Hydration Free Energy
log D (pH 7.4)

Free energy of hydration
Distribution coefficient at physiolog-

ical pH
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Table S1 — Continued from previous page

Category Property Description
log P Octanol-water partition coefficient
log S Aqueous solubility
log Vapor Pressure Vapor pressure
Melting Point Melting point temperature
pKa (Acidic) Acid dissociation constant
pKa (Basic) Base dissociation constant
pKd (Acidic) Alternative acid dissociation con-
stant

S10



S3 Identified Unfavorable Drug Properties

The molecular optimization process focuses on identifying unfavorable properties and refin-
ing SMILES to improve their ADMET profiles. Table S2 summarizes the distribution of
properties flagged by AgentD across optimization rounds, grouped by ADMET categories.
An observed limitation is the agent’s frequent selection of log Py, as a risk factor—despite
it being just one among 74 possible properties. This suggests a selection bias, potentially
due to the ordering of properties in the input dictionary. Since log P,p, appears near the top
of the dictionary entry, the agent may disproportionately attend to it during its reasoning
process. Future iterations can address this by randomizing property order or introducing

attention calibration techniques.

Table S2: Distribution of weakness properties after 1st and 2nd round of SMILES optimiza-
tion. The weakness property represents the most critical ADMET deficiency targeted for
improvement.

ADMET Cate- Specific Property 1st Round 2nd
gory (%) Round
(%)
Absorption Caco-2 (logPaap) 59.6 69.5
Toxicity AMES Mutagenesis 14.1 7.4
Liver Injury I (DILI) 5.1 4.2
hERG Blockers 4.0 2.1
Carcinogenesis 3.0 1.1
General Properties  logP 5.1 3.2
logS 1.0 -
Other Absorption/Human Oral Bioavailabil- 6.0 8.4

ity (20% and 50%), Invalid SMILES,
and other general entries.

Total Entries 99 95
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S4 Structure Generation Examples

For the examples shown in Figure S2, we applied stricter rule-based filters and slightly
more lenient pKd thresholds compared to those used in the main manuscript. Specifically,
molecules were selected if they passed more than three rule-based filters, had a QED score
above 0.6, and a predicted pKd greater than 5.5. From the set of molecules that underwent

two rounds of refinement, three examples were randomly selected for illustration.
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Figure S2: Additional examples of protein—ligand complex generation and evaluation.
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S5 Drug-likeness Filters

The listed properties were calculated using RDKit with molecular SMILES as input. Note
that these rules serve as illustrative examples and are not the definitive criteria for selecting

candidates for 3D structure generation.

Table S3: Summary of rule-based drug-likeness filters and their physicochemical criteria.

Rule

Criterion

Threshold / Range

Pharmacological Rationale

Lipinski’s Rule of Five

$2,83

Molecular Weight (MW)

< 500 Da

High molecular weight is associated with poor
intestinal absorption due to size-related trans-
port limitations.

logP <5 High lipophilicity (logP < 5) correlates with
poor aqueous solubility and passive permeabil-
ity.

H-bond Donors (HBD) <5 Excessive H-bond donors increase polarity, re-
ducing membrane permeability.

H-bond Acceptors (HBA) < 10 Too many acceptors increase polarity, hindering
passive diffusion.

Rotatable Bonds (RB) < 10 rotatable bonds  High flexibility and polar surface area reduce

the likelihood of oral activity.

Veber Rule TPSA < 140 A2 High polar surface area decreases oral bioavail-
ability by reducing passive diffusion.
Rotatable Bonds (RB) <10 Excess flexibility increases entropy, reducing
oral bioavailability and metabolic stability.
Molecular Weight (MW)  160-480 Da Balances molecular size for optimal binding and
. 3 permeability.
Ghose Filter*! logP —0.4 to 5.6 Ensures moderate lipophilicity for both solubil-
ity and membrane crossing.
Molar Refractivity (MR)  40-130 Captures molecular volume and polarizability,
influencing receptor binding.
Atom Count 20-70 Reflects a size range favorable for drug-likeness
and synthetic accessibility.
Molecular Weight (MW) < 300 Da Smaller fragments are preferred in fragment-
Rule of Three (Ro3)%® based drug discovery for lead optimization.
logP <3 Low lipophilicity —promotes solubility in
fragment-like compounds.
H-bond Donors (HBD) <3 Reduces polarity, supporting fragment perme-
ability and binding.
Molecular Weight (MW)  200-450 Da Ideal size range for optimization into drug-like
compounds.
Oprea Lead-like FilterS® logP —1to4.5 Moderate hydrophobicity for balanced solubil-
ity and permeability.
Rotatable Bonds (RB) <38 Lower conformational entropy improves binding
efficiency.
Aromatic Rings <4 Limits excessive aromaticity, which can affect
solubility and toxicity.
H-bond Donors (HBD) <5 Controls molecular polarity and improves mem-
brane permeability.
H-bond Acceptors (HBA) < 8 Keeps polarity within bounds for favorable

pharmacokinetics.
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